Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

Annu. Rev. Comput. Sci. 1990. 4:255-306
Copyright © 1990 by Annual Reviews Inc. All rights reserved

MACHINE LEARNING

Thomas G. Dietterich

Department of Computer Science, Oregon State University, Corvallis,
Oregon 97331-3902

CONTENTS
OVERVIEW L...itiii it eiteeitettete st et et eteeat e e s eebee e et e steat e st et et et emstet e er e e s e eseebentensennsesaeeneen 255
PHILOSOPHICAL FOUNDATIONSveiiiiteeaiiiieenitesteeeesiteeessneesnisteesaseesssneesssseesseessseennne 256
THEORETICAL RESULTS ON LEARNING FROM EXAMPLES . 259
Restricted-Hypothesis-S pace Bias.. . 260
Preference Bias...........ccocueueecuennns . 266
Noisy Data...............uue...... 267
Computational Complexity .. 267
SUIINALY ..ottt e s 270
RECENT DEVELOPMENTS IN PRACTICAL LEARNING ALGORITHMS...... . 270
Improvements to Decision-Tree Methodsc..cooueeeueenecenienscerneninssennes .27
T he Back-Propagation Algorithm for Training Multi-Layer Neural Networks. 275
Hybrid AIGOritIns..............cccueevevuieieiiniieieieeeeseeeeesaesreeseeseeseeseessessessesssasaensens . 278
SUIINATY ...ttt bbb e e ne e 285
EXPLANATION-BASED LEARNING ..c..eeutitetinmteiteienteeieettesteesessensenseensessesseensensesnsesessesseenes 285
The Basic EBL Procedurecovevvervvernnennnns 285
Integrating EBL Into Problem-Solving Architectures. w293
Lessons and Problems.................ccccooeveeeveenencneen. . 296
Generalization-to-n............... 299
Imperfect Domain Theories . .. 300
SUIIAEY c..c.cvviviiriis vttt ettt b e bbb e et e et st eb s e enee 302
CONCLUDING REMARKSoviiiiiiiiiiiiniiienteeitententeetessesaestessesaesaeeeesaesseesnenaesaeesnennensesns 302

OVERVIEW

Recent progress in the study of machine learning methods has taken many
directions. First, in the area of inductive learning, a new formal definition
of learning introduced by Leslie Valiant has provided the foundation for
several important theoretical results. Second, a number of new learning
algorithms have been developed, and existing algorithms have been
improved. Third, the collection of methods that perform so-called explan-
ation-based learning have addressed the problem of speeding up the per-

255
8756-7016/90/ 1115--0255802.00

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

256 DIETTERICH

formance of problem-solving programs. Finally, the philosophical founda-
tions of machine learning have been clarified.

My goal here is to review the major results in each of these four direc-
tions. We begin with a discussion of the field’s philosphical foundations,
which provide a framework for the remainder of the chapter.

PHILOSOPHICAL FOUNDATIONS

How can “learning” be defined? The lack of a workable definition has
made it hard to determine whether learning methods succeed. Recently,
Dietterich (1986) and Valiant (1984) have introduced new approaches to
defining “learning.”

Dietterich (1986) reduces the problem of defining “learning” to the
problem of defining “knowledge.” Given a satisfactory definition of
“knowledge,” “learning” can be defined as an increase in “knowledge.”
Depending on which definition of “‘knowledge’ one chooses, one obtains
different definitions of learning,.

The definition I prefer is the following. An agent (i.e. a person or a
program) knows a fact F if the agent has been told F or if the agent can
logically infer F from its other knowledge. No limit is placed on the
computational resources (e.g. CPU time and memory space) consumed
in performing these inferences. This form of knowledge can be called
“knowledge in principle” or “deductive closure knowledge.” The logical
inferences are assumed to preserve correctness (i.e. they are monotonic,
deductive inferences).

Given this definition of knowledge, learning (i.e. increases in knowledge)
can occur under two circumstances. Learning occurs when the agent is
told a fact F that it did not know and when the agent makes an “inductive
leap” and chooses to believe some fact F that is not entailed by its existing
knowledge.

For example, suppose an agent knows that a poker hand containing
three Jacks is superior to a hand containing only two Queens. Suppose the
agent also knows that a poker hand containing three Tens is superior to
a hand containing two Eights. Learning occurs when the agent jumps to
the conclusion that any hand containing three cards of rank R, is superior
to any hand containing at most two cards of rank R,. In short, a system
that formulates general rules by analyzing specific examples is one kind of
learning system.

Notice that according to this definition, learning does not take place if
a system discovers a more efficient way to infer a fact that it already knows
in principle. Consequently, simple speed-ups (e.g. such as those obtained
by caching inferences) do not count as learning. However, this definition

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 257

also has the unfortunate consequence that a program that knows the rules
of chess would also know the optimal strategy.

Another definition of knowledge involves the notion of “explicit belief™
suggested by Fagin & Halpern (1987). According to this definition, an
agent has a combination of implicit beliefs (these correspond to the deduc-
tive closure definition of “knowledge” discussed above) and explicit beliefs
(i.e. beliefs the system is “aware” of). Logical (monotonic) inference can
make implicit beliefs explicit. In a particular program, one might define a
belief as explicit if it is stored in a database or if it can be computed
within a fixed time limit. Learning takes place, according to this definition,
whenever new explicit beliefs are found. Hence, this definition does include
simple speed-ups (e.g. those produced by traditional programming lan-
guage compilers) as forms of learning. It does not draw a distinction
between learning as efficiency improvement and learning as the acquisition
of a new rule from examples.

By considering these definitions of “‘knowledge” and “learning,” we can
develop a three-part taxonomy of learning systems: (@) systems that receive
no inputs and simply become more efficient over time (speed-up learning),
(b) systems that receive new knowledge via inputs but otherwise perform
no inductive leaps (learning by being told), and (c) systems that perform
inductive leaps to acquire knowledge that was not previously known either
explicitly or implicitly (inductive learning).

These definitions provide a basis for evaluating learning systems. Speed-
up learning systems should be evaluated by measuring the efficiency
improvement they produce. Systems that learn by being told can be evalu-
ated according to their ability to exploit the information they receive.
Finally, inductive learning systems must be evaluated according to the
correctness of the knowledge they produce. This is difficult, however,
becauseinductive learning systems can provide no guarantee of correctness
unless they cease to make inductive leaps!

Leslie Valiant’s probabilistic framework (Valiant 1984) provides a solu-
tion to this last difficulty. Valiant says that a system has learned a fact F
if it can guarantee with high probability that F is approximately correct.
This definition relaxes the goal of guaranteed correctness in two ways.
First, the fact F is permitted to be only approximately correct. Second,
with low probability, the learning system may produce an hypothesis F
that is totally incorrect. It turns out that this definition provides us with a
rigorous criterion for evaluating learning programs.

To understand what it means to be “approximately correct,” let us view
a fact F as a relation over some universe U of objects. In other words, F
is the subset of objects (or tuples) in U that make F true. Intuitively, a
second fact £ is approximately correct if the symmetric difference F@® F

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

258 DIETTERICH

is small (this corresponds to the shaded region in Figure 1). In other words,
Fand F agree over most of the universe U.

Valiant elaborates this definition by taking into consideration the pos-
sibility that some elements of U are more important than others. He
considers F to be approximately correct to the degree that it matches F on
the more important elements of U. Specifically, Valiant assumes that the
learning system is going to be confronted with a series of “performance
trials.” In each trial, it will be presented an element ue U and asked
whether u e Fis true. Let P be an unchanging probability distribution over
U such that P(u) is the probability that u will be selected in any given trial.
Then error(F, F) is defined to be the probability that the learning system
will make a mistake in any given performance trial. Formally,

error(F,F)= Y P(u).
ueF@F

The fact F is approximately correct if error(F, £) is less than &, where ¢ is
a small constant called the accuracy parameter.

Now that we understand what it means to be “approximately correct,”
we must consider the second part of Valiant’s definition: The learning
system that produces £ may itself make mistakes from time to time and
produce hypotheses that are not approximately correct. In particular, the
learning system is usually constructing F by analyzing a collection of
training examples. A training example is a pair of the form (i, c), where
ueU and c=1 if ueF and ¢ = 0 otherwise. If those examples do not
provide a representative sample of F, then the learning program may come
up with a bad guess, F.

By making some assumptions about the training sample, we can bound
the probability that the learning system will produce an F with error greater

Figure 1 The error between the correct fact Fand F.

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 259

than e. Specifically, let us assume that the training sample is constructed
by independently drawing m examples from U according to the same
probability distribution P(x) that will be used during the performance
trials. We say that the learning system is probably approximately correct
(PAC) if

Prlerror(F, F) > ¢] < 9,

where 6 is called the confidence parameter and where the probability is
taken over all training samples of size m.

What Valiant has done is to incorporate a notion of evidential support
into the definition of “learning.” According to Valiant, a program is not
considered a learning program if it makes a lucky leap and comes up with
acorrect fact. Instead, Valiantrequires that the learning program consider
a large enough set of training examples so that its hypothesis F is
statistically justified.

This is a major breakthrough because it provides a standard against
which to compare inductive learning programs. It also provides a basis
for proving results concerning the computational tractability of various
learning problems. These results are the topic of the next section.

THEORETICAL RESULTS ON LEARNING FROM
EXAMPLES

As we have seen above, the goal of learning from examples is to infer,
from a set S of training examples, a probably approximately correct fact
F.! In principle, this is impossible, because the knowledge of whether F(u)
is true for one point in U tells us nothing about the values of F at any
other points in U—it merely tells us the value of F at u. When people are
confronted with such problems, they circumvent them by imposing some
assumptions concerning F. They may assume, for example, that F can be
represented as a Boolean conjunction over the features describing U. Or
they may prefer the simplest hypothesis F consistent with the training
examples. This amounts to assuming that F can be represented simply in
some given language.

These assumptions concerning F are called the “bias” of the learning
system, and they provide it with some means for making a guess concerning
theidentity of F. There are two general forms of bias: restricted-hypothesis-
space bias and preference bias.

"This terminology is informal. Technically, we should say that F is produced by an
algorithm that is probably approximately correct.

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

260 DIETTERICH

Under the restricted-hypothesis-space bias, the learning system assumes
that the correct concept F is a member of some hypothesis set H, where
H contains only some of the 2!Y! possible concepts over U. This is usually
implemented by assuming that F has some restricted syntactic form (e.g.
is a Boolean conjunction).

Under the preference bias, the learner imposes a preference ordering
over the set of hypotheses and attempts to find the “best” hypothesis F
according to this ordering. In this chapter we will assume that the prefer-
ence ordering is a total ordering, and we will let index I(F) denote the
numerical position of £ in this ordering. The preference bias can be
implemented by attempting to find a consistent hypothesis £ of low index.

Restricted-Hypothesis-Space Bias

Suppose we are given m training examples labeled according to the correct
concept F. The examples are drawn independently from U according to
someunknown probability distribution P(u). We are also given a restricted
hypothesis space H. Our algorithm will attempt to find an hypothesis £e H
that is consistent with all m training examples. Assuming that such an F
can be found, what is the probability that it has error greater than ¢?

To answer this question, let us define the set Hy,y = {h,, ..., b} to be
the set of hypotheses in H that have error greater than ¢. We will compute
the probability that, after m examples have been processed, there is some
element of H,,, that is consistent with the training examples. If this prob-
ability is small enough, then (with high probability) the only hypotheses
remaining in H that are consistent with the training examples are hypo-
theses with error less than ¢. Hence, if our learning algorithm finds a
consistent hypothesis F'e H, that hypothesis is probably approximately
correct.

Let us begin by considering a particular element 4, € H,,,. What is the
probability that 4, is consistent with one randomly drawn training ex-
ample? It is just the probability that the training example was drawn from
the region of U outside the shaded area of Figure 1. This probability is
greatest when error(F, #,) = ¢. That is, A, is as good as possible without
being approximately correct. So, the probability that 4, is consistent with
a single training example is no more than 1 —e.

It follows that the probability that 4 is consistent with all m randomly
drawn training examples is no more than (1 —¢)”. We will write this as
P"[consist(h)] < (1—¢)™.

Now let us consider all of the hypotheses in H,,,. What is the probability
that after m examples there is some element of H,,, that has not been
eliminated from consideration? This is

P"[consist(Hy,g)] = P"[consist(h,) v --- v consist(h))].

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 261

Because the probability of a disjunction (union) of several events is no
larger than the sum of the probabilities of each individual event,

P’”[CO“ﬂisl(H.’:r:(-')] —{ | I—I.‘md: ‘ (I - E)m‘

In the worst case, H,,;,= H (i.e. there are no approximately correct
hypotheses in H). Hence,

P[consist(H,,p)] < |H|(1—¢)".

Now that we have an expression for the probability that F is not
approximately correct, we can set this equal to § and solve for m to obtain
a bound on the number of training examples to guarantee that F is
probably approximately correct.

|HI(1—&)" < §

is true if and only if

1 |

But since ¢ < —In (1 —¢) over the interval [0, 1), it suffices that

1 1
m > —(ln— +ln|H|>.
£)

This gives us Theorem 1:

Theorem 1 (Blumer et al 1987) Let H be a set of hypotheses over a
universe U, S be a set of m training examples drawn independently according
to P(u), ¢, 6 > 0, then if Fe H is consistent with all training examples in S
and

1
m> —(lnl +ln|H]>
e\ o

then the probability that F has error greater than ¢ is less than §.

Using this theorem, we can obtain bounds on the number of examples
required for learning in various hypothesis spaces. Consider, for example,
the set of hypotheses H.,,; that can be expressed as simple conjunctions of
n Boolean variables. There are 3" such hypotheses, since in a conjunction
each variable may appear negated, un-negated, or it may be missing.
Applying Theorem 1, we see that if

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

262 DIETTERICH

1(; >
m>-|In<-+nln3
€ o

then any hypothesis consistent with the examples will be PAC. Further-
more, the number of examples required grows only linearly with the
number of features.

Likewise, consider the set of hypotheses that can be expressed as linear
threshold functions over n Boolean variables, x,, . . . , x,. A linear
threshold function is described by a vector of real-valued weights, w,, . . .,
w, and a real-valued threshold, 6. It returns a 1 if Z}_, wix; > 6. Muroga
(1971), shows that | H| < 2" Hence, if

1 1 ,
m>-—|Inz+n°In2
g d

then any linear threshold function consistent with the training examples is
PAC.

Table 1 shows the hypothesis space sizes for several popular concept
representations. The class k-term-DNF contains Boolean formulas in dis-
junctive normal form with at most k disjuncts (i.e. a k-term disjunction
where each term is a conjunction of unlimited size). The class k-DNF
contains Boolean formulas in disjunctive normal form in which each
conjunction has at most k variables (i.e. a disjunction of any number of
conjunctive terms, but each conjunction is limited to length k). A class
analogous to k-DNF is the class k-CNF. Each formula in k-CNF is
a conjunction of clauses (disjunctions). Each clause contains at most k&
variables. The class k-DL is the class of decision lists introduced by Rivest
(1987). A decision list is an ordered list of pairs of the form {(F,,C)), ...,
(F,C), ..., (T,Cy)>. Each F;is a Boolean conjunction of at most k

Table 1 Sizes of various concept description

languages

Hypothesis space Size
Boolean conjunctions 3"
k-term-DNF 200
k-DNF 206
k-CNF 200"
k-DL 200k 1gm
LTU 90t}

DNF 2?‘

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 263

variables, and each C; indicates the result (either 0 or 1). A decision list is
processed like a Lisp COND clause. The pairs are considered in order
until one of the F;is true. Then the corresponding C; is returned as the
result. By convention, the condition for the last pair in the list, F,, |, is
always true (T). The class LTU contains all Boolean functions that can
be represented by linear threshold units.

For comparison, we also show the full class DNF, consisting of any
arbitrary Boolean expression in disjunctive normal form. DNF is capable
of representing any of the Boolean functions.

Note that for fixed k, each of these classes (except DNF) requires only
a polynomial number of training examples to guarantee PAC learning
according to Theorem 1.

Theorem 1 gives results for finite hypothesis spaces. However, there are
many applications in which hypotheses contain real-valued parameters,
and consequently there are uncountably many hypotheses in these spaces.
In spite of this, it is still possible to develop learning algorithms for these
cases. Consider for example the universe U consisting of points on the real
number line. An hypothesis F = U describes some subset of these points.
Suppose we restrict our hypotheses to be single closed intervals over the
real line (i.e. our hypotheses have the form [a,b]). One algorithm for
discovering closed intervals would be to let a be the value of the smallest
positive example and b be the value of the largest positive example. How
many training examples are needed to ensure that this algorithm will return
an interval that is probably approximately correct?

Answers for problems such as this can be obtained using a measure of
bias called the Vapnik-Chervonenkis dimension (VC-dimension). The idea
behind the VC-dimension is that although an hypothesis space may contain
uncountably many hypotheses, those hypotheses may still have restricted
expressive power. Specifically, we will say that a set of hypotheses can
completely fit a collection of examples E = U if, for every possible way of
labeling the elements of E positive or negative, there exists an hypothesis
in H that will produce that labeling. The VC-dimension will be defined to
be the size | E| of the largest set of examples that H can completely fit. This
will provide a measure of the expressive power of H.

To continue with the real-interval illustration, let us consider the set of
two points E = {3,4}. There are four different ways that these two points
can be labeled as positive or negative, corresponding to four different
training sets:

So = {¢3,0), <4,0)}

Sl = {<3’0>’ <4s l>}

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

264 DIETTERICH
S, = {(3,1),<4,0)}
S3 = {<3’1>7 <431>}

For each possible labeling, there is a real interval that will produce that
labeling:

S, can be labeled by [0, 1]
S| can belabeled by [4, 5]
S, can be labeled by [2, 3]
S5 can be labeled by [2, 5].

Hence, the hypothesis space H,, consisting of closed intervals on the real
line can completely fit the set E. Indeed, it is easy to see that any set of
two points can be fitted completely by H,,.

However, consider the set of points E' = {2, 3,4}. The hypothesis space
H,,, cannot completely fit this set. In particular, there is no hypothesis in
H,, that can label E” as follows:

Ss={€2,1),¢3,0>,{4,1>}.

This is because any interval containing 2 and 4 will also contain 3.

Since the VC-dimension of H is defined as the largest set of points that
H can completely fit, it is easy to see that VCdim(H,,,) = 2.

A more interesting example concerns linear threshold units over arbi-
trary points in #-dimensional Euclidean space. A linear threshold unit is
equivalent to a hyperplane that splits R" into two half-spaces. If a given
set of training examples can be separated such that the positive examples
are all on one side of the hyperplane and the negative examples are all
on the other side, then the training examples are said to be linearly separ-
able. When n = 2, itis easy to see that half-spaces (in this case, half-planes)
can completely fit any set of three points. However, half-planes are unable
to completely fit any collection of four points (i.e. some labelings of the
points will not be linearly separable). In general, the VC-dimension for
linear threshold units over #n-dimensional Euclidean space is n+ 1.

Intuitively, the VC-dimension is proportional to the logarithm of the
size of the effective hypothesis space. Indeed, the following theorem shows
how Theorem 1 can be extended using the VC-dimension:

Theorem 2 (Blumer et al 1989) A4 set of hypotheses H is PAC learnable
if

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 265
1 13
m > - max [4 lg%, 8- VCdim(H)lg —]
&

and the algorithm outputs any hypothesis ke H consistent with S.

Using Theorem 2, we can tighten the bound on the number of examples
required for learning linear threshold units to O(1 /e(nIn 1/e+1/0)).

Perhaps the most interesting application of Theorem 2 (and its relatives)
is to the problem of training feed-forward multi-layer neural networks. A
difficulty with the practical application of these networks is to decide how
large the network should be for each application. If the network is too
large, it is easy to find a setting of the weights that is consistent with the
training examples. However, the resulting network is unlikely to classify
additional points in U correctly.

Baum & Haussler (1988) consider feed-forward networks of N linear
threshold units and W weights. They show that if the weights can be set
so that at least a fraction 1 —(¢/2) of the m training examples are classified
correctly and if

W N
m> 0(—10gv>,
€ g

then the network is PACwith0 < e < 1and 0 < 6 < O(e™™).

The VC-dimension turns out to be a fundamental notion. It permits us
to exactly characterize the set of learnable concepts, and it allows us to
derive a lower bound on the number of examples needed for learning.
These results are given in the following two theorems.

Theorem 3 (Blumer et al 1989) A space of hypotheses H is PAC learnable
iff it has finite Vapnik-Chervonenkis (VC) dimension.’

Theorem 4 (Ehrenfeucht et al 1988) Any PAC learning algorithm for H
must examine

Q(% [m; + VCdim(H)])

training examples.

1t is possible to learn concept classes having infinite VC-dimension if the number of
training examples is permitted to vary with the complexity of the concepts in the hypothesis
space. See Linial et al (1989).

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

266 DIETTERICH

Preference Bias

With Theorems 1-4, we have a fairly complete understanding of learning
with a restricted-hypothesis-space bias. Let us now briefly turn our atten-
tion to the problem of learning with a preference bias. Recall that a
preference bias establishes an ordering over all of the hypotheses in H. We
will let the index I(F) be the numerical position of hypothesis F in this
ordering. By definition, hypotheses with smaller index values I(F) will be
considered simpler than hypotheses with higher index values.

Now suppose we have an excellent learning algorithm that works as
follows. For any given set of training examples S, it finds the hypothesis
Fe H of lowest index that is consistent with S. It turns out that if the
number of examples in S is sufficiently large and if the hypothesis found
by the algorithm hassufficiently small index, then we can be quite confident
that F is approximately correct. The reason is that for sufficiently large S,
it is unlikely that we could have found such a simple (i.e. small index)
hypothesis F that is consistent with the training examples.

Following (Blumer et al 1987), we can formalize this by letting H” be
the space of hypotheses of index less than or equal to I(¥). The set H’
can be viewed as the effective hypothesis space for our preference-bias
algorithm for this particular sample S, and therefore, from Theorem 1, we
can conclude that the number of examples required is

! (m% +In 1(F)>.

[

This result can be generalized to allow the learning algorithm to output
an hypothesis F that has small, but not minimal, index. See Blumer et al
(1987) for details.

The famous bias of Occam’s Razor (prefer the simplest hypothesis
consistent with the data) can thus be seen to have a mathematical basis.
If we choose our simplicity ordering before examining the data, then a
simple hypothesis that is consistent with the data is provably likely to be
approximately correct. This is true regardless of the nature of the simplicity
ordering, because no matter what the ordering, there are relatively few
simple hypotheses. Therefore, a simple hypothesis is unlikely to be con-
sistent with the data by chance.

Another way of thinking about this result is to view learning programs
as data compression algorithms. They compress the training examples into
an hypothesis, F, by taking advantage of some predefined encoding scheme
(i.e. simplicity ordering). If the data compression is substantial (i.e. the
number of bits needed to represent the hypothesis is much smaller than

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 267

the number of training examples), then the hypothesis is likely to be
approximately correct.

Noisy Data

All of the results described above have assumed that the training examples
are complete and correct. Unfortunately, there are many applications
wherethe training dataare incomplete and incorrect. For incorrect training
examples—that is, examples that are incorrectly classified—all of the
results discussed above can be generalized as follows. Instead of trying to
find a concept Fe H that is consistent with all of the training examples, it
suffices to find an F that is consistent with fraction 1—(¢/2) of the training
examples. Theorems 1-4 still apply under these conditions with some slight
adjustments (see Appendix 3 of Blumer et al 1989).

Computational Complexity

So far we have considered only what is called sampling complexity—that
is, the number of training examples required to guarantee PAC learning.
A second aspect of learning has also been investigated within the Valiant
framework: the computational complexity of finding an hypothesis in H
consistent with the training examples.

If we look again at Theorem 1, we see that the number of examples
required for learning is proportional to the log of the size of the hypothesis
space. This means that with a linear number of examples, we can learn an
exponential number of hypotheses. The most trivial algorithm for finding
an hypothesis consistent with the examples would simply enumerate each
hypothesis in A and test it for consistency with the examples. However,
when there are exponentially many hypotheses, this approach will require
exponential time. Therefore, the challenge is to find ways of computing a
consistent hypothesis by analyzing the training examples more directly.
Our goal is to find algorithms that require time polynomial in the number
of input features » and in 1/e and 1/6.

Table 2 shows the computational complexities for the best known algo-
rithms for several hypothesis spaces. Following Valiant, we say that an
hypothesis space H is polynomially learnable if (@) only a polynomial
number of training examples are required (as a function of n, 1/¢, and 1/0)
and (b) a consistent hypothesis from H can be found in time polynomial
inn, l/e, and 1/0. Hence, from the table, we can see that conjunctions, k-
DNF, k-DL, and the linear threshold units are all polynomially learnable.
The hypothesis space £-3NN consists of feed-forward neural networks
containing two layers of linear threshold units (often called three-layer
networks). The first layer of units (usually called the ‘“hidden layer”)
contains exactly k units. There are robust proofs that this hypothesis space

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

268 DIETTERICH

Table 2 Computational complexity of finding a
consistent hypothesis

Hypothesis space Time complexity

Boolean conjunction Polynomial
k-term-DNF NP-hard

k-DNF Polynomial
k-CNF Polynomial
k-DL Polynomial
LTU Polynomial
k-3NN NP-hard

is not polynomially learnable (Judd 1987, 1988; Blum & Rivest 1988; Lin
& Vitter 1989).

As an example of a polynomial-time learning algorithm, consider the
following algorithm for learning Boolean conjunctions. We will represent
a conjunction C as a list of Boolean variables or their negations. Given a
collection S of training examples, we find the first positive example p, in
that list and initialize C to contain all of the variables (or their negations)
present in that positive example (if there are no positive examples, we exit
and guess the null concept, x, A 7x;). Then for each additional positive
example p;, we delete from C any Boolean variables appearing in p; with
a sign different from their sign in C. After processing all of the positive
examples, we check all of the negative examples to make sure that none
of them are covered by C. Finally, we return C as the answer.

Consider the following positive examples:

KO110), 1>
1110),1)
1100), 1.

After processing the first example, C = {7x}, x, X3, x4}; after process-
ing the second example, C = {x;, x3,x,}; after the third example,
C = {x,7x,}. This algorithm requires O(nm) steps.

Surprisingly, smaller hypothesis spaces are not always easier to learn.
For example, the space k-term-DNF is a proper subspace of the k-CNF,
yetk-CNF is polynomiallylearnable but k-term-DNF is not (Pitt & Valiant
1988). Similarly, the space of Boolean threshold units (i.e. linear threshold
units in which the weights are all Boolean) is not polynomially learnable,
but LTU (which properly contains it) is. One explanation for this is that,
in some cases, by enlarging the hypothesis space it becomes easier to find
an hypothesis consistent with the training examples. The larger space

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

MACHINE LEARNING 269

provides more freedom to choose the syntactic form of the hypothesis.
Another explanation is that different representations, even of the same
space, have different computational properties. Hence, some rep-
resentations for concepts are easier to relate to the representation of the
training examples.

These observations indicate that if we want to prove that learning a
concept class is computationally intractable, we need to show that it is
intractable regardless of the representation employed by the learning
algorithm. In other words, suppose the correct concept Fcan be represented
by a k-term-DNF formula. Although the problem of finding a k-term-
DNF formula consistent with a training sample for Fis NP-complete, we
know that in polynomial time we can find an F represented as an equivalent
k-CNF formula. Hence, we can construct an algorithm that can learn
every concept in k-term-DNF by using hypotheses represented in k-CNF-.

This point is particularly important for classes, such as k-3NN, where
although it is intractable to find a consistent hypothesis using k£ hidden
units, it might be easier to find a consistent hypothesis using &* > & hidden
units. If &” is only moderately bigger than k, the number of training
examples required to guarantee PAC learning would still be polynomial.
In general, if s is the number of bits required to represent the correct
hypothesis F, then any algorithm that can represent £ using p(s) bits
(where p is some polynomial) will still have polynomial sample complexity.

The question of whether every concept in k-3NN can be learned by
finding (in polynomial time) a concept in k’-3NN (where &’ < p(k) for
some polynomial p) is open. However, for two other important concept
classes, the analogous questions have been answered negatively.

Let DFA(s) be the space of concepts that can be represented as deter-
ministic finite state automata of size <s. If S is a training sample for a
concept Fe DFA(s), then the problem of finding an hypothesis
Fe DFA(p(s)) consistent with S, for some polynomial p is NP-complete
(Pitt & Warmuth 1989).

Similarly, if BF(s) is the space of concepts that can be represented as
Boolean formulas of size <s and if S is a training sample for a concept
Fe BF(s), then the problem of finding an hypothesis £'e BF(p(s)) consistent
with S, for some polynomial p, is as hard as factoring integers (Kearns &
Valiant 1988, 1989). In fact, this result can be strengthened to apply to
any representation language in which F has size <p(s).

An important way of looking at these results is from the perspective of
Occam’s Razor. Consider the class of all Boolean formulas and suppose
we adopt the bias of preferring shorter formulas. The problem of finding
the smallest Boolean formula consistent with a set of training examples
has long been known to be NP-complete (Gold 1978). However, we might

Annu. Rev. Comput. Sci. 1990.4:255-306. Downloaded from www.annualreviews.org
by University of Ottawa on 09/23/10. For personal use only.

270 DIETTERICH

settle for an approximation to Occam’s Razor—we could accept any
Boolean formula that is of size <p(s), where s is the size of the smallest
Boolean formula consistent with the data. If we assume that factoring is
hard, these results imply that there is no polynomial time algorithm for
finding these “nearly simplest™ hypotheses.

In short, it appears that there are “simple”” concepts (i.e. that can be
represented by polynomial-sized finite state machines or regular
expressions) that cannot be discovered by any learning algorithm using
any representation. Nature may be simple, but (in the worst case) no
computing device can reveal that simplicity in polynomial time (unless
P = NP, of course).

Summary

The Valiant theory allows us to quantify the role of bias in inductive
learning. The main implication of this theory is that there are no efficient,
general-purpose inductive learning methods. Specifically, in order to learn
using a polynomial number of training examples, by Theorem 4 the VC-
dimension must be a polynomial function of n, 1/¢, and 1/5. The VC-
dimension of the entire space of 2?" Boolean functions over n variables is
clearly 27, so it is impossible to learn arbitrary Boolean functions using
only a polynomial number of examples.

On the positive side, the theory states conditions under which we can
determine, with high confidence, whether a given learning algorithm has
succeeded. For a given bias, the theory says that if'a consistent hypothesis
Fe H can be found and the number of examples m is large enough, then
F'is probably approximately correct. Unfortunately, the hypothesis space
H must constitute only a small fraction of the possible hypotheses, and
therefore any particular learning algorithm is unlikely to succeed for a
randomly chosen concept F < U. Indeed, it is because H is a small fraction
of the space of possible hypotheses (2V) that we can have statistical confi-
dence in the results of the learning algorithm.

Hence, for a particular application, the vocabulary of features chosen
to represent training examples and hypotheses must allow a consistent £
to be found. In many applications (Michalski & Chilausky 1980; Quinlan
et al 1986), this has turned out to be achieved easily, but there are others
where it has been quite difficult (Quinlan 1983).

RECENT DEVELOPMENTS IN PRACTICAL
LEARNING ALGORITHMS

Here we focus on three significant developments in practical learning
algorithms: (a) improvements to decision tree~induction algorithms, (b)

