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Cas moyen vs. Pire des cas: Temps 
d’exécution d’un algorithme

• Un algorithme peut être plus performant avec 
certains ensembles de données qu’avec d’autres, 

• Trouver le cas moyen peut s’avérer difficile, alors 
les algorithmes sont mesurés typiquement selon la 
complexité temporelle du pire des cas.

• De plus, pour certain domaines d’application (par 
ex. contrôle aérien, chirurgie, gestion de réseau) 
connaître la complexité temporelle du pire des cas 
est d’importance cruciale.
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Mesurer le temps d’exécution
• Comment devrions-nous mesurer le temps 

d’exécution d’un algorithme?

• Étude expérimentale:
- Écrivez un programme qui réalise l’algorithme.
- Exécutez le programme avec des ensembles de 

données de taille et de contenu variés.
- Utilisez une méthode (System.currentTimeMillis()) 

pour mesurer précisément le temps d’exécution.
- Les mesures résultantes devraient ressembler à:
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Au-delà des études 
expérimentales

• Les études expérimentales ont quelques restrictions:
- Il est nécessaire de réaliser et de tester l’algorithme 

afin de déterminer son temps d’exécution.
- Les essais peuvent être faits seulement sur un 

ensemble limité d’entrées, et ils peuvent ne pas être 
indicatifs du temps d’exécution d’autres entrées 
non considérées.

- Afin de comparer deux algorithmes, les mêmes 
environnements matériel et logiciel devraient être 
utilisés.

• Nous développerons maintenant une méthodologie 
générale pour analyser le temps d’exécution 
d’algorithmes qui:
- Utilise une description de haut niveau de 

l’algorithme au lieu de tester sa réalisation.
- Considère toutes les entrées possibles.
- Permet d’évaluer l’efficacité d’un algorithme 

indépendamment des environnements matériels et 
logiciels.
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Pseudo-code
• Le pseudo-code est une description d’algorithme qui 

est plus structurée que la prose ordinaire mais moins 
formelle qu’un langage de programmation.

• Exemple: trouver l’élément maximal d’un vecteur 
(array).

Algorithm  arrayMax(A, n):
Entrée: Un vecteur A contenant n entiers.
Sortie: L’élément maximal de A.

currentMax ← A[0]
for  i ← 1 to n −1 do

if  currentMax < A[i] then
currentMax ← A[ i]

return  currentMax

• Le pseudo-code est notre notation de choix pour la 
description d’algorithmes.

• Cependant, le pseudo-code cache plusieurs 
problèmes liés à la conception de programmes.
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Qu’est-ce que le pseudo-code?
• Un mélange de langage naturel et de concepts de 

programmation de haut niveau qui décrit les idées 
générales derrière la réalisation générique d’une 
structure de données ou d’un algorithme.
- Expressions: utilisez des symboles mathématiques 

standards pour décrire des expressions booléennes 
et numériques
- utilisez ← pour des affectations (“=” en Java)

- utilisez = pour la relation d’égalité (“==” en Java)

- Déclaration de méthodes: 
- Algorithm  nom(param1, param2) 

- Éléments de programmation:
- décision: if ... then ... [else ... ] 

- boucle while: while ... do 

- boucle repeat: repeat ... until  ... 

- boucle for: for  ... do 

- indexage de vecteur: A[ i]

- Méthodes:
- appel: object method(args)

- retour: return  value
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Analyse d’algorithmes
• Opérations primitives: opérations de bas niveau qui 

sont largement indépendantes du langage de 
programmation et qui peuvent être identifiées en 
pseudo-code, par exemple:
- Appel et retour d’une méthode
- effectuer une opération arithmétique (addition)
- comparer deux nombres, etc.

• En inspectant le pseudo-code, nous pouvons 
compter le nombre d’opérations primitives 
exécutées par un algorithme.

• Exemple:

Algorithm  arrayMax(A, n):
Entrée: Un vecteur A contenant n entiers.
Sortie: L’élément maximal de A.

currentMax ← A[0]
for  i ← 1 to n −1 do

if  currentMax < A[i] then
currentMax ← A[ i]

return  currentMax
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Notation asymptotique
• But: simplifier l’analyse en se débarrassant de 

l’information superflue.
- comme “arrondir” 1 000 001 ≈ 1 000 000
- nous désirons indiquer formellement que 3n2 ≈ n2

• La notation “Grand-O”
soit les fonctions f(n) et g(n), nous disons que 
f(n) est O(g(n)) si et seulement si
il y a des constantes positives c et n0 tel que
f(n) ≤ c g(n) pour n ≥ n0

f(n) = 2n + 6

g(n) = n
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Un autre exemple
• n2 n’est pas O(n)

• nous ne pouvons pas trouver c et n0 tel que
n2 ≤ c n for n ≥ n0

f(n) = n2

g(n) = n
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Notation asymptotique (suite)
• Note: Même si il est correct de dire

“7n - 3 est O(n3)”, une meilleure formulation est
“7n - 3 est O(n)”, c’est-à-dire, nous devrions faire 
l’approximation la plus juste possible.

• Règle simple: laissez tomber les termes d’ordre 
inférieur de même que les facteurs
- 7n - 3 est O(n)
- 8n2log n + 5n2 + n est O(n2log n)

• Classes spéciales d’algorithmes:
- logarithmique: O(log n)
- linéaire O(n)
- quadratique O(n2)
- polynomial O(nk), k ≥ 1
- exponentiel O(an), n > 1

• “Parenté” de Grand-O
− Ω(f(n)): Grand-Oméga
− Θ(f(n)): Grand-Thêta

2.11Analyse d’algorithmes

Analyse asymptotique et
temps d’exécution

• Utilisez la notation Grand-O pour indiquer le 
nombre d’opérations primitives exécutées en 
fonction de la taille d’entrée.

• Par exemple, nous disons que l’algorithme arrayMax 
a un temps d’exécution O(n).

• En comparant les temps d’exécution asymptotiques
- un algorithme d’ordre O(n) est meilleur qu’un 

autre d’ordre O(n2)
- de la même façon, O(log n) est meilleur que O(n)
- hiérarchie de fonctions:
- log n << n-2 << n << n log n << n2 << n3 << 2n 

• Attention!
- Méfiez-vous des facteurs constants très grands. Un 

algorithme au temps d’exécution 1 000 000 n est 
quand même O(n) et peut être moins efficace sur 
votre ensemble de données qu’un autre au temps 
d’exécution 2n2, qui est O(n2).
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Exemple d’analyse 
asymptotique

• Un algorithme pour calculer les moyennes préfixes:

Algorithm  prefixAverages1(X):
Entrée: Un vecteur de nombres X à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

A[ i] est la moyenne des éléments X[0], ... , X[i].
Soit A un vecteur de n nombres.
for  i ← 0 to n - 1 do

a ← 0
for  j ← 0 to i do 

a ← a + X[j]
A[i] ← a/(i + 1)

return  array A

• Analyse ...
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Révision mathématique rapide
• Progression arithmétique: 

- Un exemple

- deux représentations visuelles
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Un autre exemple
• Un meilleur algorithme pour calculer les moyennes 

préfixes:

Algorithm  prefixAverages2(X):
Entrée: Un vecteur de nombres X à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

A[ i] est la moyenne des éléments X[0], ... , X[i].
Soit A un vecteur de n nombres.
s ← 0
for  i ← 0 to n - 1 do

s ← s + X[i]
A[i] ← s/(i + 1)

return  array A

• Analyse ...
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Mathématiques à réviser
• Logarithmes et exposants

- propriétés des logarithmes:

logb(xy) = logbx + logby

logb(x/y) = logbx - logby

logbxα = αlogbx

logxa

logxb

- propriétés des exposants:

a(b+c) = abac

abc = (ab)c

ab/ac = a(b-c)

b = a

bc = a

logba = 

logab

c*logab
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Mathématiques à réviser (suite)
• Plancher (Floor)

x = le plus grand entier ≤ x

• Plafond (Ceiling)

x = le plus petit entier ≥ x

• Sommations
- définition générale:

- où f est une fonction, s est l’index de départ, et t est 
l’index d’arrivée

• Progression géométrique: f(i) = ai

- soit un entier n ≥ 0 et un nombre réel 0 < a ≠ 1

- les progressions géométriques ont une croissance 
exponentielle.
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Sujets avancés: techniques de 
justification simples

• Par exemple
- Trouvez un exemple
- Trouvez un contre-exemple

• Par contradiction (“Contra” Attack)
- Trouvez une contradiction dans l’inverse de 

l’énoncé
- Contrapositive 

• Induction et invariants de boucle
- Induction

- 1) Prouvez le cas de base

- 2) Prouvez que n’importe quel cas n implique que le prochain cas
(n + 1) est aussi vrai

- Invariants de boucle
- 1) Prouvez l’énoncé initial S0

- 2) Démontrez que Si-1 implique que Si sera vrai après l’itération i
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Sujets avancés: autres 
techniques de justification

• Preuve par excès d’agitation des mains

• Preuve par diagramme incompréhensible

• Preuve par corruption
- voir le professeur ou l’AE après la classe

• La méthode des nouveaux habits de l’Empereur
- “Cette preuve est tellement évidente que seul un 

idiot serait incapable de la comprendre”
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PILES, FILES ET LISTES 
CHAÎNÉES

• Types abstraits de données (TAD)

• Piles

• Exemple: Analyse boursière

• Files

• Listes chaînées

• Files à deux bouts (deques)
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Types abstraits de données 
(TAD)

• Un type abstrait de données (Abstract Data Type 
—ADT) est une abstraction de structure de données: 
aucun codage n’est impliqué.

• Un TAD spécifie:
- ce qui est contenu dans le TAD
- les opérations qui peuvent être effectuées sur ou 

par le TAD.

• Par exemple, si nous cherchons à modéliser un sac 
de billes avec un TAD, nous pourrions spécifier que: 
- ce TAD contient des billes
- ce TAD supporte l’insertion d’une bille et le retrait 

d’une bille.

• Il y a beaucoup de TAD standards et formalisés. Un 
sac de billes n’est pas l’un d’entre eux.

• Dans ce cours, nous apprendrons différents TAD 
standards (piles, files, listes...).
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Piles (Stacks)
• Une pile est un contenant pour des objets insérés et 

retirés selon le principe dernier entré, premier sorti 
(last-in-first-out, ou LIFO). 

• Les objets peuvent être insérés à tout moment, mais 
seulement le dernier (le plus récemment inséré) peut 
être retiré.

• Insérer un item correspond à empiler l’item 
(pushing). Dépiler la pile (popping) correspond au 
retrait d’un item.

• Analogie: distributeur de bonbons PEZ® 
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Le TAD Pile (ou Stack)
• Une pile est un type abstrait de données (TAD) qui 

supporte deux méthodes principales:

- push(o): Insère l’objet o sur le dessus de la pile.

- pop(): Retire l’objet du dessus de la pile et
retourne-le; si la pile est vide, alors une
erreur survient.

• Les méthodes secondaires suivantes devraient aussi 
être définies:

- size(): Retourne le nombre d’objets dans la
pile.

- isEmpty(): Retourne un booléen indiquant si la
pile est vide.

- top(): Retourne l’objet du dessus de la pile, 
sans le retirer; si la pile est vide, alors 
une erreur survient.
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Exemple
• L’ étendue (span) du prix d’une action à un certain 

jour, d, est le nombre maximum de jours consécutifs 
(jusqu’à aujourd’hui) où le prix de l’action a été plus 
bas ou égal à son prix au jour d.

s6=6

s5=4

s2=1

s3=2

0 1 2 3 4 5 6

s1=1

s0=1

s4=1
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Un algorithme inéfficace
• Il y a une façon directe de calculer l’étendue d’une 

action à un jour donné pour n jours:

Algorithm  computeSpans1(P):
Entrée: Un vecteur de nombres P à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

S[i] est l’étendue de l’action au jour i
Soit S un vecteur de n nombres
for  i=0 to n−1 do

k ←0
done←false
repeat

if  P[i-k] ≤P[i] then
k←k+1

else
done←true

until  (k=i) or done
S[i]←k

return  array S

• Le temps d’exécution de cet algorithme est (ouf!) 
O(n2). Pourquoi?

3.7Piles, files et listes chaînées

Une pile peut aider!
• Nous voyons que si au jour i peut être calculé 

facilement si nous connaissons le jour le plus proche 
avant i où le prix est plus haut lors de ce jour que le 
prix au jours i. Si un tel jour existe, appelons-le hi. 

• L’étendue est maintenant définie par si = i - hi

Nous utilisons une pile pour calculer hi

0 1 2 3 4 5 6
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Étude de cas: Une applet pour 
analyse boursière (suite)

• Le pseudo-code pour notre nouvel algorithme:

Algorithm  computeSpan2(P):
Entrée: Un vecteur de nombres P à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

S[i] est l’étendue de l’action au jour i
Soit S un vecteur de n nombres et D une pile vide
for  i=0 to n-1 do

done←false
while not(D.isEmpty() or done) do

if P[i]≥P[D.top()] then
D.pop()

else
done←true

if  D.isEmpty() then
h← -1

else
h←D.top()

S[i]←i-h
D.push(i)

return  array S

• Analysons le temps d’exécution de computeSpan2...
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À propos de Java
• Étant donné le TAD pile, nous devons coder cet 

ADT afin de l’utiliser dans nos programmes.

• Vous devez comprendre deux concepts de 
programmation: les interfaces et les exceptions.

• Une interface est une façon de déclarer ce qu’une 
classe peut faire. Elle n’indique pas comment le 
faire.

• Pour une interface, vous écrivez simplement les 
noms de méthodes et leurs paramètres. Ce qui est 
important dans un paramètre est son type.

• Plus tard, quand vous écrirez une classe pour cette 
interface, vous coderez alors le contenu de ces 
méthodes. 

• Séparer l’interface de la réalisation est une technique 
de programmation très utile. Exemple d’interface:

public interface radio {

public void play();

public void stop();

}
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Une interface de pile en Java
• Même si la structure de donnée pile est déjà incluse 

comme classe Java dans le “package” java.util, il est 
possible, et parfois même préférable, de définir votre 
propre pile spécifique, comme ceci:

public interface Stack {

// accessor methods

public int size(); // return the number of
// elements in the stack

  public boolean isEmpty(); // see if the stack
// is empty

public Object top() // return the top element

throws StackEmptyException; // if called on
// an empty stack

// update methods

public void push (Object element); // push an
// element onto the stack. Note that 
// the type of the parameter is
// specified as an Object

public Object pop() // return and remove the 
// top element of the stack

throws StackEmptyException; // if called on
// an empty stack

}
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Exceptions
• Les exceptions sont un autre concept de 

programmation très utile, surtout dans un contexte 
de gestion d’erreurs.

• Quand vous détectez une erreur (ou un cas 
exceptionel), vous lancez (throw) une exception.

• Exemple
public void mangePizza() throws MalAuVentreException

{

...

if (tropMangé)

throw new MalAuVentreException(“Ouch”);

...

}

• Aussitôt l’exception lancée, le flux de contrôle sort 
de la méthode en cours d’exécution.

• Alors quand MalAuVentreException est lancée, nous 
sortons de la méthode mangePizza() pour aller là où 
cette méthode a été appelée.
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Encore des exceptions
• Supposons que le fragment de code suivant ait 

appelé la méthode mangePizza() en premier lieu.

private void simuleRencontre()

{

...

try

{

unStupideAE.mangePizza();

}

catch(MalAuVentreException e)

{

System.out.println(“quelqu’un a mal au ventre”);

}

...

}
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Toujours des exceptions
• Nous retournerons à unStupideAE.mangePizza(); 

parce que, souvenez-vous, mangePizza() lança 
l’exception.

• Le bloc try et le bloc catch indiquent que nous 
sommes à l’écoute des exceptions qui sont spécifiées 
dans le paramètre de catch.

• Parce que catch est à l’écoute de 
MalAuVentreException, le contrôle ira au bloc catch, et 
System.out.println sera alors exécuté.

• Notez que le bloc catch peut contenir n’importe 
quoi, pas seulement un System.out.println. Vous 
pouvez gérer les erreurs détectées comme bon vous 
semble, et vous pouvez même les relancer.

• Notez aussi que si vous lancez une exception dans 
votre méthode, vous devez ajouter une clause throws 
à la suite du nom de votre méthode.

• Pourquoi utiliser les exceptions? Vous pouvez 
déléguer vers le haut la responsabilité de traiter les 
erreurs, c’est-à-dire que le code qui a appelé la 
méthode en cours aura à gérer le problème.
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Toujours des exceptions
• Si vous ne traitez pas une exception (avec catch), elle 

sera propagée vers le haut le long de la chaîne 
d’appels de méthodes jusqu’à ce que l’utilisateur 
l’observe.

mangePizza()

allerParty()

pauseCafe()

faireDev16()

suivre2514()

allerUofO()

MalAuVentreException
lancée

vers la console

aucune de ces
classes ne traite

MalAuVentre
les exceptions
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Exceptions finales
• Ainsi, nous savons comment lancer et traiter des 

exceptions. Mais que sont-elles exactement en Java? 
Des classes!

• Observez MalAuVentreException.

public class MalAuVentreException extends
RuntimeException {

public MalAuVentreException(String err)

{

super(err);

}

}
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Pile à base de vecteur
• Créez une pile en utilisant un vecteur et en spécifiant 

une taille maximale N, par ex. N = 1 024. 

• La pile est composée d’un vecteur de N éléments S 
et d’une variable entière t, l’index de l’élément au-
dessus de la pile S.

• Les indices acceptables pour ce vecteur commencent 
à 0, alors nous initialisons t à -1.

• Pseudo-code

Algorithm  size():
return  t +1

Algorithm  isEmpty():
return  (t < 0)

Algorithm  top():
if  isEmpty() then

throw  a StackEmptyException
return  S[t]

...

S
0 1 2 N−1t

...
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Pile à base de vecteur (suite)
• Pseudo-Code (suite)

Algorithm  push(o):
if  size() = N then

throw  a StackFullException
t ← t + 1
S[t] ← o

Algorithm  pop():
if  isEmpty() then

throw  a StackEmptyException
e←S[t]
S[t]←null
t←t-1
return  e

• Chacune des méthodes ci-haut a un temps 
d’exécution constant (O(1))

• La réalisation avec vecteur est simple et efficace.

• Il y a une limite supérieure, N, pour la taille de la 
pile. Une valeur arbitraire N pourrait être trop petite 
pour une application, ou gaspiller de la mémoire.
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Pile à base de vecteur:
Une réalisation en Java

public class ArrayStack implements Stack {
  // Implementation of the Stack interface

// using an array.

    public static final int  CAPACITY = 1000; // default
// capacity of the stack

    private int  capacity; // maximum capacity of the 
// stack.

    private  Object S[ ]; // S holds the elements of
 // the stack

    private  int top = -1; // the top element of the
// stack.

    public  ArrayStack( ) { // Initialize the stack
this (CAPACITY);// with default capacity

}

    public  ArrayStack(int  cap) {  // Initialize the
// stack with given capacity

capacity = cap;
S = new Object[capacity];

}

3.19Piles, files et listes chaînées

Pile à base de vecteur —
Réalisation en Java (suite)

    public int  size( ) { //Return the current stack
// size

return (top + 1);
}

    public boolean  isEmpty( ) {   // Return true iff 
// the stack is empty

return (top < 0);
}

    public void push(Object obj) {  // Push a new
// object on the stack

if (size() == capacity) {
throw new StackFullException(“Stack overflow.”);

}
S[++top] = obj;

}

    public  Object top( ) // Return the top stack
 // element

throws StackEmptyException {
if (isEmpty( )) {

throw new StackEmptyException(“Stack is
empty.”);

}
return S[top];

}
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Pile à base de vecteur —
Réalisation en Java (suite)

public  Object pop() // Pop off the stack element

      throws StackEmptyException {

    Object elem;

    if (isEmpty( )) {

        throw new StackEmptyException(“Stack is Empty.”);

    elem = S[top];

    S[top--] = null ; // Dereference S[top] and

// decrement top

    return elem;

    }

}
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Pile extensible à base de vecteur
• Au lieu d’abandonner avec StackFullException, nous 

pouvons remplacer le vecteur S par un plus grand 
vecteur et continuer à traiter les opérations push.

Algorithm  push(o):
if  size() = N then

A ← new array of length f(N)
 for  i ← 0 to N − 1

 A[i] ← S[i]
 S ← A
t ← t + 1
S[t] ← o

• De quelle taille devrait être le nouveau vecteur?
- stratégie ajustée (additionner c): f(N) = N + c
- stratégie de croissance (doubler): f(N) = 2N

• Afin de comparer ces deux stratégies, nous 
utiliserons le modèle de coût suivant:

opération push régulière: ajouter un élément 1

opération push spéciale: créer un vecteur de 
taille f(N), copier N éléments, et ajouter un 
élément

f(N) + 
N + 1
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Stratégie ajustée (c=4)
• Débuter avec un vecteur de taille 0

• Le coût d’une opération push spéciale est 2N + 5

push phase n N coût

1 1 0 0 5

2 1 1 4 1

3 1 2 4 1

4 1 3 4 1

5 2 4 4 13

6 2 5 8 1

7 2 6 8 1

8 2 7 8 1

9 3 8 8 21

10 3 9 12 1

11 3 10 12 1

12 3 11 12 1

13 4 12 12 29
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Performance de la stratégie 
ajustée

• Nous considérons k phases, où k = n/c

• Chaque phase correspond à une nouvelle taille de 
vecteur

• Le coût d’une phase i est de 2ci

• le coût total de n opérations push est le coût total de 
k phases, avec k = n/c:

2c (1 + 2 + 3 + ... + k),

qui est O(k2) et O(n2).
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Stratégie de croissance
• Débuter avec un vecteur de taille 0, ensuite 1, 2, 4, ...

• Le coût d’un push spécial est de 3N + 1, où N > 0

push phase n N coût

1 0 0 0 2

2 1 1 1 4

3 2 2 2 7

4 2 3 4 1

5 3 4 4 13

6 3 5 8 1

7 3 6 8 1

8 3 7 8 1

9 4 8 8 25

10 4 9 16 1

11 4 10 16 1

12 4 11 16 1

... ... ... ... ...

16 4 15 16 1

17 5 16 16 49
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Performance de la stratégie de 
croissance

• Nous considérons k phases, où k = log n

• Chaque phase correspond à une nouvelle taille de 
vecteur

• Le coût d’une phase i est de 2i + 1

• le coût total de n opérations push est le coût total de 
k phases, avec k = log n

2 + 4 + 8 + ... + 2log n + 1 =

2n + n + n/2 + n/4 + ... + 8 + 4 + 2 = 4n − 1

• La stratégie de croissance gagne!
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Analyse amortie
• Le temps d’exécution amorti d’une opération parmi 

une série d’opérations est le temps d’exécution du 
pire des cas de la série d’opérations toute entière 
divisé par le nombre d’opérations.

• La méthode de comptabilité détermine le temps 
d’exécution amorti à l’aide d’un système de crédits et 
de débits.

• Nous considérons l’ordinateur comme un appareil à 
sous qui exige un cyber-dollar pour une quantité 
constante de temps de calcul.

• Nous fixons un procédé pour facturer les opérations. 
Il s’agit là d’un procédé d’amortissement.

• Nous pouvons surfacturer certaines opérations et en 
sousfacturer d’autres. Par exemple, nous pouvons 
facturer un même montant pour chaque opération. 

• Le procédé doit toujours nous procurer suffisament 
d’argent pour payer le coût réel de l’opération.

• Le coût total de la série d’opérations n’est pas plus 
élevé que le montant total facturé.

• (temps amorti) ≤ (total $ facturé) / (# opérations)
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Procédé d’amortissement pour 
la stratégie de croissance

• À la fin d’une phase, nous devons avoir assez écono-
misé pour payer le push spécial de la phase suivante.

• À la fin de la phase 3, il faut avoir économisé $24.

• Les économies payent pour la croissance du vecteur.

• Nous facturons $7 pour un push. Les $6 économisés 
par push régulier sont “conservés” dans la seconde 
moitié du vecteur.

0 2 4 5 6 731

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

$

$

$

$
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Analyse d’amortissement pour 
la stratégie de croissance

• Nous facturons $5 (offre spéciale de lancement) 
pour le premier push et $7 pour les suivants.

push n N solde facture coût

1 0 0 $0 $5 $2

2 1 1 $3 $7 $4

3 2 2 $6 $7 $7

4 3 4 $6 $7 $1

5 4 4 $12 $7 $13

6 5 8 $6 $7 $1

7 6 8 $12 $7 $1

8 7 8 $18 $7 $1

9 8 8 $24 $7 $25

10 9 16 $6 $7 $1

11 10 16 $12 $7 $1

12 11 16 $18 $7 $1

... ... ... ... ... ...

16 15 16 $42 $7 $1

17 16 16 $48 $7 $49
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“Casting” avec une pile 
générique

• Avoir un ArrayStack qui peut contenir seulement 
des objets Entier ou des objets Étudiant.

• Afin de réaliser ceci à l’aide d’une pile générique, 
les objets retournés doivent être “moulés” (cast) 
dans le bon type de donnée.

• Un exemple en Java:

public static  Integer[] reverse (Integer[] a) {

ArrayStack S = new ArrayStack(a.length);

Integer[] b = new Integer[a.length];

for  (int i = 0; i < a.length; i++)

S.push(a[i]);

for  (int i = 0; i < a.length; i++)

b[i] = (Integer)(S.pop()); // the popping
// operation gave us an Object, and we
// casted it to an Integer before 
// assigning it to b[i].

return  b;

}
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Piles dans la Machine Virtuelle 
Java (JVM)

• Chaque processus en exécution dans un programme 
Java a sa propre pile de méthodes (Method Stack).

• Chaque fois qu’une méthode est appelée, elle est 
empilée sur une telle pile.

• L’utilisation d’une pile pour cette opération permet à 
Java de faire plusieurs choses utiles:
- Exécuter des appels récursifs de méthode
- Afficher la trace d’une pile pour localiser une 

erreur.

• Java inclut aussi une pile d’opérandes qui est utilisée 
pour évaluer les instructions arithmétiques:

Integer add(a, b):
OperandStack Op
Op.push(a)
Op.push(b)
temp1 ← Op.pop()
temp2 ← Op.pop()
Op.push(temp1 + temp2)
return  Op.pop()
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Pile de méthodes Java

Programme Java

main () {

cool(i);

int i=5;

}

cool (int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool (int m) {

}

320

m = 7 

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Pile Java
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Files (Queues)
• Une file se distingue d’une pile par ses routines 

d’insertion et de retrait qui suivent le principe 
premier entré, premier sorti (first-in-first-out, ou 
FIFO).

• Des éléments peuvent être insérés à tout moment, 
mais seulement l’élément qui a été le plus longtemps 
dans la file peut être retiré.

• Les éléments sont enfilés (enqueued) par l’arrière 
(rear) et défilé (dequeued) par l’avant (front)

a0 a1 a2 an-1

front rear

. . .
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Le TAD File (ou Queue)
• La file supporte deux méthodes fondamentales:

- enqueue(o): Insère l’objet o à l’arrière de la file

- dequeue(): Retire l’objet du devant de la file et 
retourne-le; une erreur survient 
lorsque la file est vide

• Les méthodes secondaires suivantes devraient aussi 
être définies:

- size(): Retourne le nombre d’objets dans la 
file

- isEmpty(): Retourne un booléen indiquant si la
pile est vide

- front(): Retourne, sans le retirer, l’objet au 
devant de la file; si la pile est vide, 
alors une erreur survient
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File à base de vecteur
• Créez une file en utilisant un vecteur circulaire.

• Spécifiez une taille maximale N, par ex. N = 1 000. 

• La file est composée d’un vecteur de N éléments Q 
et de deux variables entières:
- f, l’index de l’élément du devant
- r, l’index de l’élément suivant celui de l’arrière

• Configuration “normale”

• Configuration circulaire (“wrapped around”)

• Que veut dire f=r?

N−10 1 2

Q ...

rf

...Q

N−10 1 2 fr
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File à base de vecteur (suite)
• Pseudo-code

Algorithm  size():
return  (N - f + r) mod N

Algorithm  isEmpty():
return  (f = r)

Algorithm  front():
if  isEmpty() then

throw a QueueEmptyException
return  Q[f]

Algorithm  dequeue():
if  isEmpty() then

throw a QueueEmptyException
temp ← Q[f]
Q[f] ← null
f ← (f + 1) mod N
return  temp

Algorithm  enqueue(o):
if  size = N - 1 then

throw a QueueFullException
Q[r] ← o
r ← (r +1) mod N
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Réalisation d’une file à l’aide 
d’une liste simplement chaînée

• nœuds connectés en chaîne par des liens (links)

• la tête (head) de la liste est le devant de la file, la 
queue de la liste (tail) est le derrière de la file.

• pourquoi pas le contraire?

head

Rome Seattle Toronto

∅

tail
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Retirer l’élément de tête

• avancez la référence de la tête

• insérer un élément à la tête est tout aussi facile.

head

Baltimore Rome Seattle Toronto

∅

tail

head

Baltimore Rome Seattle Toronto

∅

tail
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Insérer un élément à la queue
• créez un nouveau nœud

• enchaînez-le et déplacez la référence à la queue

• comment retirer l’élément de queue?

head

Rome Seattle Toronto

∅

tail

Zurich

∅

head

Rome Seattle Toronto Zurich

∅

tail
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Files à deux bouts
(Double-Ended Queues)

• une file à deux bouts, ou deque, supporte l’insertion 
et le retrait à l’avant comme à l’arrière. 

• Le TAD Deque:
- insertFirst(e): Insère e au début de la deque

- insertLast(e): Insère e à la fin de la deque

- removeFirst(): retire et retourne le premier élément

- removeLast(): retire et retourne le dernier élément

• Les méthodes secondaires incluent:
- first()
- last()
- size()
- isEmpty()
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Réalisations de piles et de files à 
l’aide de Deques

• Piles avec Deques:

• Files avec Deques:

Méthode de Pile
Réalisation
avec Deque

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Méthode de File
Réalisation
avec Deque

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()



3.41Piles, files et listes chaînées

Le patron de conception 
Adaptateur (Adaptor Pattern)

• L’utilisation d’une deque pour réaliser une pile ou 
une file est un exemple du patron de conception 
adaptateur (adoptor pattern). Ce patron réalise une 
classe en utilisant des méthodes d’une autre classe.

• Souvent, les classes adaptateur spécialisent des 
classes générales.

• Voici deux applications:
- Spécialisation d’une classe générale en changeant 

quelques méthodes:
Ex: réalisation d’une pile avec une deque.

- Spécialisation de types d’objets utilisés par une 
classe générale:

Ex: définir une classe IntegerArrayStack qui
adapte ArrayStack pour ne contenir que des
entiers.
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Réalisation de deques à l’aide de 
listes doublement chaînées

• Effacer l’élément de queue d’une liste simplement 
chaînée ne peut pas être fait en un temps constant.

• Pour réaliser une deque, nous utilisons une liste 
doublement chaînée avec des nœuds spéciaux pour 
l’avant (header) et l’arrière (trailer).

• Un nœud de liste doublement chaînée a un lien 
suivant (next) et un lien précédent (prev). Ce nœud 
supporte les méthodes suivantes:
- setElement(Object e)
- setNext(Object newNext), 
- setPrev(Object newPrev)
- getElement(), getNext(), getPrev()

• En utilisant une liste doublement chaînée, toutes les 
méthodes de deque ont un temps d’exécution 
constant (c’est-à-dire,O(1))!

header trailer

New York ProvidenceBaltimore
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Réalisation de deques à l’aide de 
listes doublement chaînées (suite)
• En réalisant une liste doublement chaînée, nous 

ajoutons deux nœuds spéciaux aux extrémités: les 
nœuds header et trailer.
- Le nœud header est placé avant le premier élément 

de la liste. Il a un prochain lien valide, mais un lien 
précédent vide.

- Le nœud trailer est placé après le dernier élément 
de la liste. Il a un lien précédent valide, mais un 
prochain lien vide.

• les nœuds header et trailer sont des sentinelles ou 
nœuds “bidon” parce qu’ils ne contiennent pas 
d’éléments.

• Diagramme de notre liste doublement chaînée:

header trailer

New York ProvidenceBaltimore
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Réalisation de deques à l’aide de 
listes doublement chaînées (suite)
• Visualisons le code de removeLast().

header trailer

New York Providence San FranciscoBaltimore

header trailer

New York ProvidenceBaltimore

secondtolast

last

header trailer

New York Providence San FranciscoBaltimore

secondtolast last



4.1Séquences

SÉQUENCES

• Vecteurs

• Positions

• Listes

• Séquences générales

• Étude de cas: le tri à bulle (Bubble Sort)

4.2Séquences

Le TAD Vecteur (Vector)
• Une séquence S (avec n éléments) qui supporte les 

méthodes suivantes:

- elemAtRank(r):
Retourne l’élément de S au rang r; une 
erreur survient si r < 0 ou r > n -1

- replaceAtRank(r,e):
Remplace l’élément au rang r avec e et 
retourne l’ancien élément; une erreur 
survient si r < 0 ou r > n -1

- insertAtRank(r,e):
Insère un nouvel élément dans S qui aura 
le rang r; une erreur survient si r < 0 ou 
r > n -1

- removeAtRank(r):
Retire de S l’élément au rang r; une 
erreur survient si r < 0 ou r > n -1
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Réalisation avec vecteur (array)
• Extraits de pseudo-code:

Algorithm  insertAtRank(r,e):
for  i = n - 1, n - 2, ... , r do

S[i+1] ← s[i]
S[r] ← e
n ← n + 1

Algorithm  removeAtRank(r):
e ← S[r]
for  i = r, r + 1, ... , n - 2 do

S[i] ← S[i + 1]
n ← n - 1
return

S

N−10 1 2 n−1r

S

N−10 1 2 n−1r
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Réalisation avec vecteur (suite)
• Complexité temporelle des diverses méthodes:

Méthode Temps

size O(1)

isEmpty O(1)

elemAtRank O(1)

replaceAtRank O(1)

insertAtRank O(n)

removeAtRank O(n)
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Réalisation avec liste 
doublement chaînée

• la liste avant une insertion:

• création d’un nouveau nœud à insérer:

header

Baltimore Paris Providence

trailer

header

Baltimore Paris Providence

trailer

New York

4.6Séquences

• la liste après l’insertion:

public void  insertAtRank (int  rank, Object element)

    throws  BoundaryViolationException {

      if  (rank < 0 || rank > size())

throw  new BoundaryViolationException(“invalid rank”);

      DLNode next = nodeAtRank(rank); // the new node 
//will be right before this

      DLNode prev = next.getPrev(); // the new node
//will be right after this

      DLNode node = new  DLNode(element, prev, next);
// new node knows about its next & prev. Now
// we tell next & prev about the new node.

      next.setPrev(node);

      prev.setNext(node);

size++;

  }

header trailer

New York Paris ProvidenceBaltimore
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Réalisation avec liste 
doublement chaînée (suite)

• la liste avant une suppression:

• suppression d’un nœud:

• la liste après la suppression:

header trailer

New York Paris ProvidenceBaltimore

header trailer

New York Paris ProvidenceBaltimore

header trailer

New York ProvidenceBaltimore
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Réalisation en Java

• code pour supprimer un nœud

public  Object removeAtRank (int rank)

    throws  BoundaryViolationException {

if (rank < 0 || rank > size()−1)

throw new BoundaryViolationException(“Invalid
rank.”);

DLNode node = nodeAtRank(rank); // node to
// be removed

DLNode next = node.getNext(); // node before it  

DLNode prev = node.getPrev(); // node after it

prev.setNext(next);

next.setPrev(prev);

size--;

return  node.getElement(); // returns the
// element of the deleted node

  }
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Réalisation en Java (suite)
• code pour trouver un nœud à un certain rang

private  DLNode nodeAtRank (int rank) {

      // auxiliary method to find the node of the
// element with the given rank. We make
// auxiliary methods private or protected.

      DLNode node;

      if  (rank <= size()/2) { //scan forward from head

node = header.getNext();

for  (int  i=0; i < rank; i++)

  node = node.getNext();

      }

      else  { // scan backward from the tail

node = trailer.getPrev(); 

for  (int  i=0; i < size()-rank-1 ; i++)

  node = node.getPrev();

      }

      return  node;

    }
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Nœuds
• Les listes chaînées supportent l’exécution efficace 

d’opérations basées sur les nœuds:
- removeAtNode(Node v) et insertAfterNode(Node v, 

Object e), sont de complexité O(1).

• Cependant, les opérations basées sur les nœuds ne 
sont pas significatives dans une réalisation basée sur 
un vecteur car il n’y a pas de nœud dans un vecteur.

• Les nœuds sont spécifiques à la réalisation.

• Dilemme: 
- Si nous ne définissons pas d’opérations basées sur 

les nœuds, nous ne profitons pas pleinement des 
listes doublement chaînées.

- Si nous en définissons, nous violons la généralité 
des types abstraits de données.
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De nœuds à positions
• Nous présentons le TAD Position

• Notion intuitive de “place” d’un élément

• Les positions n’ont qu’une seule méthode:
element(): Retourne l’élément à cette position

• Les positions sont définies relativement aux autres 
positions (relation avant/après)

• Les positions ne sont pas liées à un élément ou à un 
rang.

Le TAD Liste (List)
• TAD avec méthodes basées sur les positions

• méthodes génériques size(), isEmpty()

• méthodes de requête isFirst(p), isLast(p)

• méthodes accessoires first(), last(), before(p), after(p)

• méthodes de mise à jour swapElements(p,q), 
replaceElement(p,e), insertFirst(e), insertLast(e), 
insertBefore(p,e), insertAfter(p,e). remove(p)

• chaque méthode est de complexité O(1) lorsque 
réalisées avec une liste doublement chaînée.

4.12Séquences

Le TAD Séquence
• Combine les TAD Vecteur et Liste (héritage 

multiple)

• Ajoute des méthodes qui jettent un pont entre rangs 
et positions
- atRank(r) retourne une position
- rankOf(p) retourne un rang (entier)

• Une réalisation basée sur un vecteur nécessite 
l’utilisation d’objets pour représenter les positions

New York Rome ProvidenceBaltimore

S

N−10 31 2

0 1 2 3
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Comparaison entre réalisations 
de séquences

Opérations
Vecteur
(Array)

Liste

size, isEmpty O(1) O(1)

atRank, rankOf, elemAtRank O(1) O(n)

first, last O(1) O(1)

before, after O(1) O(1)

replaceElement, swapElements O(1) O(1)

replaceAtRank O(1) O(n)

insertAtRank, removeAtRank O(n) O(n)

insertFirst, insertLast O(1) O(1)

insertAfter, insertBefore O(n) O(1)

remove O(n) O(1)
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Itérateurs
• Abstraction du processus de recherche au sein d’une 

collection d’éléments (un élément à la fois)

• Patron de conception

• Encapsulation des notions de “place” et de 
“prochain”

• Extension du TAD Position

• Itérateurs génériques et spécialisés

• ObjectIterator
- hasNext()
- nextObject()
- object()

• PositionIterator
- nextPosition()

• Méthodes utiles qui retournent des itérateurs:
- elements()
- positions()
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ARBRES

• Arbres

• Arbres binaires

• Traversées d’arbres

• Patron de conception: gabarit de méthode (template 
method pattern)

• Structures de données pour arbres

5.2Arbres

Arbres
• un arbre représente une hiérarchie

- structure organisationnelle d’une corporation

- table des matières d’un livre

Europe AsiaAfrica Australia

Canada OverseasS. America

Domestic International TV CD Tuner

Sales Purchasing ManufacturingR&D

Electronics R’Us

student guide

overview grading programmingenvironment support code

homeworksexams programs

5.3Arbres

Un autre exemple
• Système de fichier de Unix ou de DOS/Windows

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

5.4Arbres

Terminologie
• A est le nœud racine.

• B est le parent (ou père) de D et E.

• C est le frère (sibling) de B.

• D et E sont les enfants (ou descendants) de B.

• D, E, F, G, I  sont des nœuds extérieurs, ou feuilles.

• A, B, C, H sont des nœuds intérieurs.

• La profondeur (niveau) de E est 2

• La hauteur de l’arbre est 3.

• Le degré (nombre d’enfants) du nœud B est 2.

Propriété:  (# liens) = (#nœuds) − 1

A

B C

D G H

I

FE
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Arbres binaires
• Arbre ordonné:  les enfants de chaque nœud sont 

ordonnés.

• Arbre binaire:  arbre ordonné où tous les nœuds 
intérieurs sont de degré 2.

• Définition récursive d’un arbre binaire:

• Un arbre binaire est 
- un nœud extérieur (feuille), ou
- un nœud intérieur (la racine) et deux arbres 

binaires (sous-arbre gauche et sous-arbre droit)

5.6Arbres

Exemples d’arbres binaires
• expression arithmétique

• rivière

+

+

+

+

×

×

+
+

×

3

6

2 8

5

1

4

7 2

4
((((3  ×  (1   +  (4   +  6)))  +  (2  +  8))  ×  5)  +  ( 4  ×  (7  +  2)))
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Exemples d’arbres binaires
• arbres de décision

East Side Spike’s

Al Forno Cafe Paragon

Pockets

NOYES

NONO

NO

YES YES

Starbucks

Want a fast meal?

Are you willing to splurge?How about coffee?

YES

Do you like free
samples?

5.8Arbres

Propriétés des arbres binaires
• (# nœuds extérieurs ) = (# nœuds intérieurs) + 1

• (# nœuds au niveau i)  ≤  2 i

• (# nœuds extérieurs)  ≤  2 (hauteur) 

• (hauteur)  ≥  log2 (# nœuds extérieurs)

• (hauteur)  ≥  log2 (# nœuds) − 1

• (hauteur) ≤ (# nœuds intérieurs) = ((# nœuds) − 1)/2

0

1

2

3

4

Niveau
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Le TAD Arbres (Trees)
• méthodes génériques de contenant

- size(), isEmpty(), elements()

• méthodes positionnelles de contenant
- positions(), swapElements(p,q), replaceElement(p,e)

• méthodes de requête
- isRoot(p), isInternal(p), isExternal(p)

• méthodes accessoires
- root(), parent(p), children(p)

• méthodes de mise à jour
- spécifiques à l’application

InspectableContainer

InspectablePositionalContainer

InspectableVector InspectableTree

InspectableList

Tree

PositionalContainer

5.10Arbres

TADs pour Arbres Binaires
• méthodes accessoires

- leftChild(p), rightChild(p), sibling(p)

• méthodes de mise à jour
- expandExternal(p), removeAboveExternal(p)
- autres méthodes spécifiques à l’application

InspectableContainer

InspectablePositionalContainer

Tree

BinaryTree

InspectableBinaryTree

InspectableTreePositionalContainer

5.11Arbres

Traversée d’arbres
• traversée en pré-ordre

Algorithm  preOrder(v)
“visit” node v
for each child w of v do

recursively perform preOrder(w)

• comme lire un document du début à la fin

Article

Titre Résumé § 1 Références§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

1

2 3 4 147 11

5 6 8 9 10 12 13

5.12Arbres

Traversée d’arbres
• traversée en post-ordre

Algorithm  postOrder(v)
for each child w of v do

recursively perform postOrder(w)
“visit” node v

• commande Unix du (disk usage) 

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/hw1

3K

hw2

2K

hw3

4K

pr1

57K

pr2

97K

pr3

74K

grades

8K

market

4786K

buylow

26K

sellhigh

55K

grades

3K

2K 1K

1K

1K1K1K

1K 1K

10K 229K 4870K

82K 4787K

5124K

249K 4874K



5.13Arbres

Évaluation d’expressions 
arithmétiques

• spécialisation d’une traversée post-ordre
Algorithm  evaluateExpression(v)

if v is an external node
return  the variable stored at v

else
let o be the operator stored at v
x ← evaluateExpression(leftChild(v))
y ← evaluateExpression(rightChild(v))
return  x o y

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

5.14Arbres

Traversée d’arbres binaires
• traversée in-ordre

Algorithm  inOrder(v)
recursively perform inOrder(leftChild(v))
“visit” node v
recursively perform inOrder(rightChild(v))

• afficher une expression arithmétique
- spécialisation d’une traversée in-ordre
- afficher “(”  avant la traversée du sous-arbre gauche
- afficher “)” après la traversée du sous-arbre droit

+

+

+

+

×

×

+
+

×

3

6

2 8

5

1

4

7 2

4
((((3  ×  (1   +  (4   +  6)))  +  (2  +  8))  ×  5)  + 
( 4  ×  (7  +  2)))

5.15Arbres

Traversée par tour d’Euler
• traversée générique d’un arbre binaire

• les traversées pré-ordre, in-ordre et post-ordre sont 
des cas spéciaux de la traversée par tour d’Euler

• “marche autour” de l’arbre et visite de chacun des 
nœuds à trois reprises:
- à la gauche
- par-dessous
- à la droite

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

5.16Arbres

Gabarit de méthode
(Template Method Pattern)

• mécanisme de calcul générique qui peut être 
spécialisé en redéfinissant certaines étapes (un autre 
patron de conception)

• réalisation en utilisant une classe abstraite Java avec 
des méthodes qui peuvent être redéfinies par ses sous-
classes.

public abstract  class  BinaryTreeTraversal {

protected  BinaryTree tree; 
...
protected  Object traverseNode(Position p) {
    TraversalResult r = initResult();
    if  (tree.isExternal(p)) {
      external(p, r);
    } else  {
      left(p, r);
      r.leftResult = traverseNode(tree.leftChild(p));
      below(p, r);
      r.rightResult = traverseNode(tree.rightChild(p));
      right(p, r);
    }
    return  result(r);
  }



5.17Arbres

Spécialisation de la traversée 
générique d’arbres binaires

• affichage d’une expression arithmétique

public class  PrintExpressionTraversal
extends  BinaryTreeTraversal {

...

protected void  external(Position p, TraversalResult r) {
    System.out.print(p.element());
  }

  protected void  left(Position p, TraversalResult r) {
    System.out.print("(");
  }

  protected void  below(Position p, TraversalResult r) {
    System.out.print(p.element());
  }

  protected void  right(Position p, TraversalResult r) {
   System.out.print(")");
  }

}

5.18Arbres

Structure de données chaînée 
pour arbres binaires

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size
5

5.19Arbres

Représentation d’arbres généraux
• arbre T

• arbre binaire T' représentant T

A

B D

E F G

C

A

B

C

D

E

F

G



6.1Files à priorité

FILES À PRIORITÉ

• Application boursière (motivation)

• Le TAD file à priorité (Priority Queue)

• Réalisation d’une file à priorité avec une séquence

• Le tri (sorting)

• Problèmes liés au tri

6.2Files à priorité

Application boursière
• Nous nous concentrerons sur la vente d’un seul titre, 

Akamai Technologies, fondée en 1998 par des 
professeurs et des étudiants du MIT (200 employés, 20 
milliards de dollars en capital action)

• Les investisseurs font des commandes qui 
comprennent trois items (action, prix, quantité), où 
action est un achat ou une vente, prix est le pire prix 
que vous êtes prêt à débourser (achat) ou à accepter 
(vente), et quantité est le nombre d’actions

• À l’équilibre, toutes les commandes d’achat (offres) 
ont des prix plus bas que toutes les commandes de 
ventes (demandes)

• Une cote de niveau 1 donne l’offre la plus haute et la 
demande la plus basse (telles que fournies par les sites 
financiers populaires et les courtiers ou e-brokers)

• Une cote de niveau 2 donne toutes les offres et les 
demandes pour certains seuils de prix (Island ECN sur 
le Web et cotes pour agents professionnels (traders))

• Une transaction survient lorsqu’une nouvelle 
commande peut être jumelée à une ou plusieurs 
commandes existantes, ce qui résulte en une série de 
transactions de suppression.

• Les commandes peuvent être annulées à tout moment.

6.3Files à priorité

Structures de données pour le 
marché boursier

• Pour chaque titre, nous conservons deux structures, 
la première pour les offres et la seconde pour les 
demandes

• Les opérations qui doivent être supportées:

• Ces structures de données sont appelées files à 
priorité.

• Les files à priorité de la bourse NASDAQ supportent 
en moyenne un volume de transaction quotidien de 1 
milliard d’actions (50 milliards de dollars)

Action Structure Offre Structure Demande

faire une
commande

insert(prix,quantité) insert(prix,quantité)

obtenir une 
cote de 
niveau 1

min() max()

effectuer la 
transaction

removeMin() removeMax()

annuler remove(commande)remove(commande)

6.4Files à priorité

Clés et relations d’ordre total
• Une file à priorité (Priority Queue) classe ses 

éléments par clé avec une relation d’ordre total

• Clés:
- Chaque élément a sa propre clé
- Les clés ne sont pas nécessairement uniques

• Relation d’ordre total
- Dénotée par ≤
- Réflexive: k ≤ k
- Antisymétrique:  si k1 ≤ k2 et k2 ≤ k1, alors k1 ≤k2
- Transitive:  si k1 ≤ k2 et k2 ≤ k3, alors k1 ≤ k3

• Une file à priorité supporte ces méthodes 
fondamentales sur des paires clé-élément:
- min()
- insertItem(k, e)
- removeMin()



6.5Files à priorité

Tri par file à priorité
• Une file à priorité P peut être utilisée pour trier une 

séquence S:
- en insérant les éléments de S dans P avec une suite 

d’opérations insertItem(e, e) 
- en retirant les éléments de P en ordre croissant et 

en les remettant dans S avec une suite d’opérations 
removeMin() 

Algorithm  PriorityQueueSort(S, P):
Entrée: Séquence S contenant n éléments, avec une

relation d’ordre total, et une file à priorité P qui
compare les clés avec cette même relation

Sortie: Séquence S triée à l’aide de la relation d’ordre
total

while !S.isEmpty() do
e ← S.removeFirst()
P.insertItem(e, e)

while P is not empty do
e ← P.removeMin()
S.insertLast(e)

6.6Files à priorité

Le TAD File à priorité
• Une file à priorité P supporte les méthodes 

suivantes:

- size():
Retourne le nombre d’éléments dans P

- isEmpty():
Vérifie si P est vide

- insertItem(k,e):
Insère un nouvel élément e avec sa clé k 
dans P

- minElement(): 
Retourne (mais ne retire pas) un élément 
de P à la plus petite clé; une erreur 
survient si P est vide

- minKey(): 
Retourne la plus petite clé de P; une 
erreur survient si P est vide

- removeMin():
Retire et retourne un élément de P à la 
plus petite clé; une erreur survient si P 
est vide.

6.7Files à priorité

Comparateurs
• Patron de conception (Comparator)

• La forme la plus générale et la plus réutilisable de 
file à priorité utilise des objets appelés 
comparateurs.

• Les comparateurs sont externes aux clés à comparer 
et permettent de comparer deux objets.

• Quand la file à priorité a besoin de comparer deux 
clés, elle utilise le comparateur qui lui a été fourni.

• Ainsi, une file à priorité peut être suffisamment 
générale pour contenir n’importe quel objet.

• Le TAD Comparateur inclut:
- isLessThan(a, b)
- isLessThanOrEqualTo(a,b)
- isEqualTo(a, b)
- isGreaterThan(a,b)
- isGreaterThanOrEqualTo(a,b)
- isComparable(a)

6.8Files à priorité

 Réalisation avec séquence
non-triée

• Essayons de réaliser une file à priorité avec une 
séquence non-triée S.

• Les éléments de S sont composés de k, la clé, et de e, 
l’élément.

• Nous pouvons réaliser insertItem() en utilisant 
insertLast() sur les séquences. Le temps d’exécution 
sera alors O(1).

• Cependant, comme nous insérons toujours à la fin, 
sans tenir compte de la valeur de la clé, notre 
séquence n’est pas ordonnée.

5 8 4 1 6



6.9Files à priorité

Réalisation avec séquence
non-triée (suite)

• Ainsi, pour les méthodes telles minElement(), 
minKey(), et removeMin(), nous devons regarder 
tous les éléments de S. La complexité du pire des 
cas est O(n).

• Sommaire des performances

insertItem O(1)
minKey, minElement O(n)

removeMin O(n)

8 4 1 65

6.10Files à priorité

Réalisation avec séquence triée
• Une autre réalisation possible utilise une séquence S, 

triée par ordre croissant de clés.

• minElement(), minKey(), et removeMin() 
deviennent alors O(1) 

• Cependant, pour réaliser insertItem(), nous devons 
maintenant parcourir la séquence entière dans le 
pire des cas. Ainsi, insertItem() s’exécute en un 
temps O(n)

• Sommaire des performances

insertItem O(n)
minKey, minElement O(1)

removeMin O(1)

4 5 6 81

4 5 6 81 8

6.11Files à priorité

Réalisation avec séquence triée 
(suite)

public class  SequenceSimplePriorityQueue 
implements  SimplePriorityQueue {
  //Implementation of a priority queue 

using a sorted sequence

  protected  Sequence seq = new  NodeSequence();
  protected  Comparator comp;

// auxiliary methods

  protected  Object key (Position pos) {
return  ((Item)pos.element()).key();

} // note casting here

  protected  Object element (Position pos) {
return  ((Item)pos.element()).element();

} // casting here too

  // methods of the SimplePriorityQueue ADT

  public  SequenceSimplePriorityQueue (Comparator c) {
comp = c; }

  public  int  size () {return  seq.size(); }

...suite à la page suivante...

6.12Files à priorité

Réalisation avec séquence triée 
(suite)

public  void  insertItem (Object k, Object e) throws  
InvalidKeyException {
    if  (!comp.isComparable(k)) {

throw new  InvalidKeyException("The key is not valid");
}
else {

if  (seq.isEmpty()) {
//if the sequence is empty, this is the
seq.insertFirst(new  Item(k,e));//first item

}
else  { //check if it fits right at the end

if  (comp.isGreaterThan(k,key(seq.last()))) {
seq.insertAfter(seq.last(),new  Item(k,e));

}
else  {

//we have to find the right place for k.

 Position curr = seq.first();
          while  (comp.isGreaterThan(k,key(curr))) {

curr = seq.after(curr);
}
seq.insertBefore(curr,new  Item(k,e));

}
        }
  }

...suite à la page suivante...



6.13Files à priorité

Réalisation avec séquence triée 
(suite)

public  Object minElement () throws
EmptyContainerException {

if  (seq.isEmpty()) {
throw new  EmptyContainerException("The priority
queue is empty");

}
else {

return  element(seq.first());
}

public  boolean  isEmpty () {
return  seq.isEmpty(); 

}

}

6.14Files à priorité

Tri par sélection
• Le tri par sélection est une variation du tri par file à 

priorité (PriorityQueueSort) qui utilise une 
séquence non-triée pour réaliser la file à priorité P.

• Phase 1, l’insertion d’un item dans P est O(1) 

• Phase 2, le retrait d’un item de P prend un temps 
proportionnel au nombre d’éléments présents dans P 

Séquence S File à priorité P

Entrée (7, 4, 8, 2, 5, 3, 9) ()

Phase 1:
(a)
(b)
...

(g)

(4, 8, 2, 5, 3, 9)
(8, 2, 5, 3, 9)

...
()

(7)
(7, 4)

...
(7, 4, 8, 2, 5, 3, ,9)

Phase 2:
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(2)
(2, 3)

(2, 3, 4)
(2, 3, 4, 5)

(2, 3, 4, 5, 7)
(2, 3, 4, 5, 7, 8)

(2, 3, 4, 5, 7, 8, 9)

(7, 4, 8, 5, 3, 9)
(7, 4, 8, 5, 9)
(7, 8, 5, 9)
(7, 8, 9)
(8, 9)
(9)
()

6.15Files à priorité

Tri par sélection (suite)
• Comme vous pouvez le constater, la phase 2 est le 

goulot d’étranglement. La première opération 
removeMin est O(n), la seconde O(n−1), et ainsi de 
suite jusqu’à la dernière, qui est O(1). 

• Le temps total nécessaire à la phase 2 est:

• Et comme:

• Le temps d’exécution de la phase 2 est donc O(n2). 
Ainsi, la complexité temporelle de l’algorithme est 
O(n2).

O n n 1–( ) … 2 1+ + + +( ) O i

i 1=

n

∑
 
 
 

≡

i

i 1=

n

∑
n n 1+( )

2
--------------------=

6.16Files à priorité

Tri par insertion
• Le tri par insertion résulte de l’utilisation d’un tri par 

file à priorité où la file est réalisée avec séquence 
triée.

Séquence S File à priorité P

Entrée (7, 4, 8, 2, 5, 3, 9) ()

Phase 1:
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(4, 8, 2, 5, 3, 9)
(8, 2, 5, 3, 9)
(2, 5, 3, 9)
(5, 3, 9)
(3, 9)
(9)
()

(7)
(4, 7)

(4, 7, 8)
(2, 4, 7, 8)

(2, 4, 5, 7, 8)
(2, 3, 4, 5, 7, 8)

(2, 3, 4, 5, 7, 8, 9)

Phase 2:
(a)
(b)
...

(g)

(2)
(2, 3)

...
(2, 3, 4, 5, 7, 8, 9)

(3, 4, 5, 7, 8, 9)
(4, 5, 7, 8, 9)

...
()



6.17Files à priorité

Tri par insertion (suite)
• Nous améliorons ainsi la phase 2, qui est O(n).

• Cependant, la phase 1 devient maintenant le goulot 
d’étranglement. Le premier insertItem est O(1), le 
second O(2), jusqu’au dernier qui lui est O(n), pour 
un temps d’exécution total O(n2)

• Le tri par sélection et le tri par insertion ont tous 
deux un temps d’exécution O(n2)

• Le tri par sélection va toujours exécuter un nombre 
d’opérations proportionnel à n2, peu importe la 
séquence d’entrée

• Le temps d’exécution du tri par insertion varie selon 
la séquence d’entrée

• Aucune n’est une bonne méthode de tri, sauf pour 
les petites séquences

• Nous cherchons encore la file à priorité ultime...

6.18Files à priorité

Le tri
• Maintenant que vous avez une certaine connaissance 

du tri, parlons-en un peu plus à fond

• Le tri est essentiel parce qu’une recherche efficace 
dans une base de données ne peut être faite que si les 
enregistrements sont triés.

• Certains estiment qu’environ 20% du temps de 
calcul planétaire est dédié au tri

• Nous observerons qu’il existe un compromis entre 
“simplicité”  et efficacité des algorithmes de tri:

• Les tris élémentaires vus jusqu’ici, qui étaient 
simples à comprendre et à réaliser, ont un temps 
d’exécution O(n2) (inutilisables pour de grands n)

• Il existe des algorithmes plus sophistiqués O(n logn)

• Comparaison de clés: comparons-nous la clé entière 
ou seulement une partie de la clé?

• Espace requis: tri à même la structure (in-place) 
versus l’utilisation de structures auxiliaires

• Stabilité: un algorithme de tri stable conserve 
l’ordre relatif des clés égales.



6.19Tas

TAS

• Tas (Heap)

• Propriétés des tas

• Tri Heap-Sort

• Construction ascendante de tas (Bottom-Up)

• Repéreurs (Locator Design Pattern)

6.20Tas

Tas
• Un tas (heap) est un arbre binaire T qui emmagasine 

une collection de clés (ou paires clé-élément) 
comme nœuds internes et qui satisfait aux deux 
propriétés suivantes:
- Propriété d’ordre: clé(parent) ≤ clé(enfant)
- Propriété structurelle: tous les niveaux sont 

pleins, excepté le dernier, ce dernier étant 
cependant plein à gauche (arbre binaire complet)

4

6

207

811

5

9

1214

15

2516

6.21Tas

Exemples de non-tas
• le dernier niveau n’est pas plein à gauche

• clé(parent)> clé(enfant)
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6.22Tas

Hauteur d’un tas
Un tas T qui emmagasine n clés a une hauteur 
h = log(n + 1), qui est O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Ainsi 2h-1 ≤ n ≤ 2h - 1

• En calculant le logarithme, nous obtenons
log (n + 1) ≤ h ≤ log n + 1, et donc h = log(n+1)

4

6

207

5
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16h − 1

0

1

h − 2

h

h − 1

0

1

h − 2

h
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3

74

21 10 20 8

22 28 13 25

Insertion dans un tas

La clé à insérer est 6

19

6.24Tas

3

74

21 10 20 8

22 28 13 19

Ajoutez la clé à la prochaine position disponible 
dans le tas.

Commencez maintenant la procédure Upheap.

Insertion dans un tas (suite)

25 6

6.25Tas

Procédure Upheap
• Échangez (swap) les clés parent-enfant non-

ordonnées

3

74

21 10 20 8

22 28 13 19 25 6

3

74

21 10 6 8

22 28 13 19 25 20

6.26Tas

Suite de Upheap

3
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21 10
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8

22 28 13 19 25

6

3
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21 10

20

8

22 28 13 19 25
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• Upheap se termine quand la nouvelle clé est 
plus grande que la clé de son parent ou quand 
le haut du tas est atteint.

• ( #échanges total )  ≤  (h − 1), qui est O(log n)

3

7

4

21 10

20

8

22 28 13 19 25

6

Fin de Upheap

6.28Tas

Suppression dans un tas

RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• La suppression de la clé racine laisse un trou

• Nous devons réparer le tas

• Premièrement, remplacez le trou par la toute 
dernière clé du tas

• Ensuite, appliquez la procédure Downheap

3

20

6.29Tas

Procédure Downheap

20

7

4

21 10 8

22 28 13 19 25

6

Downheap compare le parent avec son enfant le 
plus petit. Si cet enfant est plus petit que le pa-
rent, alors on les échange l’un pour l’autre.
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6.30Tas

Suite de Downheap
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Suite de Downheap (2)
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6.32Tas

Fin de Downheap

4

7

10

21 13 8

22 28 20 19 25

6

• Downheap se termine quand la clé est plus 
grande que les clés de ses deux enfants ou 
quand le bas du tas est atteint.

• ( #échanges total )  ≤  (h − 1), qui est O(log n)

6.33Tas

Réalisation d’un tas
public class HeapPriorityQueue implements PriorityQueue 
{

BinaryTree T;

Position last;

Comparator comparator;

...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

6.34Tas

Réalisation d’un tas (suite)
• Deux façons de trouver la position d’insertion z:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u
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Réalisation par vecteur (Vector)
• Les mises à jour dans l’arbre sous-jacent ne 

surviennent seulement qu’au “dernier élément”.

• Un tas peut être représenté par un vecteur (vector), 
où le nœud au rang i a:
- l’enfant de gauche au rang 2i et
- l’enfant de droite au rang 2i + 1

• Les feuilles n’ont pas à être emmagasinées.

• L’insertion et la suppression de clés dans le tas 
correspondent respectivement à insertLast et à 
removeLast dans le vecteur.

1

2

5 6 7

3

4

8 9 10 11 12 13

6.36Tas

Tri Heap-Sort
• Toutes les méthodes d’un tas s’exécutent en un 

temps logarithmique, ou mieux.

• Si nous réalisons le tri PriorityQueueSort avec un 
tas comme file à priorité, insertItem et removeMin 
prennent alors O(log k) chacun, où k est le nombre 
d’éléments dans le tas à un moment donné.

• Nous avons toujours au plus n éléments dans le tas, 
alors le pire des cas en terme de complexité pour ces 
méthodes est O(log n).

• Chaque phase prend donc O(n log n), et le temps 
d’exécution de l’algorithme est aussi de O(n log n).

• Ce tri est connu sous le nom de heap-sort.

• Le temps d’exécution O(n log n) d’un tri heap-sort 
est bien meilleur que le temps d’exécution O(n2) 
d’un tri à bulle, par sélection, ou par insertion.

Tri Heap-Sort in-place
• N’utilise pas de tas (ou d’autre structure) externe.

• Utilise une représentation par vecteur pour contenir 
le tas. Construction ascendante (bottom-up)...

6.37Tas

Construction ascendante du tas (1)
• construisez (n + 1)/2 tas à un seul élément (trivial)

• construisez maintenant des tas à trois éléments
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Construction ascendante du tas (2)
• préservez la propriété d’ordre avec downheap

• formez maintenant des tas à 7 éléments
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Construction ascendante du tas (3)
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Construction ascendante du tas (4)

Fin!
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Analyse de la construction 
ascendante de tas

• Proposition: la construction ascendante de tas avec n 
clés a un temps d’exécution O(n).
- Insérer (n + 1)/2 nœuds
- Insérer (n + 1)/4 nœuds et utiliser downheap
- Insérer (n + 1)/8 nœuds et utiliser downheap
- ...
- analyse visuelle:

• n insertions, n/2 downheap pour un temps 
d’exécution total d’ordre O(n).
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Repéreurs (Locators)
• Des repéreurs peuvent être utilisés pour suivre les 

éléments lorsqu’ils sont déplacés dans un contenant.

• Un repéreur (patron de conception locator) suit un 
élément spécifique, même si cet élément change de 
position dans son contenant.

• Le TAD locator contient les méthodes 
fondamentales suivantes:
- element(): retourne l’élément de l’item associé au 

locator.
- key(): retourne la clé de l’item associé au locator.

• À l’aide de repéreurs nous définissons des méthodes 
additionnelles pour le TAD file à priorité:
- insert(k,e): insère (k,e) dans P et retourne son 

locator
- min(): retourne le locator de l’élément à la 

plus petite clé
- remove(l): supprime l’élément au locator l

• Dans notre application boursière, nous retournons 
un repéreur quand une commande est faite. Un 
repéreur permet de spécifier sans ambiguïté une 
commande lors d’une annulation.
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Positions et Repéreurs
• Vous pourriez être en train de vous demander quelle 

est la différence entre repéreurs et positions, et 
pourquoi les distinguer.

• Il est vrai qu’ils ont des méthodes semblables.

• La différence se situe au niveau de leur utilisation 
primaire.

• Les positions font abstraction de la réalisation 
spécifique de l’accès aux éléments (indices ou 
nœuds).

• Les positions sont définies relativement l’une par 
rapport à l’autre (précédent/prochain, père/enfant).

• Les repéreurs surveillent où se situent les éléments. 
Dans la réalisation d’un TAD pour repéreurs, un 
repéreur conserve typiquement la position courante 
de l’élément.

• Les repéreurs associent les éléments avec leurs clés.

6.44Tas

Positions et Repéreurs au travail
• Par exemple, considérez le Service de valet de 

stationnement CSI2514 (créé par les AE parce qu’ils 
avaient trop de temps libre).

• Lorsqu’ils ont démarré leur entreprise, André et 
Daniel décidèrent de créer une structure de données 
pour déterminer où les voitures sont situées.

• André suggère qu’une position représente l’espace 
de stationnement dans lequel la voiture se trouve.

• Cependant Daniel sait bien que les AE se promènent 
avec les voitures partout sur le campus et qu’elles ne 
seront pas toujours stationnées au même endroit.

• Alors ils décident d’installer un repéreur (un 
appareil sans fil) dans chaque voiture. Chaque 
repéreur a un identifiant, qui est inscrit sur le coupon 
de retour.

• Quand un client demande sa voiture, l’AE active le 
repéreur, et alors la voiture klaxonne et ses lumières 
clignotent! Si la voiture est stationnée, André et 
Daniel sauront où la retrouver dans le stationnement, 
sinon, l’AE conduisant cette voiture saura qu’il est 
temps de la rapporter.



7.1Dictionnaires et recherche

DICTIONNAIRES  ET 
RECHERCHE

• Le TAD Dictionnaire

• Recherche binaire

• Arbres de recherche binaires
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Le TAD Dictionnaire
• un dictionnaire (dictionary) est un modèle abstrait 

de base de données.

• tel une file à priorité, un dictionnaire emmagasine 
des paires clé-élément

• la recherche par clé est la principale opération 
offerte par un dictionnaire

• méthodes simples de contenant:
- size()
- isEmpty()
- elements()

• méthodes de requête:
- findElement(k)
- findAllElements(k)

• méthodes de mise à jour:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• élément spécial
- NO_SUCH_KEY, retourné lors d’une recherche 

infructueuse.

7.3Dictionnaires et recherche

Réalisation d’un dictionnaire à 
l’aide d’une séquence

• séquence non-ordonnée

- chercher et supprimer prennent un temps O(n)
- insérer prend un temps O(1)
- application aux registres et journaux (logs) 

(insertions fréquentes, recherches et suppressions 
plutôt rares)

• séquence ordonnée à base de vecteur (en supposant 
que les clés puissent être ordonnées)

- chercher prend un temps O(log n) (recherche 
binaire)

- insérer et supprimer prennent un temps O(n)
- application aux tables de recherche (look-up 

tables— recherches fréquentes, insertions et 
suppressions plutôt rares)
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Recherche binaire
• restreindre l’intervalle de recherche par stages

• jeu “trop haut - trop bas” (high-low)

• findElement(22)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37
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2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37
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highlow mid

low=mid=high
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Pseudo-code pour recherche 
binaire

Algorithm  BinarySearch(S, k, low, high)
if  low > high then

return  NO_SUCH_KEY
else

mid ← (low+high) / 2
if  k = key(mid) then

return  key(mid)
else if  k < key(mid) then

return  BinarySearch(S, k, low, mid−1)
else

return  BinarySearch(S, k, mid+1, high)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 2225 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low high mid

high midlow

highlow mid
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Temps d’exécution de la 
recherche binaire

• L’intervalle des items qui seront considérés est 
réduit de moitié après chaque comparaison

• Dans la réalisation à base de vecteur, l’accès par 
rang prend un temps O(1), et donc la recherche 
binaire s’exécute en un temps O(log n)

comparaison intervalle de
recherche

0 n

1 n/2

2 n/4

... ...

2i n/2i

log2 n 1

7.7Dictionnaires et recherche

Arbres de recherche binaires
• Un arbre de recherche binaire est un arbre binaire T 

où:
- chaque nœud interne v emmagasine un item de 

dictionnaire (k, e). 
- les clés se trouvant dans les nœuds du sous-arbre 

gauche de v sont plus petit ou égal à k.
- les clés se trouvant dans les nœuds du sous-arbre 

droit de v sont plus grand ou égal à k.
- les nœuds externes ne contiennent pas d’éléments.
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Recherche
• Un arbre de recherche binaire T est un arbre de 

décision où la question posée à un nœud interne v se 
résume à: est-ce que la clé k est plus petite, égale, ou 
plus grande que la clé se trouvant dans v?

• Pseudo-code: 
Algorithm  TreeSearch(k, v):

Entrée: une clé de recherche k et un nœud v d’un
arbre de recherche binaire T.

Sortie: un nœud w du sous-arbre T(v) de T avec v 
comme racine, tel que w est un nœud interne
emmagasinant k, ou w est un nœud externe 
visité lors de la traversée in-ordre de T(v) après
tous les nœuds internes aux clés plus petites
que k et avant tous les nœuds internes aux clés
plus grandes que k.

if  v is an external node then
return  v

if  k = key(v) then
return  v

else if  k < key(v) then
return  TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return  TreeSearch(k, T.rightChild(v))
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Exemple de recherche I
• findElement(76) réussi avec succès

• Une recherche fructueuse traverse un chemin 
débutant de la racine et se terminant à un nœud 
interne.

• Que dire de findAllelements(k)?
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Exemple de recherche II
• findElement(25) qui ne réussit pas

• Une recherche infructueuse traverse un chemin 
débutant de la racine et se terminant à un nœud 
externe.
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Insertion
• Pour exécuter insertItem(k, e), définissons w comme 

étant le nœud retourné par TreeSearch(k, T.root())

• Si w est externe, alors nous savons que k ne se trouve 
pas dans T. Nous appelons alors expandExternal(w) 
sur T et emmagasinons (k, e) dans w
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Insertion II
• Si w est interne, alors nous savons qu’un autre item 

avec une clé k se trouve à w. Nous appelons 
l’algorithme récursivement à partir de T.rightChild(w) 
ou de T.leftChild(w)
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Suppression I
• Nous repérons le nœud w où la clé est emmagasinée 

avec l’algorithme TreeSearch

• Si w a un fils externe z, alors nous supprimons w et 
z avec removeAboveExternal(z)
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Suppression II
• Si w n’a pas de fils externe:

- trouvez le nœud interne y suivant w selon le 
parcours in-ordre

- déplacez l’item de y vers w
- exécutez removeAboveExternal(x), où x est le fils 

gauche de y (qui sera toujours externe)
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Complexité temporelle
• Une recherche, une insertion, ou une suppression 

visite les nœuds de la racine aux feuilles (root-to-
leaf path), et peut-être aussi les frères de ces nœuds

• Une durée O(1) est nécessaire à chaque nœud

• Le temps d’exécution de chaque opération est O(h), 
où h est la hauteur de l’arbre

• La hauteur d’un arbre de recherche binaire est n 
dans le pire des cas. Un tel arbre ressemble alors à 
une séquence triée

• Afin d’obtenir un bon temps d’exécution, nous 
devons garder l’arbre équilibré, c’est-à-dire avec 
une hauteur de O(log n)

• Différentes stratégies d’équilibrage seront explorées 
dans les prochains cours.
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ARBRES AVL
• Arbres AVL

7.17Arbres AVL

Arbre AVL
• Les arbres AVL sont équilibrés.

• Un arbre AVL est un arbre de recherche binaire où, 
pour tout nœud interne v de T, les hauteurs des 
enfants de v sont égales ou différentes de 1 niveau.

• Voici un exemple d’arbre AVL où les hauteurs sont 
indiquées près des nœuds:
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Hauteur d’un arbre AVL
• Proposition: La hauteur d’un arbre AVL T 

emmagasinant n clés est O(log n).

• Justification: l’approche la plus simple est 
d’essayer de trouver le nombre minimal de nœuds 
internes d’un arbre AVL de hauteur h: n(h).

• Nous observons que n(1) = 1 et n(2) = 2

• Pour n ≥ 3, un arbre AVL de hauteur h avec n(h) 
contient au minimum le nœud racine, un sous-arbre 
AVL de hauteur n-1 et un autre de hauteur n-2.

• Ainsi n(h) = 1 + n(h-1) + n(h-2)

• Sachant que n(h-1) > n(h-2), nous obtenons
n(h) > 2n(h-2)
- n(h) > 2n(h-2)
- n(h) > 4n(h-4)

...
- n(h) > 2in(h-2i)

• Résolution du cas de base: n(h) ≥ 2h/2-1

• Utilisation du logarithme: h < 2log n(h) +2

• Ainsi la hauteur d’un arbre AVL est O(log n)
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Insertion
• Un arbre de recherche binaire T est équilibré si, pour 

chaque nœud v, la hauteur des enfants de v sont 
égales ou différentes de 1 niveau.

• L’insertion d’un nœud dans un arbre AVL implique 
l’application de expandExternal(w) à T, qui change 
alors les hauteurs de quelques-uns des nœuds de T.

• Si une insertion fait que T devienne déséquilibré, 
alors nous traversons l’arbre vers le haut à partir du 
nœud nouvellement créé jusqu’à ce que nous 
trouvions le premier nœud x dont le grand-père z est 
un nœud déséquilibré.

• Puisque z est devenu déséquilibré par l’insertion 
dans le sous-arbre enraciné à son enfant y, 
hauteur(y) = hauteur(frère(y)) + 2 

• Afin de rééquilibrer le sous-arbre enraciné à z, nous 
devons faire une restructuration
- nous renommons x, y, et z par a, b, et c en se basant 

sur l’ordre des nœuds (traversée in-ordre)
- z est remplacé par b, dont les enfants sont 

maintenant a et c. Les enfants de ces derniers sont 
les quatre autres sous-arbres qui étaient auparavant 
enfants de x, y, et z.
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Insertion (suite)
• Exemple d’insertion dans un arbre AVL.

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0

T1

T2

T3

x

y

z

Oh! Déséquilibré!

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

Équilibré de nouveau.

1

2

3

4

5

6

7

7.21Arbres AVL

Restructuration
• Voici les quatre façons de faire la rotation des nœuds 

dans un arbre AVL, représentées graphiquement:
- Rotations simples:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
rotation simple

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
rotation simple
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Restructuration (suite)

- Rotations double:

rotation doublea = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

rotation doublec = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y
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Algorithme de restructuration

Algorithm  restructure(x):
Entrée: Un nœud x d’un arbre de recherche binaire T 

qui a y pour père et z pour grand-père
Sortie: L’arbre T restructuré par rotation (soit simple

ou double) impliquant les nœuds x, y, et z.

1: Soit (a, b, c) une liste in-ordre des nœuds x, y, et z, 
et soit (T0, T1, T2, T3) une liste in-ordre des quatre 
sous-arbres de x, y, et z non-enraciné à x, y, ou z

2. Remplacez le sous-arbre enraciné à z par un nou-
veau sous-arbre enraciné à b

3. Placez a comme enfant de gauche de b et placez T0 
et T1 comme sous-arbres de gauche et de droite de 
a, respectivement.

4. Placez c comme enfant de droite de b et placez T2 
et T3 comme sous-arbres de gauche et de droite de 
c, respectivement.
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Algorithme de restructuration 
Couper/Lier (Cut/Link)

• Étudions cet algorithme de plus près...

• Tout arbre qui a besoin d’être restructuré peut être 
divisé en 7 parties: x, y, z et les 4 sous-arbres 
enracinés aux enfants de ces nœuds (T0-3)

• Créez un nouvel arbre équilibré en déplaçant les 7 
parties de l’arbre original de façon à ce que l’ordre 
soit le même lorsque nous faisons une traversée in-
ordre du nouvel arbre.

• Ceci fonctionne peu importe la façon dont l’arbre 
original est déséquilibré. Observez...

88

44

17

7850

48

62

54T0

T1

T2

T3

z

y

x

7.25Arbres AVL

Algorithme de restructuration 
Couper/Lier (suite)

• Numérotez les 7 parties en parcourant l’arbre (in-
ordre). Notez que x, y, et z sont maintenant 
renommés selon leur ordre dans la traversée.
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Algorithme de restructuration 
Couper/Lier (suite)

• Maintenant créez un vecteur, numéroté de 1 à 7 
(l’élément 0 peut être ignoré avec une perte d’espace 
minimale)

• Coupez les quatre arbres T et placez-les dans le 
vecteur selon leur rang in-ordre.

1 2 3 4 5 6 7 

1 2 3 4 5 6 7 

T0 T1 T2 T3
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Algorithme de restructuration 
Couper/Lier (suite)

• Maintenant coupez x, y, et z dans cet ordre (fils, père, 
grand-père) and placez-les dans le vecteur selon leur 
rang in-ordre.

• Maintenant nous pouvons relier ces sous-arbres à 
l’arbre principal.

• Liez le rang 4 (b) comme étant la racine du sous-
arbre original

1 2 3 4 5 6 7 

T0 T1 T2 T378

c
62

ba
44

62

b4
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Algorithme de restructuration 
Couper/Lier (suite)

• Liez les rangs 2 (a) et 6 (c) comme enfants de 4.
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Algorithme de restructuration 
Couper/Lier (suite)

• Finalement, liez les rangs 1, 3, 5 et 7 comme enfants 
de 2 et 6.

• Vous avez maintenant un arbre équilibré!
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Algorithme de restructuration 
Couper/Lier (suite)

• Cet algorithme de restructuration a exactement le 
même effet que l’utilisation des quatre cas de 
rotation discutés plus tôt.

• Avantages: pas d’analyse de cas, plus élégant.

• Désavantage: peut exiger plus de code.

• Même complexité temporelle.
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Suppression
• Nous pouvons voir facilement que l’application de 

removeAboveExternal(w) peut causer un déséquilibre 
dans T.

• Soit z le premier nœud déséquilibré rencontré en 
traversant l’arbre vers le haut à partir de w. Aussi, 
soit y l’enfant de z à la plus grande hauteur, et x 
l’enfant de y à la plus grande hauteur.

• Nous pouvons appliquer restructure(x) pour 
rééquilibrer le sous-arbre enraciné à z.

• Comme cette restructuration pourrait déséquilibrer 
un autre nœud plus haut dans l’arbre, nous devons 
continuer à vérifier l’équilibre jusqu’à ce que la 
racine de T soit atteinte.
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Suppression (suite)
• exemple de suppression dans un arbre AVL:
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Ouf! Équilibré de nouveau.
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Suppression (suite)
• exemple de suppression dans un arbre AVL:
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Ouf! Équilibré de nouveau.
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Réalisation
• La réalisation d’un arbre AVL en Java requiert la 

classe de nœud suivante:

public  class  AVLItem extends  Item  {

  int  height;

  AVLItem(Object k, Object e, int  h)  {

    super (k, e);

    height = h;

  }

  public  int  height()  {

    return  height;

  }

  public  int  setHeight(int  h)  {

    int  oldHeight = height;

    height = h;

    return  oldHeight;

  }

}

7.35Arbres AVL

Réalisation (suite)
public  class  SimpleAVLTree

 extends  SimpleBinarySearchTree
implements  Dictionary  {

   

public  SimpleAVLTree(Comparator c)  {

      super (c);

      T = new  RestructurableNodeBinaryTree();

    }

    private  int height(Position p)  {

      if  (T.isExternal(p))

return  0;

      else

return  ((AVLItem) p.element()).height();

    }

    private  void  setHeight(Position p)  { // called only
// if p is internal

      ((AVLItem) p.element()).setHeight

(1 + Math.max(height(T.leftChild(p)),
 height(T.rightChild(p))));

    }
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Réalisation (suite)

private  boolean isBalanced(Position p)  {
// test whether node p has balance factor
// between -1 and 1

      int bf = height(T.leftChild(p)) - height(T.rightChild(p));

      return  ((-1 <= bf) &&  (bf <= 1));

}

private  Position tallerChild(Position p)  {
      // return a child of p with height no

 // smaller than that of the other child

      if (height(T.leftChild(p)) >= height(T.rightChild(p)))

return  T.leftChild(p);

      else

return  T.rightChild(p);

    }

7.37Arbres AVL

Réalisation (suite)

private  void  rebalance(Position zPos) {
//traverse the path of T from zPos  to the root;
//for each node encountered recompute its
//height and perform a rotation if it is
//unbalanced

while  (!T.isRoot(zPos)) {

  zPos = T.parent(zPos);

  setHeight(zPos);

  if  (!isBalanced(zPos)) { // perform a rotation

    Position xPos =  tallerChild(tallerChild(zPos));

    zPos = ((RestructurableNodeBinaryTree)
T).restructure(xPos);

    setHeight(T.leftChild(zPos));

    setHeight(T.rightChild(zPos));

    setHeight(zPos);

  }

}

}
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Réalisation (suite)

public  void  insertItem(Object key, Object element)

      throws  InvalidKeyException  {

super .insertItem(key, element);// may throw an
// InvalidKeyException

Position zPos = actionPos; // start at the
// insertion position

T.replace(zPos, new  AVLItem(key, element, 1));

rebalance(zPos);

    }

public  Object remove(Object key)

throws  InvalidKeyException {

      Object toReturn = super .remove(key); // may throw
// an InvalidKeyException

      if  (toReturn != NO_SUCH_KEY) {

Position zPos = actionPos; // start at the
 // removal position

rebalance(zPos);

      }

      return  toReturn;

    }

}
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      Une forme de narcotique?

      Une forme de découpage?

      Une combinaison des deux?

Hachage

(Hashing)

Qu’est-ce que c’est?

7.40Hachage

Problème
• RT&T est une grande compagnie téléphonique qui 

veut offrir un service d’identification de l’appelant:
- étant donné un numéro de téléphone, retourne le 

nom de l’appelant
- les numéros sont dans l’intervalle 0 à R = 1010−1
- n est le nombre de numéros utilisés
- nous désirons une réalisation efficace

• Nous connaissons deux façons de concevoir ce 
dictionnaire:
- un arbre de recherche équilibré (AVL, red-black) 

ou une liste “skip”  avec le numéro de téléphone 
comme clé a un temps de requête O(log n) et un 
espace O(n) — bon usage de l’espace mémoire et 
bon temps de recherche, mais peut-on réduire le 
temps de recherche à une constante?

- un vecteur (bucket array) indexé par le numéro de 
téléphone a un temps de requête optimal O(1), 
mais il y a un grand gaspillage d’espace: O(n + R)

000-000-0000000-000-0001 401-863-7639... 999-999-9999

......

...

Roberto(null) (null) (null)
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Autre solution
• Une table de hachage (hash table) est une solution 

alternative avec un temps de requête anticipé O(1) et 
un espace O(n + N), où N est la taille de la table.

• Comme un vecteur, mais avec une fonction projetant 
un grand ensemble de clés sur un plus petit.
- ex.: prenez la clé originale modulo la taille de la 

table, et utilisez cette valeur comme index

• Insérez l’item (401-863-7639, Roberto) dans une 
table de taille 5
- 4018637639 mod 5 = 4, alors l’item (401-863-

7639, Roberto) est emmagasiné dans l’espace #4

• Une consultation (lookup) utilise le même 
processus: projection de la clé sur un index, et 
vérification de l’espace à cet index

• Insérez à la table (401-863-9350, André) et ensuite 
(401-863-2234, Daniel). Nous avons une collision!

0 1 2 3

Roberto

401-
863-7639

4

7.42Hachage

Résolution de collision
• Comment gérer deux clés qui sont projetée sur le 

même espace d’un vecteur?

• Utilisez le chaînage (chaining)
- Créez des listes d’items avec le même index

• Le temps anticipé de recherche/insertion/
suppression est O(n/N), en supposant que les index 
soient distribués uniformément.

• La performance de la structure de données peut être 
affinée en changeant la taille de la table N

0

1

2

3

4
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De clé à index
• La projection des clés vers les index de la table de 

hachage est appelée fonction de hachage

• Une fonction de hachage est habituellement 
composée de deux parties:
- code de hachage: clé → integer

- compression: integer → [0, N − 1]

• La fonction de hachage doit absolument projeter 
deux clés égales vers deux index égaux.

• Une “bonne” fonction de hachage minimise la 
probabilité de collision.

• Java offre la méthode hashCode() pour la classe 
Object, qui retourne typiquement l’adresse-mémoire 
(32 bits) de l’objet.

• Ce code de hachage par défaut ne serait pas très 
performant pour les objets Integer et String.

• La méthode hashCode() devrait être redéfinie de 
façon adéquate par les classes.

7.44Hachage

Codes de hachage populaires
• Mettre entier (integer cast): pour les types 

numériques avec 32 bits ou moins, nous pouvons 
réinterpréter les bits du nombre comme un int.

• Somme des composantes (component sum): pour les 
types numériques avec plus de 32 bits (ex.: long et 
double), nous pouvons additionner les composantes 
de 32 bits.

• Accumulation polynomiale: pour les chaînes de 
caractères en langage naturel, combinez les valeurs 
de chaque caractère (ASCII, ISO Latin ou Unicode) 
a0a1 ... an−1 en les considérant comme coefficients 
d’un polynôme: a0 + a1x + ...+ xn−1an−1
- Le polynôme est calculé avec la règle de Horner, 

en ignorant les dépassements de capacité, avec une 
valeur fixe pour x:

a0 + x (a1+ x (a2+ ... x (an−2+ x an−1) ... ))
- Le choix x = 33, 37, 39, ou 41 donne au plus 6 

collisions sur un vocabulaire de 50,000 mots 
anglais!

• Pourquoi la somme des composantes n’est-elle pas 
bonne pour les chaînes de caractères?
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Méthodes de compression 
populaires

• Division: h(k) = |k| mod N
- N = 2k est un mauvais choix parce que ce ne sont 

pas tous les bits qui sont pris en compte
- La taille de la table N est habituellement un 

nombre premier
- certains patrons (patterns) dans le code de hachage 

sont propagés

• Multipliez, additionnez, et divisez: 
h(k) = |ak + b| mod N
- élimine les patrons lorsque a mod N ≠ 0
- même formule utilisée dans les générateurs de 

(pseudo) nombres aléatoires linéaires congruents
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Encore des collisions
• Une clé est projeté sur un espace de la table qui est 

déjà occupé
- que faire?!?

• Utilisez une technique de gestion des collisions

• Nous avons vu le chaînage

• Nous pouvons aussi utiliser l’adressage ouvert
- Hachage double
- Sondage linéaire (Linear Probing)
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Sondage linéaire
• Si l’espace courant est occupé, essayez l’espace 

suivant

linear_probing_insert(K)
if (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

• Une consultation parcours la table jusqu’à ce que la 
clé ou un espace vide soit trouvé.

• Utilise moins de mémoire que le chaînage
- pas besoin d’emmagasiner tous ces liens

• Plus lent que le chaînage
- peut résulter en un long parcours de la table

• La suppression est plus complexe
- marquage de l’espace effacé, ou
- remplir l’espace en déplaçant quelques éléments
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Exemple de sondage linéaire
• h(k) = k mod 13

• Insérez les clés:

73

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31

85 2 9 5 7 6 5
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Exemple de sondage linéaire 
(suite)

0 1 2 3 4 5 6 7 8 9 10 11 12

18 2241 44 59 32 31 73
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Hachage double
• Utilise deux fonctions de hachage

• Si M est premier, éventuellement tous les espaces de 
la table seront examinés

double_hash_insert(K)
if (table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K

• Plusieurs avantages et désavantages semblables à 
ceux du sondage linéaire

• Distribue les clés plus uniformément que le sondage 
linéaire
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Exemple de hachage double
• h1(K) = K mod 13

h2(K) = 8 - K mod 8
- nous voulons que h2 soit un déplacement à ajouter

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31 73
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Exemple de hachage double 
(suite)

0 1 2 3 4 5 6 7 8 910 11 12

1841 2244 5932 3173
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Résultats théoriques
• Soit α = Ν/Μ

- le facteur de charge: nombre moyen de clés par 
index du vecteur

• L’analyse utilise les probabilités plutôt que le pire 
des cas

Nombre de visites anticipé

1 α+ 1
α
2
---+Chaînage

Sondage linéaire
1
2
--- 1

2 1 α–( )2
------------------------+ 1

2
--- 1

2 1 α–( )
---------------------+

Hachage double
1

1 α–( )
----------------- 1

α
--- ln

1
1 α–
------------

non trouvé trouvé
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0.5 1.0

Trouvé
Non-trouvé

Sondage linéaire

Chaînage

Hachage double

Nombre de visites anticipé / 
Facteur de charge

1.0

N
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e 
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8.1Tri avancé

TRI AVANCÉ

• Révision sur le tri

• Tri par fusion (Merge Sort)

• Ensembles (Sets)

• Tri rapide (Quick-Sort)

• À quelle vitesse peut-on trier?

8.2Tri avancé

Algorithmes de tri
• Le tri par sélection utilise une file à priorité P 

réalisée à l’aide d’une séquence non-ordonnée:
- Phase 1: l’insertion d’un item dans P prend un 

temps O(1); en tout O(n)
- Phase 2: le retrait d’un item requiert un temps 

proportionnel au nombre d’éléments dans P, 
c’est-à-dire O(n); en tout O(n2)

- Complexité temporelle: O(n2)

8.3Tri avancé

Algorithmes de tri (suite)
• Le tri par insertion utilise une file à priorité P 

réalisée à l’aide d’une séquence ordonnée:
- Phase 1: le premier insertItem prend O(1), le 

second O(2), jusqu’au dernier insertItem qui prend 
O(n); en tout O(n2)

- Phase 2: le retrait d’un item prend un temps O(1); 
en tout O(n).

- Complexité temporelle: O(n2)

• Le tri Heap Sort utilise une file à priorité K réalisée à 
l’aide d’un tas.
- insertItem et removeMin prennent chacun O(log k), 

où k est le nombre d’éléments du tas à un moment 
donné.

- Phase 1: n éléments insérés: temps O(n log n)
- Phase 2: n éléments retirés: temps O(n log n)
- Complexité temporelle: O(n log n)

8.4Tri avancé

Diviser pour régner
(Divide-and-Conquer)

• Diviser pour régner est bien plus qu’une stratégie 
militaire; il s’agit aussi d’une méthode de 
conception d’algorithmes qui a mené à la création 
d’algorithmes efficaces tel le tri par fusion.

• En termes d’algorithmes, cette méthode a trois 
étapes distinctes:

- Diviser: Si la taille de l’entrée est trop grande pour 
la traiter de façon directe, alors divisez les données 
en deux ou plusieurs sous-ensembles disjoints.

- Appliquer récursivement: Utilisez l’approche 
diviser pour régner afin de résoudre les sous-
problèmes associés aux sous-ensembles de 
données.

- Conquérir : Prenez les solutions aux sous-
problèmes et “fusionnez” ces solutions afin 
d’obtenir la solution au problème initial.
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Tri par fusion (Merge Sort)
• Algorithme:

- Diviser: Si S a au moins deux éléments (il n’y a 
rien à faire si S a zéro ou un élément), retirez tous 
les éléments de S et placez-les dans 2 séquences, 
S1 et S2, chacune contenant environ la moitié des 
éléments de S (S1 contient les premiers n/2 
éléments et S2 contient les n/2 éléments restants)

- Appliquer récursivement: Triez récursivement 
les séquences S1 et S2.

- Conquérir : Replacez les éléments dans S en 
fusionnant les séquences triées S1 et S2 en une 
séquence triée unique.

• Arbre de tri par fusion:

- Prenez un arbre binaire T
- Chaque nœud T représente un appel récursif à 

l’algorithme de tri par fusion.
- Nous associons à chaque nœud v de T l’ensemble 

des entrées à l’invocation que v représente.
- Les nœuds externes sont associés aux éléments 

individuels de S, sur lesquels il n’y a pas d’appel 
récursif.
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Tri par fusion
85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

8.7Tri avancé

Tri par fusion (suite)

85 24 63 45

17 31 96 50

85 24

63 45

17 31 96 50

8.8Tri avancé

Tri par fusion (suite)

85

24

63 45

17 31 96 50

85

24

63 45

17 31 96 50
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Tri par fusion (suite)

85 24 63 45

17 31 96 50

24 85 63 45

17 31 96 50
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Tri par fusion (suite)

24 85

63 45

17 31 96 50

24 85

63 45

17 31 96 50
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Tri par fusion (suite)

24 85

63 45

17 31 96 50

24 85

63

45

17 31 96 50
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Tri par fusion (suite)

24 85

63

45

17 31 96 50

24 85

63 45

17 31 96 50
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Tri par fusion (suite)

24 85 17 31 96 50

45 63

24 85 17 31 96 5045 63

8.14Tri avancé

Tri par fusion (suite)

24 45 17 31 96 5063 85

24 45

17 31 96 50

63 85

8.15Tri avancé

Tri par fusion (suite)
24 45

17 31 96 50

63 85

24 45

17 31 50 96

63 85

8.16Tri avancé

Tri par fusion (suite)
24 45 17 31 50 9663 85

17 24 31 45 50 63 85 96
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Fusionner deux séquences
• Pseudo-code pour fusionner deux séquences triées 

en une séquence triée unique
Algorithme  merge (S1, S2, S):

Entrée: Séquence S1 et S2 (où une relation totale sur 
les éléments est définie) triée en ordre non-décrois-
sant, et une séquence vide  S.
Sortie: Séquence S contenant l’union des éléments
de S1 et S2 triés en ordre non-décroissant; les 
séquences S1 et S2 deviennent vides à la fin de 
l’exécution
while S1 is not empty and S2 is not empty do

if  S1.first().element() ≤ S2.first().element() then
{déplace le 1er élément de S1 vers la fin de S}
S.insertLast(S1.remove(S1.first()))

else
{ déplace le 1er élément de S2 vers la fin de S}
S.insertLast(S2.remove(S2.first()))

while S1 is not empty do
{déplace les éléments restants de S1 vers S}
S.insertLast(S1.remove(S1.first()))

while S2 is not empty do
{déplace les éléments restants de S2 vers S}
S.insertLast(S2.remove(S2.first()))

8.18Tri avancé

Fusionner deux séquences (suite)
• Quelques illustrations:

a)

b)

24 45 63 85S1

17 31 50 96S2

S

24 45 63 85S1

17

31 50 96S2

S
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Fusionner deux séquences (suite)
c)

d)

24

45 63 85S1

17

31 50 96S2

S

24

45 63 85S1

17

50 96S2

S 31

8.20Tri avancé

Fusionner deux séquences (suite)
e)

f)

24

63 85S1

17

50 96S2

S 31 45

24

63 85S1

17

96S2

S 31 45 50
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Fusionner deux séquences (suite)
g)

h)

24

85S1

17

96S2

S 31 45 50 63

24

S1

17

96S2

S 31 45 50 63 85
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Fusionner deux séquences (suite)
i)

24

S1

17

S2

S 31 45 50 63 85 96
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Réalisation Java du tri par fusion
• Interface SortObject

public interface  SortObject {

//sort sequence S in nondecreasing order 
using compartor c

public void  sort (Sequence S, Comparator c);

}
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Réalisation Java du tri par 
fusion (suite)

public class  ListMergeSort implements  SortObject {

public void  sort(Sequence S, Comparator c) {

    int  n = S.size();

if  ( n < 2) return ; // a sequence with 0 or 
1 element is already sorted.

    // divide

    Sequence S1 = (Sequence)S.newContainer();

// put the first half of S into S1

    for  (int  i=1; i <= (n+1)/2; i++) {

       S1.insertLast(S.remove(S.first()));

    }

    Sequence S2 = (Sequence)S.newContainer();

// put the second half of S into S2

    for  (int  i=1; i <= n/2; i++) {

      S2.insertLast(S.remove(S.first()));

}

sort(S1,c); // recur

    sort(S2,c);

merge(S1,S2,c,S); // conquer

  }
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Réalisation Java du tri par 
fusion (suite)

public void  merge(Sequence S1, Sequence S2, 
Comparator c, Sequence S) {

while (!S1.isEmpty() && !S2.isEmpty()) {   

if (c.isLessThanOrEqualTo(S1.first().element(),
S2.first().element())) { 
// S1’s 1st elt <= S2’s 1st elt
S.insertLast(S1.remove(S1.first()));

}

else { // S2’s 1st elt is the smaller one
S.insertLast(S2.remove(S2.first()));

}
}

if (S1.isEmpty()) {
while (!S2.isEmpty()) {

S.insertLast(S2.remove(S2.first()));
}

}
if (S2.isEmpty()) {

whil e(!S1.isEmpty()) {
S.insertLast(S1.remove(S1.first()));

}
}

}
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Temps d’exécution du
tri par fusion

• Proposition 1: L’arbre associé à l’exécution du tri 
par fusion sur une séquence de n éléments a une 
hauteur de log n

• Proposition 2: Un algorithme de tri par fusion trie 
une séquence de taille n en un temps O(n log n)

• Nous supposons seulement que la séquence d’entrée 
S et chacune des sous-séquences crées par chaque 
appel récursif de l’algorithme peut accéder, insérer, 
et supprimer les premier et dernier nœuds en un 
temps O(1).

• Nous appelons le temps passé à un nœud v d’un 
arbre de tri par fusion T le temps d’exécution de 
l’appel récursif associé à v, en excluant les appels 
récursifs faits aux enfants de v.
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Temps d’exécution du
tri par fusion (suite)

• Si i représente la profondeur du nœud v dans l’arbre 
de tri par fusion, alors le temps passé au nœud v est 
O(n/2i) puisque la taille associée à v est n/2i.

• Observez que T possède exactement 2i nœuds à la 
profondeur i. Le temps total passé à la profondeur i 
dans l’arbre est alors O(2in/2i), qui est donc O(n). 
Nous savons que l’arbre a une hauteur log n. 
Ainsi, la complexité temporelle est O(n log n).
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Le TAD Ensemble (Set)
• Un ensemble (set) est une structure de donnée 

modélisée selon le concept mathématique 
d’ensemble. Les opérations fondamentales sur les 
ensembles sont l’union, l’ intersection, et la 
soustraction.

• Un bref rappel du concept mathématique 
d’ensemble:
- A ∪ B = { x: x ∈ A ou x ∈ B }
- A ∩ B = { x: x ∈ A et x ∈ B }
- A − B = { x: x ∈ A et x ∉ B }

• Les méthodes spécifiques pour un ensemble A 
incluent:

- union(B):
L’ensemble A devient A ∪ B.

- intersect(B):
L’ensemble A devient A ∩ B.

- subtract(B):
L’ensemble A devient A − B.
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Fusion générique
Algorithme  genericMerge(A, B):

Entrée: Séquences triées A et B
Sortie: Séquence triée C
let A’ be a copy of A { We won’t destroy A and B}
let B’ be a copy of B
while A’ and B’ are not empty do

a←A’.first()
b←B’.first()
if  a<b then

aIsLess(a, C)
A’.removeFirst()

else if a=b then
bothAreEqual(a, b, C)
A’.removeFirst()
B’.removeFirst()

else
bIsLess(b, C)
B’.removeFirst()

while A’ is not empty do
a←A’.first()
aIsLess(a, C)
A’.removeFirst()

while B’ is not empty do
b←B’.first()
bIsLess(b, C)
B’.removeFirst()
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Opérations sur les ensembles
• Nous pouvons spécialiser l’algorithme de fusion 

générique pour réaliser des opérations sur les 
ensembles telles l’union, l’intersection, et la 
soustraction.

• L’algorithme de fusion générique examine et 
compare les éléments courants A et B.

• En se basant sur le résultat de la comparaison, il 
détermine s’il doit copier l’un des éléments a ou b 
dans C, ou ne rien faire. 

• Cette décision dépend de l’opération présentement 
en cours (union, intersection ou soustraction). 

• Dans le cas de l’union, nous copions le plus petit 
élément (a ou b) dans C; si a=b alors l’un ou l’autre 
est copié.

• Pour copier, nous définissons nos actions comme 
étant aIsLess, bothAreEqual, et bIsLess.

• Allons voir la réalisation...
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Opérations sur les ensembles 
(suite)

• Pour l’union
public  class  UnionMerger extends  Merger {

protected  void  aIsLess(Object a, Object b, Sequence C) {

C.insertLast(a);

}

protected  void  bothAreEqual(Object a, Object b,

Sequence C) {

C.insertLast(a);

}

protected  void  bIsLess(Object b, Sequence C) {

C.insertLast(b);

}

• Pour l’intersection
public  class  IntersectMerger extends  Merger {

protected  void  aIsLess(Object a, Object b, SequenceC) {
}

protected  void  bothAreEqual(Object a, Object b,
 Sequence C) { 

C.insertLast(a);
}

protected  void  bIsLess(Object b, Sequence C) { } 
}

8.32Tri avancé

Opérations sur les ensembles 
(suite)

• Pour la soustraction
public class  SubtractMerger extends  Merger {

protected  void  aIsLess(Object a, Object b,
 Sequence C) {

C.insertLast(a);
}

protected  void  bothAreEqual(Object a, Object b,
Sequence C) { 

}

protected  void  bIsLess(Object b, Sequence C) {
}

}
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Merci mon Dieu!  C’est 
Quicksort Man!  À l’aide!

J’arrive à ton secours, 
Bubble Sort Man.

Tri rapide 
Quicksort

8.34Tri avancé

Tri rapide Quick-Sort
• Afin de comprendre le tri rapide quick-sort, 

regardons une description de haut niveau de 
l’algorithme.

• 1) Diviser: Si la séquence S a plus d’un élément, 
sélectionnez un élément x de S comme pivot. 
N’importe quel élément, par exemple le dernier, fera 
l’affaire. Retirez tous les éléments de S et divisez-les 
en 3 séquences:
- L, contient les éléments de S plus petits que x
- E, contient les éléments de S égaux à x
- G, contient les éléments de S plus grands que x

• 2) Appliquer récursivement: Triez récursivement L 
et G

• 3) Conquérir : Afin de remettre les éléments dans S 
en ordre, insérez premièrement les éléments de L, 
suivis de ceux de E, et enfin de ceux de G.

• Voici quelques jolies illustrations...

8.35Tri avancé

Idée derrière Quick-Sort

1. Sélectionner
choisissez un élément

2. Diviser
réorganisez les éléments
de façon à ce que
•  x aille à sa position

finale E

3. Appliquer récursive-
 ment et conquérir

triez récursivement

x

x

x

L E G

8.36Tri avancé

Arbre Quick-Sort
7 6 2 10 4 5 9 8

7 8 10 96 2 4 5
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Arbre Quick-Sort
8 10 9

7 6 2 4 5

8 10 9

2 4 5 7 6

8.38Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

8.39Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

4

2

8 10 9

5 7 6

2 4

8.40Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4
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Arbre Quick-Sort
8 10 9

5 7 6

2 4

8 10 9

5 7 62 4

8.42Tri avancé

Arbre Quick-Sort
8 10 9

52 4

7 6

8 10 9

52 4

76

8.43Tri avancé

Arbre Quick-Sort
8 10 9

52 4

76

8 10 9

52 4

76

8.44Tri avancé

Arbre Quick-Sort
8 10 9

52 4

6

7

8 10 9

52 4

6 7
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Arbre Quick-Sort
8 10 9

52 4

6 7

8 10 9

52 4 6 7

8.46Tri avancé

Arbre Quick-Sort
8 10 92 4 5 6 7

82 4 5 6 7

10 9

8.47Tri avancé

Arbre Quick-Sort
8 10 92 4 5 6 7

9 10

82 4 5 6 7

9 10

8.48Tri avancé

Arbre Quick-Sort
82 4 5 6 7

9 10

82 4 5 6 7

9

10
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Arbre Quick-Sort
82 4 5 6 7

9 10

82 4 5 6 7

9 10

8.50Tri avancé

Arbre Quick-Sort
8 9 102 4 5 6 7

2 4 5 6 7 9 108

8.51Tri avancé

Quick-Sort sur place (In-Place)
• Étape de division: l parcours la séquence à partir de 

la gauche, et r de la droite.

• Un échange a lieu quand l est un élément plus grand 
que le pivot et r est plus petit que le pivot.

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl

31 24 63 45 17 85 96 50

rl

8.52Tri avancé

Quick-Sort sur place (suite)

• Un dernier échange avec le pivot complète l’étape de 
division

31 24 63 45 17 85 96 50

rl

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

lr

31 24 17 45 50 85 96 63

lr
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Réalisation Java du Quick-Sort 
sur place

public class ArrayQuickSort implements SortObject {

public void sort(Sequence S, Comparator c){
quicksort(S, C, 0, S.size()-1);

}

private void quicksort (Sequence S, Comparator c,
int leftBound, 
int rightBound) {

// left and rightmost ranks of
// sorting range

if (S.size() < 2) return; //a sequence with 0 or
// 1 elements is already sorted

if (leftBound >= rightBound) return; //terminate 
//recursion

// pick the pivot as the current last
// element in range

Object pivot = S.atRank(rightBound).element();

// indices used to scan the sorting range

int leftIndex = leftBound; // will scan
// rightward

int rightIndex = rightBound - 1; //will scan
// leftward

8.54Tri avancé

Réalisation Java du Quick-Sort 
sur place (suite)

// outer loop

while (leftIndex <= rightIndex) {

//scan rightward until an element larger than
//the pivot is found or the indices cross

while ((leftIndex <= rightIndex) &&

(c.isLessThanOrEqualTo

(S.atRank(leftIndex).element(),pivot))

leftIndex++;

//scan leftward until an element smaller than
//the pivot is found or the indices cross

while (rightIndex >= leftIndex) &&

(c.isGreaterThanOrEqualTo

(S.atRank(rightIndex).element(),pivot))

rightIndex--;

//if an element larger than the pivot and an
//element smaller than the pivot have been
//found, swap them

if (leftIndex < rightIndex)

S.swap(S.atRank(leftIndex),S.atRank(rightIndex));

} // the outer loop continues until
// the indices cross. End of outer loop.

8.55Tri avancé

Réalisation Java du Quick-Sort 
sur place (suite)

//put the pivot in its place by swapping it
//with the element at leftIndex

S.swap(S.atRank(leftIndex),S.atRank(rightBound));

// the pivot is now at leftIndex, so recur
// on both sides

quicksort (S, c, leftBound, leftIndex-1);

quickSort (S, c, leftIndex+1, rightBound);

} // end quicksort method

} // end ArrayQuickSort class

8.56Tri avancé

Analyse du temps d’exécution
• Supposez un arbre quick-sort T:

- si(n) indique la somme des tailles d’entrée des 
nœuds à la profondeur i dans T.

• Nous savons que s0(n) = n puisque la racine de T est 
associée avec l’ensemble des entrées tout entier.

• Aussi, s1(n) = n-1 puisque le pivot n’est pas propagé.

• Donc: s2(n) = n - 3, ou encore n - 2 (si l’un des 
nœuds a une taille d’entrée à zéro).

• Le temps d’exécution de quick-sort est, dans le pire 
des cas:

Ce qui revient à:

Donc le tri quick-sort s’exécute en O(n2) dans le pire 
des cas.

O si n( )
i 0=

n 1–

∑
 
 
 

O n i–( )
i 0=

n 1–

∑
 
 
 

O i

i 1=

n

∑
 
 
 

O n
2( )= =
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Analyse du temps d’exécution 
(suite)

• Maintenant observons le meilleur des cas:

• Quick-sort se comporte de façon optimale lorsque la 
séquence S est divisée en sous-séquences L et G de 
tailles égales.

• Plus précisément:
- s0(n) = n
- s1(n) = n - 1
- s2(n) = n - (1 + 2) = n - 3
- s3(n) = n - (1 + 2 + 22) = n - 7

...
- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1

...

• Ceci implique que T a une hauteur O(log n)

• Complexité temporelle dans le meilleur des cas: 
O(n log n)

8.58Tri avancé

Quick-Sort aléatoire
• Sélectionnez un élément de la séquence au hasard 

comme pivot

• Le temps d’exécution attendu d’un tel tri sur une 
séquence de taille n est O(n log n). Le temps passé à 
un niveau de l’arbre quick-sort est O(n)

• Nous démontrons que la hauteur escomptée de 
l’arbre quick-sort est O(log n)

• Bons et mauvais pivots

- Bon: 1/4 ≤ nL/n ≤ 3/4
- Mauvais:  nL/n < 1/4  ou  nL/n > 3/4

• La probabilité d’obtenir un bon pivot est 1/2, donc 
nous espérons k/2 bons pivots

• Après un bon pivot, la taille de chaque sous-séquence 
est au plus 0.75 fois la taille de la séquence originale

• Après h pivots, nous espérons (3/4)h/2 n éléments

• La hauteur escomptée h de l’arbre quick-sort est d’au 
plus: 2 log4/3 n

nL

0 n/4 n3n/4



8.59Encore du tri

Encore du tri

• Tri numérique (radix sort)
• Tri bucket sort
• Tri sur place (in-place)
• À quelle vitesse peut-on trier?

8.60Encore du tri

Tri numérique (Radix Sort)

• Contrairement aux autres méthodes, le tri 
numérique (radix sort) considère la 
structure des clés

• Supposons des clés représentées dans un 
système numérique à base M (radix); si 
M = 2, alors les clés sont représentées en 
binaire

• Le tri se fait en comparant les bits à la 
même position

• Extension aux clés formées de chaînes 
alphanumériques

1 0 0 19 =
8 4 2 1 poids

(b = 4)

3 2 1 0 bit #

8.61Encore du tri

Tri numérique avec échange
(Radix Exchange Sort)

Examinez les bits de gauche à droite:

1.  Triez le vecteur selon le bit le plus à gauche

1
1
0
1
0

0
0
1
1
1

2.  Partitionnez le vecteur

0
0
1
1
1

0
0

1
1
1

3.  Récursivité
• triez récursivement le sous-vecteur du 

haut, en ignorant le bit le plus à gauche
• triez récursivement le sous-vecteur du 

bas, en ignorant le bit le plus à gauche

Temps requis pour trier n nombres à b bits: 
O(b n)

(sous-vecteur 
du haut)

(sous-vecteur
du bas)

8.62Encore du tri

Tri numérique avec échange
Comment réalisons-nous le tri de la page précéden-
te? Même idée que la partition dans Quicksort.

répétez
parcourir de haut en bas pour trouver une

clé débutant par un 1;  
parcourir de bas en haut pour trouver une

clé débutant par un 0;
échangez les clés;

jusqu’à ce que les indices de parcours se croisent

0
1

1
0
1

parcourir du haut

parcourir du bas
premier

0

1

0

1
1

deuxième
échange

échange

1
1

0

0

1

1

0
1 0

1

parcourir du haut

parcourir du bas



8.63Encore du tri

Tri numérique avec échange

vecteur avant le tri

vecteur après le tri
sur le bit le plus à gauche

vecteur après un tri
récursif sur le 2e bit

le plus à gauche

2b-1

8.64Encore du tri

Tri numérique avec échange
versus Quicksort

Similarités
• Les deux partitionnent le vecteur
• Les deux trient les sous-vecteurs 

récursivement

Différences
• Méthode de partitionnement

• le tri numérique divise le vecteur selon 
la relation plus grand ou égal à 2b-1

• quicksort partitionne le vecteur selon la 
relation plus grand ou égal à un 
élément du vecteur

• Complexité temporelle
• Numérique avec échange O (bn)
• Quicksort, cas typique O (n log n)
• Quicksort, pire des cas O (n2)

8.65Encore du tri

Tri numérique direct

for  k := 0  to  b−1 
triez le vecteur de façon stable,
en ne regardant que le bit k

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 0
0 0 0
1 0 1
0 0 1

1 1 1
0 1 1
1 0 0
1 1 0

Examinez les bits de droite à gauche

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

Première-
ment, triez 
ceux-ci

Ensuite, 
triez ces bits

Enfin, 
triez 
ceux-ci

Notez l’ordre de ces bits après le tri.

8.66Encore du tri

Mais que signifie “trier de 
façon stable”?

Dans un tri stable, l’ordre initial relatif de clés 
égales demeure inchangé.

Par exemple, observez la première étape du tri de 
la page précédente:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

Notez que l’ordre relatif des clés se terminant par 
0 est inchangé, et que la situation est semblable 
pour les éléments se terminant par 1.



8.67Encore du tri

L’algorithme est correct 
(vrai?)

• Nous démontrerons que n’importe quelle 
paire de clés se trouve correctement 
ordonnée à la fin de l’algorithme

• Étant donné deux clés, définissons k com-
me étant la position du bit le plus à gauche 
où elles diffèrent

0 1 0 1 1

0 1 1 0 1

k

• À l’étape k les deux clés sont mises dans un 
ordre relatif correct

• Grâce à la stabilité, les étapes subséquentes 
ne changent pas l’ordre relatif des deux 
clés!

8.68Encore du tri

Par exemple,

Considérez un tri sur un vecteur avec ces deux 
clés:

0 1 0 1 1

0 1 1 0 1

k

Leur ordre relatif initial n’a aucune 
importance.

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 0 1 1
Quand le tri visite le bit k, 
les clés sont mises dans un 
ordre relatif correct.

0 1 1 0 1

0 1 0 1 1 Comme le tri est stable, l’ordre 
des deux clés ne changera pas 
lorsque les bits > k seront 
comparés.

8.69Encore du tri

Voilà!

Le tri numérique peut être 
appliqué aux nombres 

décimaux
Premièrement, 
triez ces chiffres

Ensuite 
ceux-ci

Et enfin 
ceux-ci

Notez l’ordre des chiffres après le tri.

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5

8.70Encore du tri

Complexité temporelle du 
tri numérique direct

for   k = 0  to b - 1  
triez le vecteur de façon stable,
en ne regardant que le bit k

Supposons que nous puissions exécuter ce tri 
stable en un temps O(n). La complexité 
temporelle totale serait: 

O(bn)
Comme vous l’avez peut-être deviné, nous 
pouvons faire un tri stable basé sur le ke chiffre 
des clés en un temps O(n).

Par quelle méthode?  Par un tri bucket sort, bien 
sûr.
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Tri Bucket Sort

• n nombres
• Chaque nombre ∈ {1, 2, 3, ... m}
• Stable
• Temps:  O(n + m)

Par exemple, m = 3 et notre vecteur initial est:

2 1 3 1 2

(notez qu’il y a deux “2” et deux “1”)

Premièrement, nous créons m “seaux” (buckets)

1

2

3m =

8.72Encore du tri

Chaque élément du vecteur est placé dans l’un 
des m “seau”

2 1 3 1 2

Tri Bucket Sort

1

2

3

1

1

2

3

1 3 1 2

2

2

3

1

2

3

1 2

2

1

3

1

2

4

5

1

2

3

2

1

3

1

2

Ici, chaque élément se
trouve dans le bon seau:

8.73Encore du tri

Tri Bucket Sort

1

2

3

2

1

3

1

2

Maintenant, transférez les éléments des seaux 
vers le vecteur

1 1 2 2 3

1

1

2

3

2

3

1

2

1

2
3 4

5

Enfin, le vecteur trié (trié de façon stable):

8.74Encore du tri

Tri sur place (in-place)
• Un algorithme de tri est dit sur place si

• il n’utilise aucune structure de données 
auxiliaire (cependant, O(1) variables 
auxiliaires sont permises)

• il met à jour la séquence d’entrée en n’utilisant 
seulement que les opérations replaceElement et 
swapElements

• Quels algorithmes de tri vus jusqu’à maintenant 
peuvent fonctionner sur place?

tri à bulle (bubble sort) Y

tri par sélection

tri par insertion

tri par tas (heap sort)

tri par fusion (merge sort)

tri rapide (quick sort)

tri numérique (radix sort)

tri bucket sort
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Arbre de décision pour tri
basé sur des comparaisons

• nœud interne: comparaison
• nœud externe: permutation
• exécution de l’algorithme: racine vers feuille

s1 ≥ s2

s1 ≥ s3

s1 ≥ sns1 ≥ sn

s1 ≥ s3

s1 ≥ sn s1 ≥ sn

. . .

. . .
sn-1 ≥ sn sn-1 ≥ sn sn-1 ≥ sn sn-1 ≥ sn

oui non

nonnon

non nonnon

non non non non

oui oui

oui oui oui oui
non

oui oui oui oui

. . .

8.76Encore du tri

À quelle vitesse peut-on trier?
• Proposition: Le temps d’exécution de tout 

algorithme basé sur des comparaisons et servant à 
trier une séquence S de n éléments est Ω(n log n).

• Justification: 

• Le temps d’exécution d’un algorithme de tri basé sur 
des comparaisons doit être plus grand ou égal à la 
profondeur de l’arbre de décision T associé à cet 
algorithme.

• Chaque nœud interne de T est associé à une compa-
raison qui établit l’ordre de deux éléments de S.

• Chaque nœud externe de T représente une 
permutation distincte des éléments de S.

• Ainsi T doit avoir au moins n! nœuds externes, ce 
qui implique que T a une hauteur d’au moins log(n!)

• Puisque n! a au moins n/2 termes qui sont plus grand 
ou égal à n/2, nous avons:
                    log(n!) ≥ (n/2) log(n/2)

• Complexité temporelle totale: Ω(n log n).



9.1Graphes

GRAPHES

• Définitions

• Le TAD Graphe

• Structures de données pour graphes

LAX

PVD

LAX

DFW

FTL

STL

HNL

9.2Graphes

Qu’est-ce qu’un graphe?
• Un graphe G = (V,E) est composé de:

V: ensemble de sommets (vertices)

E: ensemble d’arcs (edges) reliant les 
     sommets de V

• Un arc e = (u,v) est une paire de sommets

• Exemple:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

9.3Graphes

Applications
• circuits électroniques

trouvez le chemin à la moindre résistance menant à 
CSI2514 

• réseaux (routiers, aériens, de communication)

CSI2514

départ

LAX

PVD

LAX

DFW

FTL

STL

HNL

9.4Graphes

De meilleurs exemples...

• conception d’horaires (planification de projet)

réveil

bouffe

travail

méditation 2514

encore 2514

jeux

cuire bicsuits
pour AE 2514

dodo

rêves sur 2514

programmation

une journée typique...

tic-tac-toe



9.5Graphes

Terminologie des graphes
• sommets adjacents: reliés par un arc

• degré (d’un sommet):   # de sommets adjacents

chemin:   séquence de sommets v1,v2,. . .vk  où les 
sommets consécutifs vi et vi+1 sont adjacents. 

a b

c

d e

a b

c

d e

a b e d c e b e d c

3

3 3

3

2
Σ deg(v) = 2(# arcs)
v∈V

• Comme des sommets 
adjacents comptent 
tous deux l’arc les 
reliant, celui-ci sera 
compté deux fois. 

9.6Graphes

Encore de la terminologie...
• chemin simple: sans aucun sommet répété

• cycle:   chemin simple, sauf que le dernier sommet 
est le même que le tout premier

a b

c

d e

b e c

a c d a

a b

c

d e

9.7Graphes

Et encore de la terminologie...
• graphe connexe: toutes les paires de sommets sont 

reliées par un chemin

• sous-graphe: sous-ensemble de sommets et d’arcs 
formant un graphe

• composante connexe: sous-graphe connexe 
maximal. Par exemple, le graphe ci-dessous a 3 
composantes connexes.

connexe non-connexe

9.8Graphes

¡Caramba! Encore de la 
terminologie!

• arbre (libre) - graphe connexe sans cycle

• forêt - ensemble d’arbres

arbre

forêt

arbre

arbre

arbre



9.9Graphes

Connectivité
Soit n = #sommets

m = #arcs

- graphe complet - toutes les paires de sommets sont 
adjacentes

m= (1/2)Σdeg(v) = (1/2)Σ(n - 1) = n(n-1)/2
 v∈V                         v∈V

• Chacun des n sommets est attaché à n - 1 arcs, 
cependant, nous aurons compté chaque arc deux 
fois!!!  Ainsi, intuitivement, m = n(n-1)/2.

• Donc, si un graphe n’est pas complet, 
m < n(n-1)/2

n = 5
m = (5 ∗ 4)/2 = 10

9.10Graphes

Plus de connectivité
n = #sommets
m = #arcs

• Pour un arbre m = n - 1

• Si m < n - 1, alors le graphe G n’est pas connexe

n = 5
m = 4

n = 5
m = 3

9.11Graphes

Arbre recouvrant
(Spanning Tree)

• Un arbre recouvrant (spanning tree) de G est un 
sous-graphe qui:
- est un arbre
- contient tous les sommets de G

• Une faute affectant n’importe quel arc rend le 
système non-connexe (l’arbre recouvrant est la 
configuration la moins tolérante aux fautes)

G arbre recouvrant de G

9.12Graphes

Bell Canada contre SM&T
(Stan Matwin & Telephone)

• Stan désire appeler ses AE afin de suggérer une 
extension pour le prochain devoir... 

• Une faute va déconnecter une partie du graphe! 

• Un cycle serait plus tolérant aux fautes et n’exige 
que n arcs.

TA

TA

TA

TA

TA

Mais un opérateur
coupeaccidentellement
un câble téléphonique!!! 



9.13Graphes

Euler et les ponts de 
Koenigsberg

• Mettez-vous à la place d’un conducteur de UPS ou 
de Fedex qui ne voudrait pas revenir sur son chemin.

• En 1736, Euler a prouvé que ce n’est pas possible.

A

B

C

DRivière Pregal

Peut-on traverser chaque pont 
exactement une fois et retourner 
au point de départ?

Île de Gilligan?

9.14Graphes

Modèle de graphe
(avec arcs parallèles)

• Tour d’Euler: chemin qui traverse chaque arc une 
fois exactement et qui retourne au premier sommet

• Théorème d’Euler: un graphe a un tour d’Euler si et 
seulement si tous les sommets ont un degré pair.

• Trouvez-vous intéressantes de telles idées?

• Aimeriez-vous passer une session entière à faire de 
telles preuves...? Il existe un tel cours!

C

A

B

D
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Le TAD Graphe (Graph)
• Le TAD Graphe est un contenant positionnel dont 

les positions sont les sommets et les arcs du graphe.

- size() Retourne le nombre de sommets plus le 
nombre d’arcs contenus dans G.

- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: Graphe G; Sommets v, w; Arc e; Objet o
- numVertices()

Retourne le nombre de sommets de G.
- numEdges()

Retourne le nombre d’arcs de G.
- vertices() Retourne une énumération des 

sommets de G.
- edges() Retourne une énumération des arcs de 

G.
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Le TAD Graphe (suite)
- directedEdges()

Retourne une énumération de tous les 
arcs orientés de G.

- undirectedEdges()
Retourne une énumération de tous les 
arcs non-orientés de G.

- incidentEdges(v)
Retourne une énumération de tous les 
arcs attachés à v.

- inIncidentEdges(v)
Retourne une énumération de tous les 
arcs entrant dans v.

- outIncidentEdges(v)
Retourne une énumération de tous les 
arcs sortant de v.

- opposite(v, e)
Retourne le sommet de l’arc e qui n’est 
pas v.

- degree(v)
Retourne le degré de v.

- inDegree(v)
Retourne le degré d’entrée de v.

- outDegree(v)
Retourne le degré de sortie de v.
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Encore des méthodes...
- adjacentVertices(v)

Retourne une énumération des 
sommets adjacents à v.

- inAdjacentVertices(v)
Retourne une énumération des 
sommets adjacents à v qui ont un arc 
entrant dans v.

- outAdjacentVertices(v)
Retourne une énumération des 
sommets adjacents à v qui ont un arc 
sortant de v.

- areAdjacent(v,w)
Indique si les sommets v et w sont 
adjacents.

- endVertices(e)
Retourne un vecteur de taille 2 emma-
gasinant les sommets aux bouts de e.

- origin(e)
Retourne le sommet duquel e sort.

- destination(e)
Retourne le sommet auquel e entre.

- isDirected(e)
Retourne vrai ssi e est orienté.

9.18Graphes

Méthodes de mise à jour
- makeUndirected(e)

Déclare e comme arc non-orienté.
- reverseDirection(e)

Inverse les sommets d’origine et de 
destination de e.

- setDirectionFrom(e, v)
Ajuste la direction de e de façon à 
sortir de v, l’un de ses sommets.

- setDirectionTo(e, v)
Ajuste la direction de e de façon à 
entrer dans v, l’un de ses sommets.

- insertEdge(v, w, o)
Insère et retourne un arc non-orienté 
entre v et w, tout en emmagasinant o à 
cette position.

- insertDirectedEdge(v, w, o)
Insère et retourne un arc orienté entre v 
et w, tout en emmagasinant o à cette 
position.

- insertVertex(o)
Insère et retourne un nouveau sommet 
(isolé) emmagasinant o à cette position

- removeEdge(e)
Retire l’arc e.
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Structures de données
pour graphes

• Un graphe! Comment le représenter?

• Pour débuter, nous conservons les sommets et les 
arcs dans deux contenants, et chaque objet arc a des 
références vers les sommets qu’il relie.

• Des structures additionnelles peuvent être utilisées 
afin de mieux exécuter les méthodes de Graphe.

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

 2
47

AA 523

N
W

 3
5

U
A

 8
77

D
L

 3
35

AA 49

UA 12
0

JFK

BOS

MIA

ORD

LAX
DFW

SFO
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Liste d’arcs (Edge List)
• La structure liste d’arcs emmagasine tout 

simplement les sommets et les arcs dans des 
séquences non-triées.

• Facile à réaliser.

• Trouver l’arc attaché à un sommet donné n’est pas 
efficace parce que cela exige le parcours de la 
séquence d’arcs toute entière.

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V
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Performance de la structure 
Liste d’arcs

Opération Temps

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination, 
isDirected

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices, 
areAdjacent, degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirecte-
dEdge, removeEdge, makeUndirected, 
reverseDirection, setDirectionFrom, setDi-
rectionTo

O(1)

removeVertex O(m)
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Liste d’adjacence
(traditionnelle)

• Liste d’adjacence d’un sommet v:
séquence de sommets adjacents à v

• Représentez le graphe par les listes d’adjacence de 
tous les sommets

• Espace requis = Θ(N + Σdeg(v)) = Θ(N + M )

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

a

b

c

d

e
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Liste d’adjacence
(moderne)

• La structure liste d’adjacence améliore la structure de 
liste d’arcs en ajoutant des contenants de liaison 
(incidence containers) à chaque sommet.

• L’espace requis est O(n + m).

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 411

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 411

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387
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Performance de la structure
Liste d’adjacence

Opération Temps

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdgesO(m)

elements, positions O(n+m)

endVertices, opposite, origin, destina-
tion, isDirected, degree, inDegree, 
outDegree

O(1)

incidentEdges(v), inIncidentEdges(v), 
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v) 

O(deg(v))

areAdjacent(u, v) O(min(deg(u),
            deg(v)))

insertVertex, insertEdge, insertDirecte-
dEdge, removeEdge, makeUndirected, 
reverseDirection, 

O(1)

removeVertex(v) O(deg(v))
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Matrice d’adjacence
(traditionnelle)

• Matrice M avec entrées pour toutes les paires de 
sommets

• M[i,j] = vrai signifie qu’il y a un arc (i,j) dans le 
graphe.

• M[i,j] = faux signifie qu’il n’y a aucun arc (i,j) dans 
le graphe.

• Il y a une entrée pour chaque arc possible, donc:
espace requis = Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
a
b
c
d
e
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Matrice d’adjacence
(moderne)

• Les structures à matrice d’adjacence ajoutent à la 
structure liste d’arcs une matrice où chaque rangée 
et colonne correspond à un sommet.

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 5 6

• L’espace requis est O(n2 + m)

0 1 2 3 4 5 6

0 Ø Ø NW 
35

Ø DL 
247

Ø Ø

1 Ø Ø Ø AA 
49

Ø DL 
335

Ø

2 Ø AA 
1387

Ø Ø AA 
903

Ø TW 
45

3 Ø Ø Ø Ø Ø UA 
120

Ø

4 Ø AA 
523

Ø AA 
411

Ø Ø Ø

5 Ø UA 
877

Ø Ø Ø Ø Ø

6 Ø Ø Ø Ø Ø Ø Ø
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Performance de la structure 
Matrice d’adjacence

Opération Temps

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination, 
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices, 

O(n)

areAdjacent O(1)

insertEdge, insertDirectedEdge, remo-
veEdge, makeUndirected, reverseDirection, 
setDirectionFrom, setDirectionTo

O(1)

insertVertex, removeVertex O(n2)
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TRAVERSÉES DE GRAPHES

• En profondeur (Depth-First Search)

• En largeur (Breadth-First Search)

• Patron de conception: méthode du gabarit (Template 
Method Pattern)

M N O P

I J K L

E F G H

A B C D
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Explorer un labyrinthe
sans se perdre

• Une recherche en profondeur (depth-first search 
ou DFS) dans un graphe non-orienté G, c’est comme 
vagabonder dans un labyrinthe avec une corde et une 
cannette de peinture rouge, sans se perdre.

• Nous partons d’un sommet s, en attachant un bout de 
notre corde à ce point et en peinturant “visité” sur s. 
Ensuite, nous étiquetons s comme étant notre 
sommet courant appelé u.

• Maintenant, nous allons vers un arc arbitraire (u,v).

• Si l’arc (u,v) nous mène à un sommet v déjà visité, 
alors nous retournons à u.

• Si le sommet v n’a pas été visité, alors nous 
déroulons notre corde en allant à v, peinturons 
“visité” sur v, étiquetons v comme notre sommet 
courant, et répétons les étapes précédentes.

• Éventuellement, nous seront au point où tous les 
arcs attachés à u mènent à des sommets visités. 
Alors, nous revenons sur nos pas en déroulant la 
corde vers un sommet déjà visité v. Ainsi v devient 
notre sommet courant et nous répétons les étapes 
précédentes.
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Explorer un labyrinthe
sans se perdre (suite)

• Si tous les arcs attachés à v mènent à des sommets 
visités, alors nous revenons sur nos pas comme nous 
l’avons fait précédemment. Nous continuons à 
revenir sur nos pas en trouvant et en explorant les 
arcs inexplorés, et en répétant la procédure.

• Quand nous retournons au sommet s et qu’il n’y a 
plus d’arc inexploré attaché à ce point, alors nous 
avons terminé notre recherche DFS.
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Recherche en profondeur DFS

Algorithme DFS(v);
Entrée: un sommet v dans un graphe
Sortie: un étiquetage des arcs comme étant 

découverts (discovery edges) ou arrières
(backedges)

for chaque arc e attaché à v do
if l’arc e est inexploré then

soit w l’autre extrémité de e
if  le sommet w est inexploré then

étiqueter e comme arc de découverte
appeler récursivement DFS(w)

else

étiqueter e comme arc arrière

B C

D E

F

G

sommet non-visité

A

arc traversé

F

sommet courant

sommet

sommet visité

adjacent
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Déterminer les arcs attachés
• DFS dépend de la façon dont ces arcs sont obtenus.

• Si nous commençons à A et examinons l’arc vers F, 
ensuite vers B, E, C, et enfin G:

Le graphe résultant est:
arc de découverte
arc arrière
retour d’une
impasse

Si maintenant nous examinons l’arbre en 
commençant par A et ensuite G, C, E, B, et enfin F.

l’ensemble final d’arcs arrières et de découverte, de 
même que les points de retour, sont différents. 

• Passons maintenant à un exemple de DFS.

A F B E C G

A G C E B F

A

F

ED

B
C

G
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B C

D E

G

A

F

A

C

B

D

F

G

Étape 1:

B C

D E

G

A

F

A

Étape 2:

F B E C G

A

A

F E

E D A

A E

F B E C G

B A

C A

D F E

F E D A

G A E

E G D FA

E G D FA
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B C

D

G

A

F

A

Étape 3:

F B E C G

B A

C A

D F E

E G D F

F E D A

G A E

E

B C

D

A

F

A

Étape 4:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

A

E G D FA

Arc arrière
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B C

D

A

F

A

Étape 5:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

D

A

F

A

Étape 6:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA
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B C

D

A

F

A

Étape 7:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

A

F

A

Étape 8:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D
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B C

A

F

A

Étape 10:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Étape 9:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D
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B C

A

F

A

Étape 11:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Étape 12:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D
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B
C

A

F

A

Étape 13:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

C

A

F

A

Étape 14:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
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C

A

F

A

Étape 15:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

C

A

F

A

Étape 16:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
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A

F

A

Étape 17:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

A

F

A

Étape 18:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C
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A

F

A

Étape 19:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

Et c’est tout!

9.43Traversées de graphes

Propriétés de DFS
• Proposition 9.12 : Soit G un graphe non-orienté sur 

lequel une traversée DFS commençant au sommet s 
a été faite. Alors:

1) La traversée visite tous les sommets dans la 
 composante connexe de s

2) Les arcs de découverte forment un arbre
 recouvrant de la composante connexe de s

• Justification de 1):
- Essayons une contradiction: supposons qu’il y ait 

au moins un sommet v non-visité et soit w le 
premier sommet non-visité sur un chemin de s à v. 

- Comme w est le premier sommet non-visité sur le 
chemin, il y a un voisin u qui a été visité.

- Mais quand nous avons visité u nous devons avoir 
observé l’arc (u, w). Donc w doit avoir été visité.

• Justification de 2):
- Nous étiquetons seulement les arcs à partir du 

moment où nous allons vers des sommets non-
visités. Ainsi, nous ne formons jamais de cycle 
d’arcs de découverte; ces arcs forment un arbre.

- C’est un arbre recouvrant car DFS visite chaque 
sommet dans la composante connexe de s.
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Analyse du temps d’exécution
• Souvenez-vous:

- DFS sur chaque sommet une fois exactement.
- Chaque arc est examiné exactement deux fois, une 

fois pour chacun de ses sommets.

• Pour ns sommets et ms arcs dans la composante 
connexe du sommet s, une DFS commençant à s 
s’exécute en un temps O(ns +ms) si:
- Le graphe est représenté dans une structure de 

données, comme une liste d’adjacence, où les 
méthodes pour les sommets et les arcs s’exécutent 
en un temps constant;

- Étiqueter un sommet comme étant exploré et tester 
si un sommet a été exploré prend O(degré);

- En étiquetant les nœuds visités, nous pouvons 
systématiquement considérer les arcs attachés au 
sommet courant, de façon à ne pas examiner le 
même arc plus d’une fois.
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Étiquetage des sommets
• Étudions les façons d’étiqueter les sommets de façon 

à satisfaire les conditions mentionnées à la page 
précédente.

• Extension des positions de sommet pour inclure une 
variable servant à l’étiquetage.

• Utilisation d’un mécanisme de table de hachage qui 
satisfait ces conditions dans un sens probabiliste, 
parce qu’un tel mécanisme supporte les opérations 
d’étiquetage et de test en un temps attendu O(1).

Avant
Position

Element

Après
Position

Element isMarked
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Patron de conception: méthode du 
gabarit (Template Method Pattern)
• le patron de conception méthode du gabarit offre un 

mécanisme de calcul générique qui peut être 
spécialisé en redéfinissant certaines étapes

• pour l’appliquer, nous concevons une classe qui:
- réalise le squelette d’un algorithme
- invoque des méthodes auxiliaires qui peuvent être 

redéfinies par ses sous-classes afin de faire des 
calculs utiles

• Bénéfices
- fait que la rectitude des calculs spécialisés dépend 

de celle de l’algorithme squelette
- démontre la puissance de l’héritage
- promeut la réutilisation de code
- encourage le développement de code générique

• Exemples
- traversée générique d’un arbre binaire (qui inclut 

pré-ordre, in-ordre, et post-ordre) et ses 
applications

- recherche en profondeur générique d’un graphe 
non-orienté et ses applications
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Recherche en profondeur générique
public abstract class DFS {

 protected Object dfsVisit(Vertex v) {

    protected InspectableGraph graph;

    protected Object visitResult;

    initResult();

    startVisit(v);

    mark(v);

    for (Enumeration inEdges = graph.incidentEdges(v);

       inEdges.hasMoreElements();) {

      Edge nextEdge = (Edge) inEdges.nextElement();

      if (!isMarked(nextEdge)) { // found an unexplored edge

    mark(nextEdge);

    Vertex w = graph.opposite(v, nextEdge);

    if (!isMarked(w)) { // discovery edge

      mark(nextEdge);

      traverseDiscovery(nextEdge, v);

      if (!isDone()) 

        visitResult = dfsVisit(w); }

    else  // back edge

    traverseBack(nextEdge, v);

      }

    }

    finishVisit(v);

    return result();

  }
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Méthodes auxiliaires de 
recherche DFS générique

public Object execute(InspectableGraph g, Vertex start,
                                  Object info) {

  graph = g;

  return null;

}

protected void initResult() {}

protected void startVisit(Vertex v) {}

 protected void traverseDiscovery(Edge e, Vertex from) {}

protected void traverseBack(Edge e, Vertex from) {}

protected boolean isDone() { return false; }

protected void finishVisit(Vertex v) {}

protected Object result() { return new Object(); }

9.49Traversées de graphes

Observons maintenant 4 façons 
de spécialiser DFS générique!

• la classe FindPath spécialise DFS afin de retourner 
un chemin du sommet start vers le sommet target.
public class FindPathDFS extends DFS {

  protected Sequence path;

  protected boolean done;

  protected Vertex target;

  public Object execute(InspectableGraph g, Vertex start,
                                    Object info) {

    super.execute(g, start, info);

    path = new NodeSequence();

    done = false;

    target = (Vertex) info;

    dfsVisit(start);
    return path.elements(); 

  }

  protected void startVisit(Vertex v) {

    path.insertFirst(v); 

    if (v == target) { done = true; }

  }

  protected void finishVisit(Vertex v) {

    if (!done) path.remove(path.first()); 

  }

  protected boolean isDone() { return done; }
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Autre spécialisation de DFS 
générique...

• FindAllVertices spécialise DFS afin de retourner 
une énumération des sommets dans la composante 
connexe contenant le sommet start.

public class FindAllVerticesDFS extends DFS {

protected Sequence vertices;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

vertices = new NodeSequence();

dfsVisit(start);

return vertices.elements();

}

public void startVisit(Vertex v) {

vertices.insertLast(v);

}

}
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Plus de spécialisations de DFS 
générique...

• ConnectivityTest utilise une spécialisation de DFS 
pour déterminer si un graphe est connecté.

public class ConnectivityTest {
protected static DFS tester=new FindAllVerticesDFS();
public static boolean isConnected(InspectableGraph g)
{

if (g.numVertices() == 0) return true; //empty is
//connected

Vertex start = (Vertex)g.vertices().nextElement();
Enumeration compVerts = 

(Enumeration)tester.execute(g, start, null);
// count how many elements are in the enumeration
int count = 0;
while (compVerts.hasMoreElements()) {

compVerts.nextElement();
count++;

}
if (count == g.numVertices()) return true;
return false;

}
}
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Et une autre spécialisation de 
DFS générique!

• FindCycle spécialise DFS afin de déterminer si la 
composante connexe du sommet start contient un 
cycle, et alors le retourne.

public class FindCycleDFS extends DFS {

protected Sequence path;

protected boolean done;

protected Vertex cycleStart;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

path = new NodeSequence();

done = false;

dfsVisit(start);

//copy the vertices up to cycleStart from the path to
//the cycle sequence.

Sequence theCycle = new NodeSequence();

Enumeration pathVerts = path.elements();

9.53Traversées de graphes

while (pathVerts.hasMoreElements()) {

Vertex v = (Vertex)pathVerts.nextElement();

theCycle.insertFirst(v);

if ( v == cycleStart) {

break;

}

}

return theCycle.elements();

}

protected void startVisit(Vertex v) {path.insertFirst(v);}

protected void finishVisit(Vertex v) {

if (done) {path.remove(path.first());}

}

//When a back edge is found, the graph has a cycle

protected void traverseBack(Edge e, Vertex from) {

Enumeration pathVerts = path.elements();

cycleStart = graph.opposite(from, e);

done = true;

}

protected boolean isDone() {return done;}

}

9.54Traversées de graphes

Recherche en largeur BFS 
(Breadth-First Search)

• Comme DFS, une recherche en largeur (BFS) 
traverse une composante connexe d’un graphe, et ce 
faisant définit un arbre recouvrant qui a quelques 
propriétés utiles
- Le sommet de départ s a un niveau 0; comme dans 

DFS, définissons ce point comme point d’ancrage.
- Au premier tour, la corde est déroulée de la 

longueur d’un arc, et tous les arcs à une distance 
d’un arc du point d’ancrage sont visités.

- Ces arcs sont placés dans le niveau 1.
- Au second tour, tous les nouveaux arcs qui 

peuvent être atteints en déroulant la corde d’une 
longueur de 2 arcs sont visités et placés dans le 
niveau 2.

- Ceci se poursuit jusqu’à ce que tous les sommets 
aient été placés dans un niveau.

- L’étiquette de tout sommet v correspond à la 
longueur du plus court chemin de s à v.

9.55Traversées de graphes

BFS - Une Représentation 
graphique

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3
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Encore BFS
e) f)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

9.57Traversées de graphes

Pseudo-code BFS

Algorithme BFS(s):
Entrée: Un sommet s dans un graphe
Sortie: Un étiquetage des arcs comme étant 

découverts (discovery edges) ou traversés
(cross edges)

initialiser le contenant L0 avec le sommet s
i ← 0
while Li n’est pas vide do

créer le contenant Li+1 initialement vide
for chaque sommet v dans Li do

if  l’arc e est attaché à v do 
soit w l’autre extrémité de e
if le sommet w est inexploré then

étiqueter e comme arc de découverte
insérer w dans Li+1

else
étiqueter e comme arc traversé

i ← i + 1

9.58Traversées de graphes

Propriétés de BFS
• Proposition: Soit G un graphe non-orienté sur lequel 

une traversée BFS débutant au sommet s a été faite. 
Alors:
- La traversée visite tous les sommets dans la 

composante connexe de s.
- Les arcs de découverte forment un arbre 

recouvrant T, que nous appelons arbre BFS, de 
composante connexe de s.

- Pour chaque sommet v au niveau i, le chemin de 
l’arbre BFS T entre s et v a i arcs, et tout autre 
chemin de G entre s et v a au moins i arcs.

- Si (u, v) est un arc qui n’est pas dans l’arbre BFS, 
alors les niveaux de u et v diffèrent de 1 au plus.

• Proposition: Soit G un graphe avec n sommets et m 
arcs. Une traversée BFS de G a un temps O(n + m). 
Aussi, il existe des algorithmes au temps O(n + m) 
basés sur BFS pour les problèmes suivants:
- Tester si G est connexe
- Calculer l’arbre recouvrant de G
- Calculer les composantes connexes de G
- Calculer, pour chaque sommet v de G, le nombre 

minimum d’arcs de tout chemin entre s et v.
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DIGRAPHES
• Accessibilité (reachability)

• Connectivité

• Fermeture transitive (closure)

• Algorithme de Floyd-Warshall

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

9.60Digraphes

DIGRAPHES

réveil

bouffe

travail

méditation 2514

encore 2514

jeux

cuire bicsuits
pour AE 2514

dodo

rêves sur 2514

programmation

une journée typique...

tic-tac-toe

1

2 3

4 5

7

9

10

11

6

8

9.61Digraphes

Qu’est-ce qu’un digraphe?

Un graphe orienté (de l’anglais directed graph)!

Chaque arc va dans une direction

L’arc  (a,b) va de a à b, mais pas de b à a

Vous dites sûrement: “Ouin, et si nous avions un 
exemple qui démontrerait combien nous pour-
rions être éclairés par l’utilisation de digraphes?!! 
− Et bien, si vous insistez. . .

a

b

9.62Digraphes

Applications
Cartes: les digraphes peuvent représenter les 

rues à sens unique
(utiles dans les grands centres-villes)

Thayer
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Thomas J. Watson Jr.
Center for 
Information 
Technology

L’auteur!

143

Store
24

Bookstore
D’Angelo’s!

Tunnel O’ Doom
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Une autre application

Planification d’horaires: l’arc (a,b) indique 
que la tâche a doit être complétée avant que b 
ne démarre.

cs16
cs15

cs31

cs126

 cs32

cs127

cs167

cs141

cs22

Les vieux programmeurs ne meurent pas— 
ils ne font que tomber dans les trous noirs

9.64Digraphes

GOA: Graphe Orienté Acyclique

(de l’anglais directed acyclic graph — DAG)

Les GOA!

Pardon?!!

C’est un graphe orienté sans cycles orientés

a b

c

d e

a b

c

d e

GOA pas un GOA

9.65Digraphes

Recherche en profondeur

Même algorithme que pour les graphes non-
orientés

Sur un digraphe connexe, nous pouvons obte-
nir des arbres DFS non-connexes (c’est-à-dire, 
une forêt DFS)

a b

c

d e

f

a

b

c

d

e

f

9.66Digraphes

Accessibilité (reachability)

Arbre DFS avec racine v: sommets accessibles 
à partir de v via les chemins orientés

a b

c

d e

f

c

a

b d

e

b f

d

c

a
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Digraphes fortement connexes 

Chaque sommet peut atteindre tous les 
autres sommets

a

b

d

c

e

f

g

9.68Digraphes

Composantes fortement 
connexes

a

b

d

c

e

f

g

{ a , c , g }

{ f , d , e , b }

9.69Digraphes

Fermeture transitive

Le digraphe G*  est obtenu de G en utilisant la 
règle:

Si il existe un chemin orienté dans G de a à b, 
alors ajouter l’arc (a,b) à G*

G G*

9.70Digraphes

Calculer la fermeture 
transitive

Nous pouvons utiliser DFS sur chaque sommet
Temps: O(n(n+m))

Ou encore... utiliser l’algorithme de Floyd-
Warshall:

Si nous pou-
vons aller de a 
à b, et de b à c, 
alors nous 
pouvons aller 
de a à c

“Pink” Floyd
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Exemple

JFK

BOS

MIA
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LAX
DFW

SFO
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9.72Digraphes

Algorithme de Floyd-Warshall
• Cet algorithme présuppose que les méthodes 

areAdjacent et insertDirectedEdge prennent un temps 
O(1) (par exemple, structure en matrice d’adjacence)

Algorithme  FloydWarshall(G)
soit v1 ... vn un ordre arbitraire des sommets
G0 = G
for  k = 1 to n do

// considérez tous les sommets de routage 
// possibles vk
Gk = Gk-1 // ce sont les seuls à conserver
for each (i, j = 1, ..., n) (i != j) (i, j != k) do

// pour chaque paire de sommets vi et vj
if  Gk-1.areAdjacent(vi,vk) and 

Gk-1.areAdjacent(vk,vj) then
Gk.insertDirectedEdge(vi,vj,null)

return Gn

• Le digraphe Gk est le sous-digraphe de la fermeture 
transitive de G induit par les chemins avec sommets 
intermédiaires dans l’ensemble { v1, ..., vk }

• Temps d’exécution: O(n3)

9.73Digraphes

Exemple
• digraphe G

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7
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Exemple
• digraphe G*

JFK
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LAX
DFW

SFO

v2

v1

v3
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v6

v7
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Tri topologique

Pour chaque arc (u,v ), le sommet u est visité 
avant le sommet v

réveil

bouffe

travail

méditation 2514

encore 2514

jeux

cuire bicsuits
pour AE 2514

dodo

rêves sur 2514

programmation

une journée typique...

tic-tac-toe

1

2 3

4 5

7

9

10

11

6

8

9.76Digraphes

Tri topologique

Le résultat du tri topologique 
peut ne pas être unique

A

B C

D

A B C D

A C B D
ou

− À vous de décider

9.77Digraphes

A

B C

D E

Tri topologique

Les étiquettes augmentent le long d’un che-
min orienté.

Un digraphe a un tri topologique si et seule-
ment si il est acyclique (donc, un GOA)

1

2 3

4 5

9.78Digraphes

A

B C

D E

Algorithme pour tri 
topologique

method TopologicalSort
if  il y a encore des sommets

soit v une source;
// un sommet sans arcs d’entrée

étiqueter et supprimer v;
 TopologicalSort;
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Algorithme (suite)
Simuler la suppression de sources en utilisant 
des compteurs de degré d’entrée

1. Calculer indeg(v) pour tous les sommets
2. Foreach sommet v do

if v non étiqueté et indeg(v) = 0
then TopSort(v)

TopSort(Vertex v);
étiqueter v;
foreach arc(v,w)

indeg(w) = indeg(w) − 1;
if  indeg(w) = 0

TopSort(w);

9.80Digraphes

Exemple

A

C

E

H

G

D

F

I

B
? 0 ? 0

? 1

? 3

? 1

? 2

? 2

? 1

? 3



9.81Connectivité et biconnectivité

Connectivité et 
Biconnectivité

• composantes connexes

• sommets de séparation (cutvertices)

• composantes biconnexes

9.82Connectivité et biconnectivité

Composantes connexes

Graphe connexe:  chaque paire 
de sommets reliée par un chemin.

connexe non-connexe

Composante connexe: 
sous-graphe connexe maximal 
d’un graphe

9.83Connectivité et biconnectivité

Relations d’équivalence

Une relation sur un ensemble S est un ensemble 
ordonné R composé de paires d’éléments de S et 
défini par une propriété quelconque.

Exemple:
• S = {1,2,3,4}

• R= {(i,j) ∈ S × S tel que i < j}
= {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}

Une relation d’équivalence satisfait les 
propriétés suivantes:

• (x,x) ∈ R, ∀ x ∈ S                    (réflexive)

• (x,y) ∈ R   ⇒   (y,x) ∈ R        (symétrique)

• (x,y), (y,z)  ∈ R   ⇒   (x,z) ∈ R  (transitive)

La relation C sur l’ensemble des sommets d’un 
graphe:

• (u,v) ∈ C   ⇔    u et v sont dans la même
                           composante connexe

est une relation d’équivalence.

9.84Connectivité et biconnectivité

DFS sur un graphe non-connexe
• DFS(v) visite tous les sommets et les arcs 

dans la composante connexe de v.

• Pour déterminer les composantes connexes:

k = 0 // compteur composante
foreach  (vertex v)

if  unvisited(v)
// ajouter à la composante k
// les sommets atteints par v
DFS(v, k++)

a
b

d g

3

65

c

fe

a
b

d g

3

f5

c

e
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MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

Sommets de séparation 
(Cutvertices)

Sommet de séparation (cutvertex):
son retrait rend le graphe non-connexe

Si l’aéroport de Chicago est fermé, alors il n’y 
a aucun moyen d’aller dans les villes de la côte 
ouest à partir de Providence (PVD). Même cho-
se pour l’aéroport de Denver.

• Sommets de séparation:  ORD. DEN

9.86Connectivité et biconnectivité

Biconnectivité
Graphe biconnexe: n’a pas de sommet 
de séparation.

Nouveaux vols:
LGA-ATL  et DFW-LAX 
rendent le graphe biconnexe.

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN
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MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

MSN

DEN

Propriétés des graphes 
biconnexes

• Il y a deux chemins disjoint entre 
n’importe quelle paire de sommets.

• Il y a un cycle au travers de n’importe quelle 
paire de sommets.

Par convention, deux nœuds reliés par un arc for-
ment un graphe biconnexe, mais ceci ne satisfait 
pas les propriétés mentionnées ci-haut.

ORD

9.88Connectivité et biconnectivité

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

ORD

MSN

DEN

Composantes biconnexes
• Composante biconnexe (bloc):

sous-graphe biconnexe maximal

• Les composantes biconnexes d’un graphe 
ne partagent pas d’arc, mais elles partagent 
des sommets de séparation.
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Caractérisation des 
composantes biconnexes

• Relation d’équivalence R sur les arcs de G: 
(e', e") ∈ R si il y a un cycle contenant à la fois  
e' et e"

• Preuve de la propriété transitive

• Nous divisons les arcs de G en classes d’équi-
valence par rapport à R.

• Chaque classe d’équivalence correspond à:

• une composante biconnexe de G
• une composante connexe d’un graphe H 

dont les sommets sont les arcs de G et 
dont les arcs sont les paires dans la 
relation R.

e1 e2 e3

9.90Connectivité et biconnectivité

DFS et composantes biconnexes
• Le graphe H a O(m2) arcs dans le pire des cas.

• Au lieu de calculer le graphe H tout entier, nous 
utilisons un graphe mandataire (proxy) K, qui 
est plus petit.

• Débutons avec un graphe K vide dont les 
sommets sont les arcs de G.

• Étant donné une DFS sur G, considérez les 
(m − n + 1) cycles de G induits par les arcs.

• Pour chacun de ces cycles C = (e0, e1, ... , ep) 
ajoutez les arcs (e0, e1)  ... (e0, ep) à K.

• Les composantes connexes de K sont les mê-
mes que celles de H!

c

b d

a
f

e

i

h

g

g

h

i
f

ea

b

c d

9.91Connectivité et biconnectivité

Un algorithme à temps linéaire
• La taille de K est O(mn) dans le pire des cas.

• Nous pouvons encore réduire la taille du gra-
phe mandataire à O(m)

• Traitez les arcs selon une visite pré-ordre de 
leur sommet de destination dans l’arbre DFS

• Annotez les arcs de découverte formant les 
cycles

• Arrêter d’ajouter des arcs au graphe 
mandataire après avoir rencontré le premier arc 
annoté

• Le graphe mandataire résultant est une forêt!

• Cet algorithme requiert un temps O(n+m).

9.92Connectivité et biconnectivité

Exemple
• Arcs arrières étiquetés selon la visite pré-ordre 

de leur sommet de destination dans l’arbre DFS

• Traitement de e1

• Traitement de e2

c

b

d

a

f

e1

g

h

e2 e3

e4

e6

e5

a b g h

e1

a b g h

e1

c

e2
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Exemple (suite)
• arbre DFS

• graphe manda-
taire final (un ar-
bre puisque le 
graphe est bi-
connexe)

c

b

d

a

f

e1

g

h

e2 e3

e4

e6

e5

a b g h

e1

c

e2 e3

f

e4

d

e5

e6

9.94Connectivité et biconnectivité

Pourquoi pré-ordre?
• L’ordre dans lequel les arcs arrières sont traités 

est essentiel pour la rectitude de l’algorithme

• L’utilisation d’un ordre différent...

• ... mène à un graphe 
qui contient des 
informations 
incorrectes.

c

b

d

a

g

e1

e2

e3

g d b a

e2

e3

e1

9.95Connectivité et biconnectivité

Essayez l’algorithme sur ce 
graphe!

MIA
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SFO
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PVD

LGA

STLLAXLAX
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MSN

DEN

LAXSAN

SJU STT

ORD



10-1Chaînes de caractères et appariement

CHAÎNES DE CARACTÈRES 
ET APPARIEMENT

(STRINGS & PATTERN MATCHING)

• Pattern matching, aussi appelé appariement, filtrage, 
ou correspondance de motifs ou de patrons.

• Force brute, Rabin-Karp, Knuth-Morris-Pratt

• Expressions régulières 

10-2Chaînes de caractères et appariement

Recherche dans les chaînes de 
caractères

• L’objectif de la recherche dans les chaînes de 
caractères (string searching) est de localiser un 
patron textuel (text pattern) spécifique au sein d’un 
texte plus long (phrase, paragraphe, livre, etc).

• Comme pour la plupart des algorithmes, les 
préoccupations principales pour la recherche dans 
les chaînes sont la vitesse et l’efficacité.

• Il existe plusieurs algorithmes pour la recherche 
dans les chaînes, mais les trois que nous étudierons 
sont force brute, Rabin-Karp, et Knuth-Morris-Pratt.

10-3Chaînes de caractères et appariement

Force brute
• L’algorithme force brute compare le patron au texte, 

un caractère à la fois, jusqu’à ce que des caractères 
qui ne correspondent pas l’un à l’autre soient 
trouvés:

- Les caractères comparés sont en italique
- Les caractères qui correspondent sont en gras

• On peut demander à l’algorithme d’arrêter à la 
première occurrence du patron, ou à la fin du texte.

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
 ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
  ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
   ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
    ROADS

10-4Chaînes de caractères et appariement

Pseudo-code pour force brute
• Voici le pseudo-code

repeat
if  (lettre du texte == lettre du patron) 

compare prochaine lettre du texte à la prochaine
lettre du patron

else
déplacer le patron à la prochaine lettre

until  (patron trouvé ou fin du texte)

cool cat Rolo went over the fence
cat
cool cat Rolo went over the fence
 cat
co ol cat Rolo went over the fence
  cat
coo l  cat Rolo went over the fence
   cat
cool _cat Rolo went over the fence
    cat
cool cat  Rolo went over the fence
     cat
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Force brute — Complexité
• Soit un patron d’une longueur de M caractères et un 

texte d’une longueur de N caractères...

• Pire des cas: compare le patron à chaque sous-
chaîne de caractères de longueur M. Par exemple, 
M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH        5 comparaisons 

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH       5 comparaisons 

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH      5 comparaisons 

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH     5 comparaisons 

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH    5 comparaisons 

....
N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH

 5 comparaisons   AAAAH

• Nombre total de comparaisons: M (N-M+1)

• Complexité du pire des cas: O(MN)

10-6Chaînes de caractères et appariement

Force brute — Complexité (suite)
• Soit un patron d’une longueur de M caractères et un 

texte d’une longueur de N caractères...

• Meilleur des cas si le patron est trouvé: Trouve le 
patron au début du texte. Par exemple, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA        5 comparaisons

• Nombre total de comparaisons: M

• Complexité du meilleur des cas: O(M)

10-7Chaînes de caractères et appariement

Force brute — Complexité (suite)
• Soit un patron d’une longueur de M caractères et un 

texte d’une longueur de N caractères...

• Meilleur des cas si le patron n’est pas trouvé: Le 
premier caractère ne correspond jamais. Si M=5:

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH         1 comparaison

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH        1 comparaison

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH       1 comparaison

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH      1 comparaison

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH     1 comparaison

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparaison           OOOOH 

• Nombre total de comparaisons: N

• Complexité du meilleur des cas: O(N)

10-8Chaînes de caractères et appariement

Rabin-Karp
• L’algorithme de recherche dans les chaînes de 

caractères de Rabin-Karp calcule une valeur de 
hachage pour le patron et pour chaque sous-
séquence de M caractères du texte à être comparé.

• Si les valeurs de hachage sont différentes, 
l’algorithme calculera la valeur de hachage de la 
prochaine sous-séquence de M caractères.

• Si les valeurs de hachage sont égales, l’algorithme 
fera une comparaison selon l’approche par force 
brute entre le patron et la séquence de M caractères.

• De cette façon, il n’y a seulement qu’une 
comparaison par sous-séquence, et l’approche par 
force brute n’est nécessaire que quand les valeurs de 
hachage correspondent.

• Un exemple clarifiera probablement certains 
points...
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Exemple avec Rabin-Karp
La valeur de hachage de “AAAAA” est 37

La valeur de hachage de “AAAAH” est 100

1) AAAAA AAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37≠100        1 comparaison

2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100       1 comparaison
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH

AAAAH
37≠100       1 comparaison

4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100       1 comparaison

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH      
                                                                 AAAAH
5 comparaisons                               100=100
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Algorithme de Rabin-Karp
le patron a une longueur de M caractères 

hash_p= valeur de hachage du patron
hash_t = valeur de hachage des M premiers

caractères du corps du texte

repeat
if  (hash_p == hash_t) 

comparaison par force brute entre le patron et la
section de texte sélectionnée

hash_t = valeur de hachage de la prochaine section 
 de texte, un caractère plus loin

until  ( fin du texte or 
comparaison par force brute == true )
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Rabin-Karp
• Questions fréquentes à propos de Rabin-Karp:

“Quelle est la fonction de hachage utilisée
pour calculer les valeurs associées aux
séquences de caractères?”

“L’application de cette fonction à chaque 
séquence de M caractères tirée du corps du
texte ne prend-t-elle pas trop de temps?”

“Cette matière sera-t-elle à l’examen final?”

• Afin de répondre à quelques-unes de ces questions, 
nous devrons faire un peu de mathématiques.
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Mathématiques de Rabin-Karp
• Considérez une séquence de M caractères comme un 

nombre de M chiffres en base b, où b est le nombre 
de lettres dans l’alphabet. La sous-séquence de texte 
t[i .. i+M-1] est convertie au nombre suivant:

x(i) = t[i] ⋅bM-1 + t[i+1] ⋅bM-2 +...+ t[i+M-1]

• De plus, étant donné x(i), nous pouvons calculer 
x(i+1) pour la sous-séquence suivante t[i+1 .. i+M] 
en un temps constant:

x(i+1) = t[i+1] ⋅bM-1 + t[i+2] ⋅bM-2 +...+ t[i+M]

x(i+1) = x(i)⋅b Déplacer à gauche de 1 chiffre...

- t[i] ⋅b M Moins le chiffre le plus à gauche

+ t[i+M] Plus le nouveau chiffre le plus à 
droite

• De cette façon, nous n’avons jamais à calculer 
explicitement une nouvelle valeur. Nous ajustons 
tout simplement la valeur existante lorsque nous 
passons au caractère suivant.
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Exemple mathématique avec 
Rabin-Karp

• Supposons que nous ayons un alphabet à 10 lettres.

• Alphabet = a, b, c, d, e, f, g, h, i, j

• Supposons que “a” corresponde à 1, que “b” 
corresponde à 2 et ainsi de suite.

La valeur de hachage pour la chaîne “cah” serait:

3*100 + 1*10 + 8*1 = 318
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Modulo pour Rabin-Karp
• Si M est grand, alors la valeur résultante (~bM) sera 

énorme. Pour cette raison, nous hachons cette valeur 
en la prenant modulo un nombre premier q.

• La fonction mod (% en Java) est particulièrement 
utile dans ce cas grâce à quelques-unes de ses 
propriétés inhérentes:
- [(x mod q) + (y mod q)] mod q = (x+y) mod q
- (x mod q) mod q = x mod q

• Pour ces raisons:

h(i) = ((t[i] ⋅ bM-1 mod q) +
(t[i+1] ⋅ bM-2 mod q) + ... +
(t[i+M-1] mod q)) mod q

  h(i+1) =( h(i)⋅ b  mod q
Déplacer à gauche de 1 chiffre...

-t[i] ⋅ bM mod q
Moins le chiffre le plus à gauche

+t[i+M] mod q )
Plus le nouveau chiffre le plus à
droite

mod q
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Rabin-Karp — Complexité
• Si un nombre premier suffisamment grand est utilisé 

pour la fonction de hachage, les valeurs de hachage 
de deux patrons différents seront habituellement 
distinctes.

• Si c’est le cas, la recherche prend un temps O(N), où 
N est le nombre de caractères dans le corps de texte 
le plus grand.

• Il est toujours possible de concevoir un scénario à la 
complexité du pire des cas O(MN). Cependant, cette 
situation ne sera portée à survenir que si le nombre 
premier utilisé pour le hachage est petit.
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L’algorithme
Knuth-Morris-Pratt

• L’algorithme de recherche de Knuth-Morris-Pratt 
(KMP) diffère de l’approche par force brute en ce 
qu’il conserve l’information obtenue lors des 
comparaisons précédentes.

• Une fonction d’échec (failure function) (f) est 
calculée, et elle indique quelle partie de la compa-
raison précédente peut être réutilisée en cas d’échec.

• En fait, f est définie comme le plus long préfixe du 
patron P[0,..,j] qui est aussi un suffixe de P[1,..,j]
- Note: pas un suffixe de P[0,..,j]

• Exemple — valeurs de la fonction d’échec KMP:

• Ceci indique quelle partie du début de la chaîne 
correspond jusqu’à la portion située juste avant une 
comparaison infructueuse.
- Si la comparaison échoue à (4), nous savons que a 

et b aux positions 2 et 3 sont identiques aux 
positions 0 et 1.

j 0 1 2 3 4 5

P[j] a b a b a c

f(j) 0 0 1 2 3 0
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L’algorithme KMP (suite)
• Pseudo-Code de l’algorithme d’appariement

Algorithme KMPMatch(T,P)
Entrée: Chaînes T (texte) à n caractères et P 

(patron) à m caractères.
Sortie: Index de départ de la première sous-chaîne de

T qui correspond à P, ou une indication que P n’est
pas une sous-chaîne de T.

f ← KMPFailureFunction(P) {construit la f. d’échec}
i ← 0
j ← 0
while i < n do

if  P[j] = T[i] then
if  j = m - 1 then

return i - m - 1 {correspondent}
i ← i + 1
j ← j + 1

else if  j > 0 then {nous avons avancé...}
j ← f(j-1) {considère le préfixe apparié dans P}

else
i ← i + 1

return “Pas de sous-chaîne P dans T”
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L’algorithme KMP (suite)
• Pseudo-Code de la fonction d’échec KMP

Algorithme KMPFailureFunction(P);
Entrée: Chaînes P (patron) à m caractères.
Sortie: La fonction d’échec f pour P, qui ajuste j selon

la longueur du plus long préfixe de P qui est aussi 
suffixe de P[1,..,j].

i ← 1
j ← 0
while i ≤ m-1 do

if  P[j] = P[i] then
{nous avons apparié j + 1 caractères}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then 
{ j considère le préfixe apparié dans P}
j ← f(j-1)

else
{il n’y a pas de correspondance}
f(i) ← 0
i ← i + 1

10-19Chaînes de caractères et appariement

L’algorithme KMP (suite)
• Une représentation graphique de l’algorithme de 

recherche dans les chaînes KMP

baaa b c

aaaaaaaa bbbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

aucune 
comparaison
nécessaire ici
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L’algorithme KMP (suite)
• Analyse de la complexité temporelle

• définissons k = i - j

• À chaque itération de la boucle while, l’une des trois 
choses suivantes surviendra:.
- 1) si T[i] = P[j], alors i est incrémenté de 1, tout 

comme j. k reste inchangé.
- 2) si T[i] != P[j] et j > 0, alors i reste inchangé et k 

est incrémenté d’au moins 1, puisque k 
change de i - j à i - f(j-1)

- 3) si T[i] != P[j] et j = 0, alors i est incrémenté de 1 
et k est incrémenté de 1 puisque j reste 
inchangé.

• Ainsi, à chaque itération, i ou k est incrémenté d’au 
moins 1, alors le nombre maximal d’itérations est 2n

• Ceci présuppose bien sûr que f ait été calculé 
auparavant.

• Cependant, f est calculé sensiblement de la même 
façon que KMPMatch, alors sa complexité est 
semblable. KMPFailureFunction prend O(m)

• Complexité temporelle totale: O(n + m)
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Expressions régulières
• Notation pour décrire un ensemble de chaînes de 

caractères, possiblement de taille infinie.

• ε dénote la chaîne vide

• ab + c dénote l’ensemble {ab, c}

• a* dénote l’ensemble {ε, a, aa, aaa, ...}

• Exemples
- (a+b)* toutes les chaînes avec l’alphabet {a,b}
- b*(ab*a)*b* chaînes avec un nombre pair de “a”
- (a+b)*sun(a+b)* chaînes contenant le motif “sun”
- (a+b)(a+b)(a+b)a chaîne de quatre lettres se 

terminant par “a”
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PLUS COURTS CHEMINS  
(Shortest Paths)

• Graphes pondérés

• Plus courts chemins

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187
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Graphes pondérés
• Les poids sur les arcs d’un graphe représentent des 

distances, des coûts, etc.

• Un exemple d’un graphe pondéré non-orienté:

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187
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Plus court chemin
• BFS trouve le(s) chemin(s) au nombre d’arcs 

minimal à partir du sommet de départ

• Ainsi, BFS trouve le plus court chemin en supposant 
que chaque arc a le même poids

• Dans plusieurs domaines, par exemple les réseaux 
routiers, les arcs d’un graphe ont des poids différents

• Comment trouver les chemins au poids total 
minimal?

• Exemple - Boston à Los Angeles:

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187

11-4Plus courts chemins

Algorithme de Dijkstra
• L’Algorithme de Dijkstra trouve les plus courts 

chemins d’un sommet de départ v vers tous les 
autres sommets d’un graphe avec: 
- des arcs non-orientés
- des arc au poids non-négatif

• L’algorithme calcule, pour chaque sommet u, la 
distance de u à partir du sommet v, et donc le poids 
d’un plus court chemin entre v et u.

• L’algorithme conserve l’ensemble des sommets pour 
lesquels la distance a été calculée, appelé nuage 
(cloud) C

• Chaque sommet a une étiquette D. Pour tout sommet 
u, nous appellerons son étiquette D[u]. D[u] contient 
une approximation de la distance entre v et u. 
L’algorithme met à jour une valeur D[u] quand il 
trouve un chemin plus court de v à u.

• Lorsqu’un sommet u est ajouté au nuage, son 
étiquette D[u] est égale à la distance actuelle (finale) 
entre le sommet de départ v et le sommet u.

• Initialement, nous choisissons:
- D[v] = 0 ...la distance de v à lui-même est 0...
- D[u] = ∞ pour u ≠ v ...ceci va changer...
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L’algorithme: Expansion du nuage
• Répétez jusqu’à ce que tous les sommets soient dans 

le nuage:
- soit u un sommet hors du nuage qui a la plus petite 

étiquette D[u]. (À la première itération, il est 
évident que le sommet de départ sera choisi)

- ajoutez u au nuage C
- mettez à jour les étiquettes des sommets adjacents 

à u de la façon suivante:
for  chaque sommet z adjacent à u do

if  z est hors du nuage C then
if  D[u] + weight(u,z) < D[z] then

D[z] = D[u] + weight(u,z)

• cette étape est appelée une relaxation de l’arc (u,z)

u

v

z
3060

0

u
580

90

85

v est mis dans le nuage en premier. Puis ce u. Et ce u.

11-6Plus courts chemins

Pseudo-code
• Nous utilisons une file à priorité Q pour 

emmagasiner les sommets hors du nuage, où D[v] 
est la clé d’un sommet v dans Q

Algorithme ShortestPath(G, v):
Entrée: Un graphe pondéré G et un sommet v de G.
Sortie:  Une étiquette D[u], pour chaque sommet u de

G, où D[u] est la longueur d’un plus court
chemin de v à u dans G.

initialisez D[v] ← 0 et D[u] ← +∞ pour chaque 
sommet v ≠ u

soit Q une file à priorité contenant tous les sommets 
de G utilisant les étiquettes D comme clés.

while Q ≠ ∅ do
{mettre u dans le nuage C}
u ← Q.removeMinElement()
for chaque sommet z adjacent à u où z est dans Q do

{faire l’opération de relaxation sur l’arc (u, z)}
if  D[u] + w((u, z)) < D[z] then

D[z] ←D[u] + w((u, z))
changez la valeur de la clé de z dans Q à D[z]

return l’étiquette D[u] de chaque sommet u.
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Exemple: plus courts chemins à partir de BWI

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
 
BWI 
 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
∞
184
∞
946
621
∞
∞

∞

BWI

BWI
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• JFK (New-York) est le plus près...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1575
184
∞
621
328
∞

BWI

JFK

JFK

JFK

BWI 946
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• suivi de PVD (Providence)...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1575
184
∞
621
328
∞

BWI

JFK

JFK

JFK

BWI 946
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• BOS (Boston) est juste un peu plus loin.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1575
184
∞
621
328
3075

BWI

JFK

JFK

JFK

BWI 946

BOS
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• ORD (Chicago) les suit.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1423
184
∞
621
328
2467

BWI

JFK

JFK

ORD

BWI 946

ORD

notez que la
distance D

a été ajustée
à cette étape

même chose
pour SFO

 pour DWF
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• Puis MIA (Miami).

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1423
184
3288

621
328
2467

BWI

JFK

JFK

JFK

BWI 946

BOS

MIA
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• Au tour de DFW...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1423
184
2658

621
328
2467

BWI

JFK

JFK

JFK

BWI 946

BOS

DFW

Distance D
pour LAX est 
mise à jour
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• Et de SFO...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1423
184
2658

621
328
2467

BWI

JFK

JFK

ORD

BWI 946

BOS

MIA
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• Et enfin de LAX.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 
BWI 
 

 

 
 
 
 

 
 

 
PVD 
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

  

0
371

1423
184
2658

621
328
2467

BWI

JFK

JFK

ORD

BWI 946

BOS

MIA
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Temps d’exécution
• Supposons une représentation de G avec une liste 

d’adjacence. Nous pouvons alors parcourir tous les 
sommets adjacents à u en un temps proportionnel à 
leur nombre (donc O(j) où j est le nombre de 
sommets adjacents à u)

• La file à priorité Q — choix à faire:
- Un tas: réaliser Q avec un tas permet une 

extraction efficace des sommets à la plus petite 
étiquette D (O(log N)). Si Q est réalisé avec des 
repéreurs (locators), la mise à jour des clés peut se 
faire en un temps O(logN). Le temps d’exécution 
total est O((n+m) log n) où n est le nombre de 
sommets dans G et m est le nombre d’arcs. En 
terme de n, le pire des cas est O(n2 log n).

- Une séquence non-triée: O(n) pour l’extraction 
des éléments minimaux, mais rapide mise à jour 
des clés (O(1)). Il n’y a seulement que n-1 
extractions et m relaxations. Le temps d’exécution 
est O(n2+m)

• En ce qui concerne le pire des cas, le tas est bon 
pour de petits ensembles de données, et la séquence 
pour de plus grands ensembles.
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Temps d’exécution (suite)
• Le cas moyen est une toute autre histoire.

Considérez ceci:
- Si la file à priorité Q est réalisée avec un tas, le 

goulot d’étranglement de trouve à être la mise à 
jour de la clé d’un sommet dans Q. Dans le pire 
des cas, nous aurions besoin d’une mise à jour 
pour chaque arc dans le graphe.

- Cependant, pour la plupart des graphes, ceci 
n’arrivera pas. En supposant un ordre aléatoire de 
voisinage, nous observons que pour chaque 
sommet, ses sommets voisins seront placés dans le 
nuage dans un ordre quelconque. Ainsi il n’y a que 
O(log n) mises à jour de la clé d’un sommet.

- Avec cette même supposition, le temps 
d’exécution de la réalisation par tas est 
O(n log n + m), qui est toujours O(n2). 

La réalisation par tas est donc préférable pour 
tous les cas sauf ceux qui sont dégénérés.
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Algorithme de Dijkstra,
quelques trucs auxquels penser...

• Dans notre exemple, le poids est la distance 
géographique. Cependant, le poids aurait pu tout 
aussi bien représenter le coût ou le temps de vol.

• Nous pouvons aisément modifier l’algorithme de 
Dijkstra selon les besoins, par exemple:
- Si nous ne désirons que le plus court chemin de v à 

un sommet particulier u, nous pouvons arrêter 
l’algorithme aussitôt que u est mis dans le nuage.

- Nous pourrions aussi faire que l’algorithme 
retourne un arbre T enraciné à v où le chemin dans 
T de v à u est le plus court chemin de v à u.

• Comment conserver poids et distances? Les arcs 
et sommets ne “connaissent” pas leur poids/distance. 
Prenez avantage du fait que D[u] est la clé pour le 
sommet u dans la file à priorité, et ainsi D[u] peut 
être retracé en connaissant le repéreur de u dans Q. 

• Nous avons besoin d’un façon de:
- associer des repéreurs PQ aux sommets
- emmagasiner et récupérer le poids des arcs
- retourner les distances finales
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ARBRE RECOUVRANT  
MINIMAL

• Algorithme de Prim-Jarnik

• Algorithme de Kruskal

C’est un bien joli chapeau.

Ce n’est pas un chapeau!
C’est ma tête!
Je suis une tête d’arbre!
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MIA

SFO

PVD

LAXLAX

DFW

LGA

STL
1500

1500

800

400

1500

1000
200

1000

400

800

1800

Graphes pondérés

(poids d’un sous-graphe G') =
(somme des poids des arcs de G')

poids( G') =    Σ  poids(e)
                       (e ∈ G')

 poids( G') = 800 + 400 + 1200
              = 2400

G'

1200

SEA MSN
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Arbre recouvrant minimal (MST)
• arbre recouvrant de poids total minimal

• par exemple, pour connecter tous les ordinateurs 
d’un édifice avec une quantité minimale de câble

• exemple

• pas unique en général

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800
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Propriété des arbres 
recouvrants minimaux

V' V"

Soit e = (v', v"), un arc de poids 
minimal traversant la partition, 
c’est-à-dire v' ∈  V' et v" ∈ V".
Il y a un arbre recouvrant minimal 
(MST) contenant l’arc e.

Soit (V',V"), une partition des 
sommets de G.
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Preuve de la propriété

Si le MST ne contient pas un arc de 
poids minimal e, alors nous pouvons 
trouver un MST meilleur ou égal en 
échangeant e pour un autre arc.

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

e

11-24Arbre recouvrant minimal

Algorithme de Prim-Jarnik pour 
trouver un MST

• agrandit le MST T d’un sommet à la fois

• le nuage couvre la portion de T déjà calculée

• étiquettes D[u] et E[u] associées à chaque sommet u
- E[u] est le meilleur arc (poids le plus bas) 

connectant u à T
- D[u] (distance au nuage) est le poids de E[u]
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946
1235

1464
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Différences entre les 
algorithmes de Prim et Dijkstra

• Pour tout sommet u, D[u] représente (à date) le 
poids du meilleur arc qui joint u au reste de 
l’arbre (contrairement à la somme totale des poids 
d’arcs sur un chemin du sommet de départ à u).

• Prim utilise une file à priorité Q dont les clés sont les 
étiquettes D, et dont les éléments sont des paires 
sommet-arc. 

• Tout sommet v peut être le sommet de départ.

• Nous initialisons toujours toutes les valeurs de D[u] 
à “infini”, mais nous initialisons aussi E[u] (les 
arcs associés à u) à “aucun”.

• Retourne l’arbre recouvrant minimal T.

Nous pouvons réutiliser le code 
produit par Dijkstra, et ne 

changer que quelques parties. 
Observons le pseudo-code....
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Pseudo-code

Algorithme  PrimJarnik(G):
Entrée: un graphe connexe pondéré G.
Sortie: un arbre recouvrant minimal T pour G.

choisir n’importe quel v de G
{agrandir l’arbre débutant avec le sommet v}
T ← {v}

D[v] ← 0
E[v] ← ∅

for  chaque sommet u ≠ v do
D[u] ← +∞

soit Q une file à priorité qui contient des sommets
et qui utilise les étiquettes D comme clés

while Q ≠ ∅ do
{placer u dans le nuage C}
u← Q.removeMinElement()
ajouter le sommet u et l’arc E[u] à T
for  chaque sommet z adjacent à u do

 if  z est dans Q
{faire l’opération de relaxation sur l’arc (u, z)}
if  poids(u, z) < D[z] then

D[z] ← poids(u, z)
E[z] ← (u, z) 
changer la clé de z dans Q pour D[z]

return  l’arbre T
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Parcourons son exécution...
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Temps d’exécution

T ← {v} 
D[v] ← 0
E[v] ← ∅

for  chaque sommet u ≠ v do
D[u] ← +∞

soit Q une file à priorité qui contient des sommets
et qui utilise les étiquettes D comme clés

while Q ≠ ∅ do
u ← Q.removeMinElement()
ajouter le sommet u et l’arc E[u] à T
for  chaque sommet z adjacent à u do

if  z est dans Q
if  poids(u, z) < D[z] then
 D[z] ← poids(u, z)
 E[z] ← (u, z) 

  changer la clé de z dans Q pour D[z]
return  l’arbre T

O((n+m) log n)
où n = nombre de sommets, m = nombre d’arcs,
et Q est réalisé avec un tas.
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Algorithme de Kruskal
• ajoutez les arcs un à la fois, en ordre croissant de 

poids.

• acceptez un arc si il ne crée pas de cycle.
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Structures de données pour 
l’algorithme de Kruskal

• l’algorithme maintient une forêt d’arbres

• un arc est accepté si il relie des sommets d’arbres 
distincts

• nous avons besoin d’une structure de données qui 
maintient une partition, c’est-à-dire une collection 
d’ensembles disjoints, avec les opérations suivantes
- find(u): retourne l’ensemble contenant u
- union(u,v): remplace les ensembles contenant u et 

v par leur union
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Représentation d’une partition
• chaque ensemble est emmagasiné dans une séquence

• chaque élément a une référence vers son ensemble

• l’opération find(u) requiert O(n) et retourne 
l’ensemble dont u est un membre

• dans l’opération union(u,v), nous déplaçons les 
éléments du plus petit ensemble vers la séquence du 
plus grand, tout en mettant à jours leurs références

• Le temps associé à l’opération union(u,v) est 
min(nu,nv), où nu et nv sont les tailles respectives des 
ensembles contenant u et v

• lorsqu’un élément est traité, il se retrouve dans un 
ensemble de taille au moins du double

• ainsi, chaque élément est traité au plus log n fois

A

9 3 6 2
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Pseudo-code

Algorithme  Kruskal(G):
Entrée: Un graphe connexe pondéré G.
Sortie: un arbre recouvrant minimal T pour G.

soit P une partition des sommets de G où chaque 
sommet forme un ensemble séparé

soit Q une file à priorité emmagasinant les arcs de G, 
triés selon leur poids

T ← ∅
while Q ≠ ∅ do

(u,v) ← Q.removeMinElement()
if  P.find(u) ≠ P.find(v) then

ajouter l’arc (u,v) à T
P.union(u,v)

return  T

Temps d’exécution: O((n+m) log n)
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Parcourons son exécution...
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Examine LGA-MIA, mais ne l’ajoute pas à T
parce que LGA&MIA sont dans le même ens.

Examine ici LAX-STL, mais ne l’ajoute pas à
T parce que LAX et STL sont dans le même
ensemble. Et c’est fini!
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FLOT  MAXIMAL

• Comment le faire...

• Pourquoi le désirer...

• Où le trouver...

• Ford-Fulkerson

• Edmonds-Karp

• Coupe minimale

Le Tao du Flot (Flow):
“Let your body go with the flow.”

-Madonna, Vogue

“Go with the flow, Joe.”
-Paul Simon, 50 ways to leave your lover

“Use the flow, Luke!”
-Obi-Wan Kenobi, Star Wars

“Connaissez le flot, ou coulez le cours...”
-Fernando Gomes, CSI 2514
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Réseaux de flots
• Réseau de flots:

- digraphe
- poids, appelés capacités sur les arcs
- deux sommets distinctifs:

- Source, “s”:
Sommet sans aucun arc en entrée

- Puits, “t”:
Sommet sans aucun arc en sortie.

Source

Puits

3

12 2

1 2

2 4
2

2 1

2 s

t
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Capacité et flot
• Capacités d’arc:

Poids non négatif sur les arcs de réseau

• Flot:
- Fonction sur les arcs de réseau:

0 ≤ flot ≤ capacité
flot entrant dans un sommet = flot sortant
valeur: flots combinés dans le puits

Source

Puits

3

12 2

1 2
2 4

2
2 1

2 s

t

1

2

2
1

01

0 1

1

2

1

0
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La logique du flot
• Flot:

flot(u,v) ∀ arc(u,v)
-Règle de la capacité:   ∀ arc (u,v)

0 ≤ flot(u,v) ≤ capacité(u,v)

-Règle de la conservation:  ∀ sommet v ≠ s, t

Σ flot(u,v) = Σ flot(v,w)
u∈in(v)             w∈out(v)

-Valeur du flot:

| f | = Σ flot(s,w) = Σ flot(u,t)
    w∈out(s)               u∈in(t)

• Note:
- ∀ signifie “pour tout”
- in(v) est l’ensemble des sommets u où il y a un arc 

de u à v
- out(v) est l’ensemble des sommets w où il y a un 

arc de v à w
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Problème du flot maximal
• “Étant donné un réseau N, trouvez un flot f de valeur 

maximale.”

• Applications:
- Circulation
- Systèmes hydrauliques
- Circuits électriques
- Configurations

Exemple de flot maximal

Source

Puits

3

12 2

1 2
2 4

2
2 1

2 s

t

2 2
1

1 1
1 1

1 2

12

0
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Flot augmentant

• Voila! nous avons augmenté la valeur de flot à 4!
Main un instant! Qu’est-ce qu’un chemin 
augmentant?!?

s

t

2 1

1

1 2

2 2

1

2 2

s

t

2

0

2

2

1

2

s

t

2 2

0

2 2

2 2

1

2 2

Un réseau avec flot de 
valeur 3

Chemin 
augmentant
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Chemin augmentant
• Arcs avant (forward edges)

flot(u,v) < capacité(u,v)
le flot peut être augmenté!

• Arcs arrières (backward edges)
flot(u,v) > 0
le flot peut être diminué!

u

v

u

v
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Théorème du flot maximal

Un flot a une valeur maximale
si et seulement si

il n’a pas de chemin augmentant.

Preuve:

Flot est maximal ⇒  Pas de chemin augmentant

      (La partie seulement si est simple à prouver.)

Pas de chemin augmentant ⇒ Flot est maximal

      (Prouver la partie si s’avère plus difficile.)
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Algorithme de Ford et Fulkerson

initialiser le réseau avec des flots nuls;
Méthode FindFlow

si un chemin augmentant existe alors 
trouver un chemin augmentant;
accroître le flot;
appeler récursivement FindFlow;

• Et maintenant, place à un peu d’animation 
algorithmique...
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Trouver le flot maximal
s

t

0 0

0

0 0

2 2

1

2 2

s

t

2 0

1

1 1

2 2

1

2 2

s

t

1 0

1

0 1

2 2

1

2 2

Initialiser le réseau avec 
des flots nuls.  Notez 
les capacités au des-
sus des arcs, et les 
flots sous les arcs.

Envoyez une autre unité 
de flot dans le réseau.

Envoyer une unité de flot 
dans le réseau.  Notez 
le chemin de l’unité de 
flot en rouge. Les va-
leurs de flot augmen-
tées sont en bleu.
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Trouver le flot maximal
s

t

2 1

1

1 2

2 2

1

2 2

s

t

2 2

0

2 2

2 2

1

2 2

s

t

2 2

0

2 2

2 2

1

2 2

Envoyez une autre unité 
de flot dans le réseau.  
Notez qu’il existe en-
core un chemin aug-
mentant, qui peut aller 
vers l’arrière, contre 
l’arc central.

Avec l’aide de Ford & Ful-
kerson, nous avons at-
teint le flot maximal 
de ce réseau.

Ça c’est de la puissance!!!

Envoyez une unité de flot 
dans le chemin aug-
mentant.  Notez qu’il 
n’y a plus de chemin 
augmentant.  Ce qui 
signifie...
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Réseau résiduel
• Réseau résiduel Nf = (V, Ef, cf, s, t)

• Dans le réseau résiduel Nf, tous les arcs (w,z) avec 
capacité cf(w,z) = 0 sont supprimés.

NfN

u

v

u

vf(u,v)

c(u,v)

cf(u,v)=c(u,v)−f(u,v)

cf(v,u)=f(u,v)

s

t

2 1

1

1 2

2 2

1

2 2

s
12

1

1
1 2

Chemin augmentant 
dans le réseau N

Chemin orienté dans 
le réseau résiduel Nf

Les chemins augmentants peuvent être trouvés 
avec une recherche en profondeur (DFS) sur Nf

t1
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L’algorithme de flot maximal de 
Ford-Fulkerson

Algorithme : MaxFlow(N)
Entrée: réseau N
Sortie: réseau Nf au flot maximal

Partie I: Mise en place
Débutez avec un flot nul:

f(u,v) ← 0 ∀ (u,v) ∈ E;
Initialisez le réseau résiduel:

Nf ← N;

Partie II: Boucle
repeat

recherchez un chemin orienté p dans Nf de s à t
if (chemin p trouvé) 

Df ← min {cf(u,v), f(u,v) ∈ p};
for (chaque (u,v) ∈ p) do

if  (avant (u,v)) 
f(u,v) ← f(u,v) + Df;

if  (arrière (u,v)) 
f(u,v) ← f(u,v) - Df;

mettre à jour Nf;
until (pas de chemin augmentant);
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Flot maximal: 
complexité temporelle

• Et maintenant, le moment tant attendu: la 
complexité temporelle de l’algorithme de flot 
maximal de Ford et Fulkerson (roulements de 
tambour!!!) [Pause pour effet dramatique]

         O( F (n + m) )

où F est la valeur du flot maximal, n est le nombre 
de sommets, et m est le nombre d’arcs

• Le problème avec cet algorithme, cependant, est 
qu’il dépend fortement de la valeur du flot maximal 
F.  Par exemple, si F=2n l’algorithme pourrait 
prendre un temps exponentiel.

• Alors, arrivent enfin Edmonds et Karp...
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Edmonds-Karp
• Variation sur l’algorithme de Ford et Fulkerson

• Utilise BFS pour choisir le chemin augmentant

• Trouver un plus court chemin de s à t. Y envoyer le 
plus grand flot possible.

• Répéter.

• C’est terminé.

s

t

2 0

0

2 0

2 2

1

2 2

s

t

2 2

0

2 2

2 2

1

2 2
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Pseudo-code

Algorithme : Edmonds-Karp MaxFlow(N)
Entrée: réseau N
Sortie: réseau Nf au flot maximal

Partie I: Mise en place
Débutez avec un flot nul:

f(u,v) ← 0 ∀ (u,v) ∈ E;
Initialisez le réseau résiduel:

Nf ← N;

Partie II: Boucle
repeat

p ← BFS-Shortest-Path(s,t,Nf)
if  (chemin p trouvé)

ef ← (u0,v0) , cf(u0,v0) = min{cf(u,v), (u,v) ∈ p}
Df ← cf(ef)

for  (chaque (u,v) ∈ p)
f(u,v) ← f(u,v) + Df
cf(u,v) ← cf(u,v) - Df

Nf.remove(ef)
until  (pas de chemin augmentant)
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Flot maximal: amélioration
• Théorème: [Edmonds & Karp, 1972]

En utilisant BFS (recherche en profondeur), un flot 
maximal peut être calculé en un temps...

      O((n + m) n m) = O(n3)

• n est le nombre de sommets et m le nombre d’arcs

• Note:
- L’algorithme d’Edmonds et Karp s’exécute en un 

temps O(n3) peu importe la valeur du flot maximal
- Le pire des cas ne survient habituellement pas en 

pratique.
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Qu’est-ce qu’une coupe?
• Une partition des sommets X=(Vs,Vt), avec 

s ∈ Vs et  t ∈ Vt

• Capacité X = (Vs,Vt):
- c(X) = Σ capacité(v,w) = (1+2+1+3) = 7

• La partition coupée (X dans notre cas) doit passer au 
travers du réseau entier, et ne peut pas passer au 
travers d’un sommet.

Source

Puits

3

6
4 2

1 6
2 4

1
8 7

2 s

t

X

Vs

Vt

v∈Vs

w∈Vt
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Flot maximal et 
coupe minimale

(valeur du flot maximal)

=

(capacité de la coupe minimale)

• Valeur du flot maximal: 7 unités de flot

• Capacité de la coupe minimale: 7 unités de flot

Source

Puits

3

2
4 0

1 6
2 4

1
8 7

2 s

t

X

Vs

Vt

2 3

1
6

2

3
02

1

3
1

3
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Pseudo-code

Algorithme : MinCut(N) basé sur Edmonds-Karp
Entrée: réseau N
Sortie: Séquence s d’arcs dans la coupe minimale de N

Partie I: Mise en place de Edmonds-Karp (page 56)

Partie II: Boucle
repeat

Les sommets de Nf ne sont pas marqués
p ← Marking-BFS(s,t,Nf)
 // une modification de BFS qui marque tout
// sommet lorsqu’il est visité
if  (chemin p trouvé)

y envoyer le plus grand flot possible
until  (pas de chemin augmentant)

Partie III: Calcul de la séquence MinCut
s ← new Sequence()
foreach sommet u ∈ Sommets Marqués

foreach sommet v ∈ Sommets Non-Marqués
if  (N a un arc e de u à v)

s.add(e)
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Pourquoi est-ce une coupe 
minimale?

• Soit f un flot de valeur |f| et X une coupe de capacité 
|X|.  Alors,  |f|<=|X|.

• Ainsi, si nous trouvons un flot  f*  de valeur |f* | et 
une coupe X*  de capacité |X*|=|f* |, alors f*  doit être 
le flot maximal et X*  la coupe minimale.

• Nous avons vu que, à partir du flot obtenu via 
l’algorithme de Ford et Fulkerson, nous pouvons 
construire une coupe à capacité égale à la valeur du 
flot. Donc,
- nous avons donné une preuve alternative que 

l’algorithme de Ford et Fulkerson génère un flot 
maximal

- nous avons montré comment construire une coupe 
minimale

s t
X


