ANALYSE D' ALGORITHMES Cas moyen vs. Pire des cas: Temps
d’exécution d’un algorithme
* Reévision mathématique rapide » Un algorithme peut étre plus performant avec
. certains ensembles de données qu'avec d’autres
» Temps d’exécution
» Trouver lecas moyermpeut s'avérer difficile, alors
» Pseudo-code les algorithmes sont mesurés typiquement selon |a
complexité temporelle dpire des cas
 Analyse d’algorithmes . , ST
* De plus, pour certain domaines d’application (par,
» Notation asymptotique ex. contrOle aérien, chirurgie, gestion de réseau)
connaitre la complexité temporelle diue des cas
» Analyse asymptotique est d’importance cruciale.
T(n)
n=4 G smd m~======---- pire des cas
oo o M cas moyen?
L
% % % — — @ S) @ \a\ g- 3mg| ” d
L O L . -~ . meilleur des ca
% T B T W: |q—) 2mg
Entrée Algorithme Sortie tmd
A B ¢ D E F G
Entrée
Analyse d’algorithmes 2.1 Analyse d’'algorithmes 2.2
Mesurer le temps d’exécution . i
c dour ot Au-dela des études
« Comment devrions-nous mesurer le temps Lo
d’exécution d’'uralgorithme? experlmentales
« Etude expérimentale: * Les études expérimentales ont quelques restrictions:
- Ecrivez unprogrammegui réalise I'algorithme. - Il est nécessaire déaliseret de tester I'algorithme
- Exécutez le programme avec des ensembles de afin de déterminer son temps d’exécution.
données de taille et de contenu variés. - Les essais peuvent étre faits seulement sur un
- Utilisez une méthodesgstem.currentTimeMillis()) ?ns_em_ble limite d,entree,et 'I,S peuvent ne pas’etra
- Les mesures résultantes devraient ressembler a: non considerees. _ A
- Afin de comparer deux algorithmes, les mémes
t (ms) environnements matériel et logictgvraient étre
60 4 utilisés.
50 1 » Nous développerons maintenant unéthodologie
4 - généraleour analyser le temps d’exécution
40T L d’'algorithmes qui:
T [- Utilise unedescription de haut niveale
30 T . I'algorithme au lieu de tester sa réalisation.
o+ - :.' = - Considérdoutes les entrées possibles
+ = u n - Permet d’évaluer I'efficacité d’un algorithme
T = :- indépendamment des environnements matérielg et
T m = logiciels.
]] 1] 1] 1 1] 1] 1
T T T T T T T T T T T T n
0 50 100
Analyse d’algorithmes 2.3 Analyse d’'algorithmes 2.4

Pseudo-code

» Le pseudo-codest une description d'algorithme qu
est plus structurée que la prose ordinaire mais ma
formelle qu’un langage de programmation.

» Exemple: trouver I'élément maximal d’'un vecteur
(array).

Algorithm arrayMax(A,n):
Entrée Un vecteur A contenamtentiers.
Sortie L'élément maximal de A.
currentMax — A[0]
fori « 1ton-1do
if currentMax< A[i] then
currentMax — A[i]
return currentMax

 Le pseudo-code est notre notation de choix pour
description d’algorithmes.

« Cependant, le pseudo-code cache plusieurs
problémes liés a la conception de programmes.

ins

a

Qu’est-ce que le pseudo-code?

» Un mélange de langage naturel et de concepts d¢
programmation de haut niveau qui décrit les idée
générales derriére la réalisation générique d’'une
structure de données ou d’'un algorithme.

- Expressions: utilisez des symboles mathématiq
standards pour décrire des expressions booléer
et numériques
- utilisez — pour des affectations (“=" en Java)

- utilisez= pour la relation d’égalité (“==" en Java)

Déclaration de méthodes:

- Algorithm nom(arami, param2

Eléments de programmation:

- décision: if ...then ... [else...]
- boucle while: while ... do
- boucle repeat: repeat... until ...
- boucle for: for ...do
- indexage de vecteurA[i]
- Méthodes:
- appel: object method(args)

- retour: return value

H—D

es
nes

Analyse d’algorithmes 25

Analyse d’'algorithmes 2.6

Analyse d’algorithmes

» Opérations primitivesopérations de bas niveau quj
sont largement indépendantes du langage de
programmation et qui peuvent étre identifiées en
pseudo-code, par exemple:

- Appel et retour d’'une méthode
- effectuer une opération arithmétique (addition)
- comparer deux nombres, etc.

« En inspectant le pseudo-code, nous pouvons
compterle nombre d’opérations primitives
exécutées par un algorithme.

* Exemple:

Algorithm arrayMax(A,n):
Entrée Un vecteur A contenamtentiers.
Sortie L'élément maximal de A.
currentMax — A[0]
fori « 1ton-1do
if currentMax< A[i] then
currentMax < A[i]
return currentMax

Notation asymptotique

 But: simplifier I'analyse en se débarrassant de
l'information superflue.

- comme “arrondir” 1 000 001 =1 000 000
- nous désirons indiquer formellement qué 3 n®

 La notation “Grand-O”"
soit les fonction$(n) etg(n), nous disons que
f(n) estO(g(n)) si et seulement si
il y a des constantes positivestng tel que
f(n) < cg(n) pourn=ng

f(n)=2n+6

oL 22 28 & 5 26 o "

Analyse d’algorithmes 2.7

Analyse d’'algorithmes 2.8

Un autre exemple
* n?n’est pasO(n)

* NOUS Ne pouvons pas trouveetn, tel que
n><cnforn=ng

20 21 22 23 24 25 26 o7

n
20 21 22 23 24 25 6 o7

Notation asymptotique (suite)

» Note Méme si il estorrectde dire
“7n - 3 estO(n®)”, une meilleureformulation est
“Tn - 3 estO(n)", c’est-a-dire, nous devrions faire
I'approximation la plus juste possible.

» Régle simplelaissez tomber les termes d’ordre
inférieur de méme que les facteurs

- 7n - 3 estO(n)
- 8nlog n + 5n? + n estO(n?log n)

* Classes spéciales d’algorithmes:

- logarithmique: O(log n)

- linéaire O(n)

- quadratique o(n?)

- polynomial O(nk), k=1
- exponentiel o@"m,n>1

* “Parenté” de Grand-O
- Q(f(n)): Grand-Oméga
- O(f(n)): Grand-Théta

Analyse d’algorithmes 2.9

Analyse d’'algorithmes 2.10

Analyse asymptotique et
temps d’exécution

« Utilisez la notation Grand-O pour indiquer le
nombre d'opérations primitives exécutées en
fonction de la taille d’entrée.

« Par exemple, nous disons que l'algorithamayMax
a un temps d’exécutio(n).

» En comparant les temps d’exécution asymptotiqu
- un algorithme d’ordré®(n) est meilleur qu’un
autre d’ordreO(n?)
- de la méme fagor)(log n) est meilleur qué®(n)
- hiérarchie de fonctions:

- logn<<n?<<n<<nlogn<<n?

<<ni<c N
 Attention!

- Méfiez-vous des facteurs constants trés grands.
algorithme au temps d’exécution 1 000 G0€st
gquand mém®(n) et peut étre moins efficace sur
votre ensemble de données qu’un autre au tem
d’exécution 22, qui esto(n?).

Un

ps

Exemple d’analyse
asymptotique

» Un algorithme pour calculer les moyennes préfixes:

Algorithm prefixAveragesiX):
Entrée Un vecteur de nombreéan éléments.
Sortie Un vecteur de nombregsan éléments tel que
A[1] est la moyenne des élémek{s)], ... , X[i].
Soit A un vecteur da nombres.
fori —« Oton-1do
a0
forj — Otoido
a — a+X[]
Alll — al(i +1)
return arrayA

» Analyse ...

Analyse d’algorithmes 2.11

Analyse d’'algorithmes 2.12

Révision mathématique rapide

 Progression arithmétique
- Un exemple

n
> i=1+2+3+...+n =
i=1

2
n“+n
2

- deux représentations visuelles

Un autre exemple

» Un meilleur algorithme pour calculer les moyenne
préfixes:

Algorithm prefixAverages2(X):
Entrée Un vecteur de nombresan éléments.
Sortie Un vecteur de nombregsan éléments tel que
A[i] est la moyenne des élémekd], ... , X[i].
Soit A un vecteur da nombres.

s~ 0
A A fori —« Oton-1do
s « s+ X[i]
n+1 Alil < g +1)
n n return arrayA
» Analyse ...

3 r 3
2 2
1 IJ_ 1

O 1 2 w2 91 2 3 n o

Analyse d’algorithmes 2.13 Analyse d’'algorithmes 2.14

Mathématiques a réviser

» Logarithmes et exposants
- propriétés debogarithmes

logp(xy) = logyx + logy
logy(x/y) = logyX - logny
logpx® = alogx
loga

log,b

logya =

- propriétés desxposants

Mathématiques a réviser (suite)

 Plancher loor)

XO= le plus grand entieg x
* Plafond Ceiling)

XO= le plus petit entier x

e Sommations
- définition générale:
t
s f(i) = f(s) +f(s+1) +f(s+2) +... +1(t)

i=s

- ouf est une fonctiors est I'index de départ, eest

a0+0) = Pt I'index d’'arrivée

b= (pyc » Progression géométriquidi) = a
a = (a) - soit un entien = 0 et un nombre réel Oa# 1
/et = {0 no X Coq_gtt

ya=l+tat+ta +.. +ta= ———
log,p _ 1-a

=-a i=0

c_ _c*logb - les progressions géométriques ont une croissar
b-=a exponentielle.

Analyse d’algorithmes 2.15 Analyse d’'algorithmes 2.16

ce

Sujets avancés: techniques de
justification simples

« Par exemple
- Trouvez un exemple
- Trouvez un contre-exemple

 Par contradiction“Contra” Attack)
- Trouvez une contradiction dans l'inverse de
I'’énoncé
- Contrapositive

« Induction et invariants de boucle
- Induction

- 1) Prouvez le cas de base

- 2) Prouvez que n'importe quel cagmplique que le prochain cag
(n+ 1) est aussi vrai

- Invariants de boucle
- 1) Prouvez I'énoncé initiefy
- 2) Démontrez qu§_; implique ques sera vrai apres l'itération

Sujets avances: autres
techniques de justification
» Preuve paexceés d’agitation des mains
» Preuve padiagramme incompréhensible

* Preuve pacorruption
- voir le professeur ou I'AE aprés la classe

La méthode desouveaux habits de 'Empereur

- “Cette preuve est tellement évidente que seul u
idiot serait incapable de la comprendre”

Analyse d’algorithmes 2.17

Analyse d’'algorithmes 2.18

PILES, FILES ET LISTES
CHAINEES

Types abstraits de données (TAD)

Piles

Exemple: Analyse boursiére

Files

Listes chainées

Files a deux boutsléque}

Types abstraits de données
(TAD)

» Untype abstrait de donnéegAbstract Data Type
—ADT) est une abstraction de structure de donné
aucun codage n’est impliqué.

» Un TAD spécifie:
- ce qui est contendans le TAD

- les opérationsjui peuvent étre effectuées sur ou
par le TAD.

» Par exemple, si nous cherchons & modéliser un s
de billes avec un TAD, nous pourrions spécifier qu

- ce TAD contient des billes

- ce TAD supporte l'insertion d’une bille et le retra
d’une bille.

* Il y a beaucoup de TAD standards et formalisés.
sac de billes n’est pas I'un d’entre eux.

» Dans ce cours, nous apprendrons différents TAD
standards (piles, files, listes...).

es:

ac

—

n

Piles, files et listes chainées 3.1

Piles, files et listes chainées 3.2

Piles Stacky

» Unepile est un contenant pour des objets insérés
retirés selon le principgernier entré, premier sorti
(last-in-first-out ouLIFO).

* Les objets peuvent étre insérés a tout moment,
seulement le dernier (le plus récemment inséré) p
étre retiré.

* Insérer un item correspond a empiler I'item
(pushing. Dépiler la pile popping correspond au
retrait d’un item.

« Analogie: distributeur de bonbons PEZ

Y= N
pzzza

et

ais
eut|

Le TAD Pile (ou Stack)

» Une pile est uttype abstrait de donné€BAD) qui
supporte deux méthodes principales:

- pushp): Insére I'objeto sur le dessus de la pile.
Retire I'objet du dessus de la pile et

retourne-le; si la pile est vide, alors une
erreur survient.

- pop():

» Les méthodes secondaires suivantes devraient a
étre définies:

- size(): Retourne le nombre d'objets dans la
pile.

- isEmpty(): Retourne un booléen indiquant si la
pile est vide.

- top(): Retourne 'objet du dessus de la pile

sans le retirer; si la pile est vide, alor]
une erreur survient.

ISSi

O =

Piles, files et listes chainées 3.3

Piles, files et listes chainées 3.4

1)

Exemple Un algorithme inéfficace
L' étendue(spar) du prix d’une action & un certain * Il y a une facon directe de calculer I'étendue d’'un
jour, d, est le nombre maximum de jours consécutifs action a un jour donné pouijours:
(jusgu’a aujourd’hui) ou le prix de I'action a été plus
bas ou égal a son prix au jair Algorithm computeSpansPj:
Entrée Un vecteur de nombrésan éléments.
s=1 Sortie Un vecteur de nombrésan éléments tel que
f— -6 gi] est I'étendue de I'action au jour
6~ SoitSun vecteur da nombres
K—ﬁ for i=0to n-1 do
S]_:l 4 kK <0
— — done-false
S3=2 — repeat
T if P[i-k] <P][i] then
s,=1 s;=1 Kkl
ey ety else
done-true
until (k=i) or done
gi] <k
return arrayS
0 1 2 3 4 5 6 Le temps d’exécution de cet algorithme est (ouf!)
O(n?). Pourquoi?
Piles, files et listes chainées 35 Piles, files et listes chainées 3.6

Une pile peut aider!

» Nous voyons que au jouri peut étre calculé
facilement si nous connaissons le jour le plus progche
avanti ou le prix est plus haut lors de ce jour que |e
prix au jours. Si un tel jour existe, appelonsHg

* L'étendue est maintenant définie gar i - h;

-+ —

<t

U]

0 1 2 3 4 5

ol

Nous utilisons uneile pour calculeh,

Etude de cas: Uneppletpour
analyse boursiere (suite)

 Le pseudo-code pour notre nouvel algorithme:

Algorithm computeSpan®(:
Entrée Un vecteur de nombrésan éléments.
Sortie Un vecteur de nombregsan éléments tel que
gi] est I'étendue de I'action au jour
SoitSun vecteur da nombres eD une pile vide
for i=0to n-1do
done-false
while not(D.isEmpty()or dong do
if P[i]=P[D.top()] then
D.pop()
else
done-true
if D.isEmpty()then
he -1
else
h—D.top()
gi] ~i-h
D.push()
return arrayS

 Analysons le temps d’exécution demputeSpan2

Piles, files et listes chainées 3.7

Piles, files et listes chainées 3.8

A propos de Java

« Etant donné le TAD pile, nous devons coder cet
ADT afin de I'utiliser dans nos programmes.

» Vous devez comprendre deux concepts de
programmation: lesterfaceset lesexceptions

» Uneinterfaceest une fagon de déclarer ce qu'une
classe peut faire. Elle n'indique pas comment le
faire.

» Pour undnterface vous écrivez simplement les
noms de méthode=t leursparamétresCe qui est
important dans un parameétre est sgre.

« Plus tard, quand vous écrirez wiassepour cette
interface, vous coderez alors le contenu de ces
méthodes.

» Séparer interfacede laréalisatiorest une technique
de programmation trés utile. Exemple d’interface:

public interface radio {
public void play();
public void stop();

Une interface de pile en Java

» Méme si la structure de donnée pile est déja inclu
comme classe Java dans fpetkagé java.util, il est
possible, et parfois méme préférable, de définir vo
propre pile spécifique, comme ceci:

public interface Stack {

/I accessor methods

public int size(); // return the number of
/I elements in the stack

public boolean isEmpty(); // see if the stack
/l'is empty

public Object top() // return the top element

throws StackEmptyException; // if called on
/I an empty stack

/I update methods

public void push (Object element); // push an
/I element onto the stack. Note that
/I the type of the parameter is
/I specified as an Object

public Object pop() // return and remove the
/I top element of the stack
throws StackEmptyException; // if called on
/I an empty stack

}

se

tre

Piles, files et listes chainées 3.9

Piles, files et listes chainées 3.10

Exceptions

» Lesexceptionssont un autre concept de
programmation trés utile, surtout dans un contexte
de gestion d’erreurs.

» Quand vous détectez une erreur (ou un cas
exceptiorel), vous lanceztfirow) une exception.
* Exemple
public void mangePizza() throws MalAuVentreException

{

if (tropMangé)
throw new MalAuVentreException(“Ouch”);

}

« Aussitbt I'exception lancée, le flux de contrdle sornt
de la méthode en cours d’exécution.

« Alors quandvialAuVentreException est lancée, nous
sortons de la méthodeangePizza() pour aller la ou
cette méthode a été appelée.

Encore des exceptions

» Supposons que le fragment de code suivant ait
appelé la méthodeangePizza() en premier lieu.

private void simuleRencontre()

{
try
unStupideAE.mangePizza();
}

catch(MalAuVentreException €)

{

System.out.printin(“quelqu’un a mal au ventre”);

Piles, files et listes chainées 3.11

Piles, files et listes chainées 3.12

Toujours des exceptions

* Nous retournerons @StupideAE.mangePizza():
parce que, souvenez-vousyngePizza() langa
I'exception.

* Le bloctry et le bloccatch indiquent que nous
sommes a I'écoute des exceptions qui sont spécifi
dans le paramétre detch.

Parce queatch est a I'écoute de
MalAuVentreException, le contrdle ira au blogtch, et
System.out.printin sera alors exécuté.

Notez que le bloeatch peut contenir n’importe
quoi, pas seulement Wwystem.out.printin. Vous

pouvez gérer les erreurs détectées comme bon vpus

semble, et vous pouvez méme les relancer.

Notez aussi que si vous lancez une exception da
votre méthode, vous devez ajouter une clauses
a la suite du nom de votre méthode.

Pourquoi utiliser les exceptions? Vous pouvez
déléguer vers le haut la responsabilité de traiter I¢
erreurs, c'est-a-dire que le code qui a appelé la
méthode en cours aura a gérer le probléme.

ns

S

Toujours des exceptions

» Sivous ne traitez pas une exception (awen), elle
sera propagée vers le haut le long de la chaine
d’appels de méthodes jusqu’a ce que I'utilisateur
'observe.

vers la console

3

allerUofO()

aucune de ces
classes ne traite
les exceptions
MalAuVentre

suivre2514(

faireDev16(

pauseCafe(
allerParty()
)

)
)
D
D
P)

MalAuVentreException
lancée

Piles, files et listes chainées 3.13

Piles, files et listes chainées 3.14

Exceptions finales

* Ainsi, nous savons comment lancer et traiter des
exceptions. Mais que sont-elles exactement en J3
Des classes!

* ObserveavialAuventreException.

public class MalAuVentreException extends
RuntimeException {

public MalAuVentreException(String err)
{
super(err);

}

va

D

Pile a base de vecteur

» Créez une pile en utilisant un vecteur et en spécifi
une taille maximalé\, par exN =1 024.

* La pile est composée d’'un vecteurélémentsS
et d'une variable entiétte I'index de I'élément au-
dessus de la pil&.

s TIPS~ SNETTT []]

0 1 2 t N-1

 Les indices acceptables pour ce vecteur commen
a 0, alors nous initialisorsa -1.

» Pseudo-code

Algorithm size():
return t +1

Algorithm isEmpty():
return (t<0)

Algorithm top():
if iIsSEmpty()then
throw a StackEmptyException
return]

ant

cent

Piles, files et listes chainées 3.15

Piles, files et listes chainées 3.16

Pile a base de vecteur (suite)

» Pseudo-Code (suite)

Algorithm pushf):
if size() =N then
throw a StackFullException
t-t+1

S:t] <0

Algorithm pop():
if isEmpty()then
throw a StackEmptyException
e—9t]
qt] < null
t—t-1
return e

» Chacune des méthodes ci-haut a un temps
d’exécution constanty(1))

- La réalisation avec vecteur est simple et efficace.

* Il y a une limite supérieurd\, pour la taille de la

Pile a base de vecteur:
Une réalisation en Java

public class ArrayStack implements Stack {

/I Implementation of the Stack interface
/I using an array.

public static final int CAPACITY = 1000; // default
/I capacity of the stack

private int capacity; // maximum capacity of the
/I stack.

private Object S[]; // S holds the elements of
/I the stack

private int top = -1; // the top element of the
/I stack.

public ArrayStack() { // Initialize the stack
this (CAPACITY);// with default capacity
}

public ArrayStack(int cap) { // Initialize the
/I stack with given capacity
capacity = cap;
S = new Object[capacity];

pile. Une valeur arbitrairll pourrait étre trop petite }
pour une application, ou gaspiller de la mémoire.
Piles, files et listes chainées 3.17 Piles, files et listes chainées 3.18

Pile a base de vecteur —
Réalisation en Java (suite)

public int size() { //Return the current stack
Il size
return (top + 1);

}

public boolean isEmpty(){ // Return true iff
/I the stack is empty
return (top < 0);

public void push(Object obj) { // Push a new
/I object on the stack
if (size() == capacity) {
throw new StackFullException(“Stack overflow.”);

}
S[++top] = obj;

public Object top() // Return the top stack
/I element
throws StackEmptyException {
if (isEmpty()) {
throw new StackEmptyException(“Stack is
) empty.”);

return S[top];

}

Pile a base de vecteur —
Réalisation en Java (suite)

public Object pop() // Pop off the stack element
throws StackEmptyException {
Object elem;

if (IsEmpty()) {

throw new StackEmptyException(“Stack is Empty.”);

elem = S[top];

S[top--] = null ; // Dereference S[top] and
/I decrement top

return elem;

}

Piles, files et listes chainées 3.19

Piles, files et listes chainées 3.20

Pile extensible a base de vecteur Stratégie ajustée ¢=4)
* Au lieu d’abandonner avetackFullException, NOUS » Débuter avec un vecteur de taille O
pouvons remplacer le vecteBpar un plus grand o — L.
vecteur et continuer & traiter les opératipash * Le cot d'une opératiopushspéciale esti2 + 5
] push phase n N codt
Algorithm push6): 1 1 0 0 5
if size()= Nthen
A < new array of length f(N) 2 1 1 4 1
fori « OtoN-1 3 1 2 4 1
Al ~ di]
S. A 4 1 3 4 1
tet+1 5 2 4 4 13
gt -~ o 6 2 5 8 1
« De quelle taille devrait étre le nouveau vecteur? 7 2 6 8 1
- stratégie ajustééadditionnerc): f(N) =N +c¢ 8 2 7 8 1
- stratégie de croissandgloubler):f(N) = 2N 9 3 8 8 21
« Afin de comparer ces deux stratégies, nous 10 3 9 12
utiliserons le modéle de co(t suivant: 11 3 10 12 1
opératiorpushréguliére: ajouter un élément 1 12 3 11 12 1
opératiorpushspéciale: créer un vecteur de f(N) + 13 4 12 12 29
taille f(N), copierN éléments, et ajouter un | N+ 1
élément
Piles, files et listes chainées 3.21 Piles, files et listes chainées 3.22

Performance de la stratégie
ajustée

» Nous considéronis phases, old = n/c

Stratégie de croissance

» Débuter avec un vecteur de taille 0, ensuite 1, 2, 4

 Le colt d’'unpushspécial est deN8+ 1, ouN > 0

» Chaque phase correspond a une nouvelle taille d push phase n N colt
vecteur 1 0 0 0 >
« Le colt d’'une phaseest de 2i 2 1 1 1 4
« le co(t total den opérationgpushest le codt total de 3 2 2 2 7
k phases, avelc=n/c: 4 2 3 4 1
2(1+2+3+..%), 5 3 4 4 13
6 3 5 8 1
qui est OK?) etO(n?). 7 3 6 8 1
8 3 7 8 1
9 4 8 8 25
10 4 9 16 1
11 4 10 16 1
12 4 11 16 1
16 4 15 16 1
17 5 16 16 49
Piles, files et listes chainées 3.23 Piles, files et listes chainées 3.24

b ...

Performance de la stratégie de
croissance

* Nous considéronis phases, ot =logn

» Chaque phase correspond a une nouvelle taille de

vecteur
« Le co(t d’'une phaseest de 2" 1

« le co(t total den opérationgpushest le co(t total de
k phases, avek=logn

2+4+8+ .. +99n+1=

2n+n+n/2+n/4+..+8+4+24n-1

 La stratégie de croissance gagne!

Analyse amortie

* Le temps d’exécution amorti d'une opération parmi
une série d’opérations est le temps d’exécution du
pire des cas de la série d’opérations toute entiére
divisé par le nombre d’opérations.

e La méthode de comptabilité détermine le temps
d’exécution amorti a I'aide d’'un systéme de crédit
de débits.

Nous considérons I'ordinateur comme un appareil a
Sous qui exige un cyber-dollar pour une quantité
constante de temps de calcul.

Nous fixons un procédé pour facturer les opératio
Il s'agit Ia d’'unprocédé d’amortissement

» Nous pouvons surfacturer certaines opérations ef
sousfacturer d’autres. Par exemple, nous pouvong
facturer un méme montant pour chaque opératior

Le procédé doit toujours nous procurer suffisament
d’argent pour payer le codt réel de I'opération.

Le co(t total de la série d’opérations n’est pas plu
élevé que le montant total facturé.

* (temps amortix (total $ facturé) (# opérations)

Piles, files et listes chainées 3.25

Piles, files et listes chainées 3.26

Procédé d’amortissement pour
la stratégie de croissance

« A la fin d’'une phase, nous devons avoir assez écq

« Alafin de la phase 3, il faut avoir économisé $24

©LLLEE
©LLLEE
@LLLEE
@@

01234567

» Les économies payent pour la croissance du vec

0123456 7 8 9101112131415

» Nous facturon$7 pour unpush Les$6 économisés
parpushrégulier sont “conservés” dans la second
moitié du vecteur.

[¢)

not
misé pour payer Ipushspécial de la phase suivante.

eul|.

Analyse d’amortissement pour
la stratégie de croissance
* Nous facturon$5 (offre spéciale de lancement)
pour le premiepushet$7 pour les suivants.
push n N solde |facture| co0lt
1 0 0 $0 $5 $2
2 1 1 $3 $7 $4
3 2 2 $6 $7 $7
4 3 4 $6 $7 $1
5 4 4 $12 $7 $13
6 5 8 $6 $7 $1
7 6 8 $12 $7 $1
8 7 8 $18 $7 $1
9 8 8 $24 $7 $25
10 9 16 $6 $7 $1
11 10 16 $12 $7 $1
12 11 16 $18 $7 $1
16 15 16 $42 $7 $1
17 16 16 $48 $7 $49

Piles, files et listes chainées 3.27

Piles, files et listes chainées 3.28

“Casting” avec une pile
genérigue

Piles dans la Machine Virtuelle
Java (JVM)

* Avoir un ArrayStack qui peut contenir seulement » Chaque processus en exécution dans un programme
des objets Entier ou des objets Etudiant. Java a sa propre pile de méthodes (Method Stack).
« Afin de réaliser ceci a I'aide d’'une pile générique, » Chaque fois qu’une méthode est appelée, elle est
les objets retournés doivent étre “moulé&ss) empilée sur une telle pile.
dans le bon type de donnée. e , . P R
« Lutilisation d’'une pile pour cette opération permet/a
« Un exemple en Java: Java de faire plusieurs choses utiles:
- Exécuter des appels récursifs de méthode
public static Integer[] reverse (Integer[] a) { - Afficher la trace d’une pile pour localiser une
ArrayStack S = new ArrayStack(a.length); erreur.
Integer[] b = new Integer{a.length]; « Java inclut aussi une pile d’opérandes qui est utilisée
for (inti=0; i< alength; i++) pour évaluer les instructions arithmétiques:
S.push(a[i]);
for (intji=0; i< alength; i++) Integer add, b):
b[i] = (Integer)(S.pop()); // the popping OperandStack Op
I/ operation gave us an Object, and we Op.pushg)
/I casted it to an Integer before Op.puship)
/I assigning it to b[i]. templ— Op.pop()
return b; temp2 Op.pop()
} Op.pushiempl + tempp
return Op.pop()
Piles, files et listes chainées 3.29 Piles, files et listes chainées 3.30
Pile de méthodes Java Files Queue$
4)) » Une file se distingue d’'une pile par ses routines
main () {)
Y d’insertion et de retrait qui suivent le principe
int i=5; premier entré, premier soffirst-in-first-out, ou
: FIFO).

P 14 cool) « Des éléments peuvent étre insérés a tout moment,
PC = 320 . mais seu_lement Ilélément,qui a été le plus longtemps
m=7 } dans la file peut étre retire.

* Les éléments somnfilés(enqueuelpar I'arriere
cool: cool (int j) { (rear) etdéfilé (dequeueylpar I'avant front)
PC =216 int k=7;
i=5 .
k=7 .
216 fool(k); front rear

main: .
= O OSOZNC
i=5 }

320 fool (int m) {
Pile Java .
}
N J
Programme Java
Piles, files et listes chainées 3.31 Piles, files et listes chainées 3.32

Le TAD File (ou Queue)

« La file supporte deux méthodes fondamentales:
- enqueued): Insére I'objeto a I'arriére de la file
- dequeue(): Retire I'objet du devant de la file et

retourne-le; une erreur survient
lorsque la file est vide

File a base de vecteur

» Créez une file en utilisant un vecteur circulaire.
 Spécifiez une taille maximah, par exN = 1 000.

* La file est composée d’un vecteure&léments)
et de deux variables entiéres:

- f, I'index de 'élément du devant
- 1, I'index de I'élément suivant celui de l'arriere

» Configuration “normale”

* Les méthodes secondaires suivantes devraient auss Q[TTTITTTN ~ STTTT 111
étre définies:
: 012 f r N-1
- size(): Retourne le nombre d’objets dans I3 Configuration circulaire (trapped arount)
file
- isEmpty(): Retourne un booléen indiquant si la QLI I T ITIIN-SNLLTLLELT]
pile est vide 012 r f N1
. . ird=r?
- front(): Retourne, sans le retirer, I'objet au * Que veut dird=r?
devant de la file; si la pile est vide,
alors une erreur survient
Piles, files et listes chainées 3.33 Piles, files et listes chainées 3.34

File a base de vecteur (suite)

* Pseudo-code

Algorithm size():
return (N - f +r) modN

Algorithm isEmpty():
return (f=r)

Algorithm front():
if isEmpty()then
throw a QueueEmptyException

return Q[f]

Algorithm dequeue():
if isSEmpty()then
throw a QueueEmptyException
temp — Q[f]
Q[f] < null
f — (f+ 1) modN
return temp

Algorithm enqueuet):
if size =N - 1then
throw a QueueFullException
Qlr] ~o
r — (r +1) modN

Réalisation d’'une file a l'aide
d’une liste simplement chainée

* nceuds connectés en chaine par des lignhs)(
head tail

N N
(s T [y -0

(Rome) (Seattle) C Toron@

« la téte hiead de la liste est le devant de la file, la
gueue de la listadil) est le derriére de la file.

* pourquoi pas le contraire?

Piles, files et listes chainées 3.35

Piles, files et listes chainées 3.36

Retirer I'élément de téte

head tail

N\ N
KNG KN KNG KiC e

(Baltimor@ (Rome) (Seatt@ (Toron@

» avancez la référence de la téte

head tail

-
s

R N\ N\

.' '._'_L':-*| Ut [+ 2 [0
| \

| \ |

\

‘ |
\ - !
\\gBaItlmor?/l (Rome) (Seatt@ (Toron@

* insérer un élément a la téte est tout aussi facile.

Insérer un élément a la queue

» créez un nouveau nosud

head tail

\

r==—rn

KUE g KUE g KUE g SE RN gl

[\ \
\

| |
\ |
(Rome) (Seattle) (Toron@ \\\ll\

z
|

» enchainez-le et déplacez la référence a la queue

head tail

N
EUC e ENC S RNC R RuC s

C Rome) C Seattle) C Toron@ (Zurich)

e comment retirer I'élément de queue?

Piles, files et listes chainées 3.37

Piles, files et listes chainées 3.38

Files a deux bouts
(Double-Ended Queues)

« unefile a deux boutsoudeque supporte 'insertion
et le retrait a I'avant comme a l'arriére.

Réalisations de piles et de files a
I'aide de Deques

* Piles avec Deques:

. . Réalisation
e Le TAD Deque: Méthode de Pile avec Deque
- insertFirstf): Inséree au début de la deque size() size()
isEmpty() isEmpty()
- insertLasté): Inséree a la fin de la deque top() last()
push(e) insertLast(e)
- removeFirst() retire et retourne le premier élément pop() removeLast()
- removelLast()retire et retourne le dernier élément * Files avec Deques:
Méthode de File| Roalisation
» Les méthodes secondaires incluent: avec Deque
_ flrSt() S|ze() SIZG()
- Jast() isEmpty() |_sEmpty()
i front() first()
- size() enqueue() insertLast(e)
- iIsEmpty() dequeue() removeFirst()
Piles, files et listes chainées 3.39 Piles, files et listes chainées 3.40

Le patron de conception
Adaptateur (Adaptor Patterr)
« Lutilisation d’une deque pour réaliser une pile ou

une file est un exemple ghatron de conception
adaptateufadoptor patteri. Ce patron réalise une

classe en utilisant des méthodes d’'une autre classe.

» Souvent, les classeslaptateurspécialisent des
classes générales.

« Voici deux applications:

- Spécialisation d’'une classe générale en changegant

gquelques méthodes:
Ex: réalisation d’'une pile avec une deque.
- Spécialisation de types d’'objets utilisés par une
classe générale:
Ex: définir une classitegerArrayStackjui

adapteArrayStackpour ne contenir que des

entiers.

Réalisation de deques a l'aide de
listes doublement chainées

- Effacer I'élément de queue d’une liste simplement

chainée ne peut pas étre fait en un temps consta

 Pour réaliser une deque, nous utilisons liste
doublement chainéavec des nceuds spéciaux pou
'avant (heade} et I'arriere {railer).

header trailer

(Baltimore) CNEW York) (Providen%

* Un nceud de liste doublement chainée a un lien
suivant(nex) et un lienprécédenf{prev). Ce nceud
supporte les méthodes suivantes:

- setElement(Object e)
setNext(Object newNext),
setPrev(Object newPrev
getElement(), getNext(), getPrev()

 En utilisant une liste doublement chainée, toutes
méthodes de deque ont un temps d’exécution
constant (c'est-a-dire,O(1))!

les

Piles, files et listes chainées 3.41

Piles, files et listes chainées

3.42

Réalisation de deques a l'aide de

listes doublement chainées (suite)

* En réalisant une liste doublement chainée, nous

ajoutons deux nceuds spéciaux aux extrémités: les

nceudseaderettrailer.
- Le nceucheaderest placé avant le premier éléme

de la liste. Il a un prochain lien valide, mais un lien

précédent vide.

- Le nceudrailer est placé aprés le dernier éléme
de la liste. Il a un lien précédent valide, mais un
prochain lien vide.

* les nocudbeaderettrailer sont des sentinelles ou
nceuds “bidon” parce qu’ils ne contiennent pas
d’éléments.

« Diagramme de notre liste doublement chainée:

header trailer

[« HEAL s WA WD

(Baltimore)

(New York) (Providenca

Réalisation de deques a l'aide de
listes doublement chainées (suite]

* Visualisons le code demoveLast().

header secondtolast last trailer

(Baltimore) (New York) (Providen@ (San Fran@co

last

secondtolast/i\t%lerl
7 N
\

\

\

\ \
(Baltimore) (New York) (Providen% \\ (San Fran@&\io
S

header

header trailer

(Baltimore) (New York) (Providen%

Piles, files et listes chainées 3.43

Piles, files et listes chainées

3.44

SEQUENCES

* \Vecteurs
* Positions
* Listes

» Séquences générales

Etude de cas: le tri & bullBbble Sot

O D

Le TAD Vecteur (Vector)

» Une séquencs (avecn éléments) qui supporte les
méthodes suivantes:

elemAtRank():
Retourne I'élément d8 au rang; une
erreur survientsi< 0 our >n-1

replaceAtRank(e):
Remplace I'élément au ramgavece et
retourne I'ancien élément; une erreur
survient sir <0 our >n-1

insertAtRanki,e):
Insére un nouvel élément dadgui aura
le rangr; une erreur survient si< 0 ou
r>n-1

removeAtRankq():
Retire deSI'élément au rang; une
erreur survientsi< 0 our >n-1

Séquences

4.1

Séquences 4.2

Réalisation avec vecteurdrray)

« Extraits de pseudo-code:

Réalisation avec vecteur (suite)

» Complexité temporelle des diverses méthodes:

Algorithm insertAtRanky,e): Méthode Temps
fori=n-1,n-2, ... rdo .
gi+1] < sf] _sae O(2)
9r] - e iISEmpty o(1)
ne-n+1 elemAtRank 0o(1)
replaceAtRank 0o(1)
ﬂﬂﬂﬂﬂﬂ insertAtRank O(n)
sLIT T T T I T T | | | | removeAtRank O(n)
012 r n-1 N-1
Algorithm removeAtRankq):
e« 9r]
fori=r,r+1,.. n-2do
gi] « i +1]
n-n-1
return
spr PP PP
012 r n-1 N-1
Séquences 4.3 Séquences 4.4

Réalisation avec liste
doublement chainée

« |a liste avant une insertion:

header trailer

S

(Baltlmore) (Paris) (Prowdenc

 création d'un nouveau nceud a insérer:

header trailer

(Providen%

* la liste apres l'insertion:

header trailer

[AT+ 4

(Baltimore) (New York) (Paris) (Providen%

public void insertAtRank (int rank, Object element)
throws BoundaryViolationException {
if (rank < 0 || rank > size())
throw new BoundaryViolationException(“invalid rank”);

DLNode next = nodeAtRank(rank); // the new node
/Iwill be right before this

DLNode prev = next.getPrev(); // the new node
/Iwill be right after this

DLNode node = new DLNode(element, prev, next);
/I new node knows about its next & prev. Now
/I we tell next & prev about the new node.

next.setPrev(node);
prev.setNext(node);
size++;

Séquences 4.5

Séquences 4.6

Réalisation avec liste
doublement chainée (suite)

« la liste avant une suppression:

header trailer

[WA

(Baltimore} (New York) (Paris) (Providen%

* suppression d'un nceud:

header trailer

CBaItimore) CNew York) (Paris) (Prowden%

* la liste apres la suppression:

header trailer

S

(Baltlmore (New York) (Prowdenc

Réalisation en Java

 code pour supprimer un nceud

public Object removeAtRank (int rank)
throws BoundaryViolationException {
if (rank < 0 || rank > size()-1)

throw new BoundaryViolationException(“Invalid
rank.”);

DLNode node = nodeAtRank(rank); // node to
/I be removed

DLNode next = node.getNext(); // node before it
DLNode prev = node.getPrev(); // node after it
prev.setNext(next);

next.setPrev(prev);

size--;

return node.getElement(); // returns the
/I element of the deleted node

Séquences 4.7

Séquences 4.8

Réalisation en Java (suite)

« code pour trouver un nceud a un certain rang

private DLNode nodeAtRank (int rank) {

/I auxiliary method to find the node of the
/I element with the given rank. We make

Nceuds

* Les listes chainées supportent I'exécution efficac
d’opérations basées sur les nceuds
- removeAtNode(Node V) etnsertAfterNode(Node v,
Object e), sont de complexi@(1).

11

s . » Cependant, les opérations basées sur les nceuds ne
/I auxiliary methods private or protected. L . PN . <
DL Node node: sont pas significatives dans une réalisation basée| sur
ode node, un vecteur car il n’y a pas de nceud dans un vecteur.

if (rank <= size()/2) { //scan forward from head o . o

node = header.getNext(): * Les nceuds sont spécifiques a la réalisation.

for (int i=0; i < rank; i++) e Dilemme:

node = node.getNext(); - Si nous ne définissons pas d’opérations basées sur
} les nceuds, nous ne profitons pas pleinement des
else {// scan backward from the tail listes doublement chainées.

node = trailer.getPrev(); - Si nous en définissons, nous violons la généralite

for (int i=0; i < size()-rank-1 : i++) des types abstraits de données.

node = node.getPrev();
}
return node;

}
Séquences 4.9 Séquences 4.10
De nceuds a positions Le TAD Sequence
* Nous présentons le TAPosition » Combine les TAD Vecteur et Liste (héritage
o . multiple
« Notion intuitive de “place” d’'un élément ple)
» Ajoute des méthodes qui jettent un pont entre rangs

« Les positions n'ont qu’une seule méthode:
element(): Retourne I'élément a cette position

* Les positions sont définies relativement aux autre
positions (relation avant/apres)

* Les positions ne sont pas liées a un élément ou 3

rang.
Le TAD Liste (List)

» TAD avec méthodes basées sur les positions
» méthodes génériquesge(), isEmpty()

* méthodes de requét&irst(p), isLast(p)

» méthodes accessoir&st(), last(), before(p), after(p)

» méthodes de mise a joswapElements(p,q),
replaceElement(p,e), insertFirst(e), insertLast(e),
insertBefore(p,e), insertAfter(p,e). remove(p)

» chaque méthode est de complexid) lorsque
réalisées avec une liste doublement chainée.

[72)

un

et positions
- atRank() retourne une position
- rankOf(p) retourne un rang (entier)

» Une réalisation basée sur un vecteur nécessite
I'utilisation d’objets pour représenter les positions

(Baltimore) (New York) C Rome) (Providen%

\ -

N JNEIK]

| 0

A

Séquences 4.11

Séquences 4.12

Comparaison entre réalisations
de séquences

Itérateurs

Abstraction du processus de recherche au sein d’

collection d’éléments (un élément a la fois)

une

Opérations Vecteur Liste
P (Array) « Patron de conception
size, isEmpty o(1) o(1) « Encapsulation des notions de “place” et de
atRank, rankOf, elemAtRank 0(1) O(n) “prochain”
first, last o) | o) « Extension du TAD Position
before, after 0(1) 0O(1) i o o
replaceElement, swapElements o() oa) * |térateurs génériques et spécialisés
replaceAtRank 0(1) o(n) Objectlterator
insertAtRank, removeAtRank O(n) O(n) - hasNext()
. - - - nextObject()
insertFirst, insertLast 0(1) 0(1) - object()
insertAfter, insertBefore O(n) 0O(1) o
5 o1 * Positionlterator
remove (n) 1) - nextPosition()
» Méthodes utiles qui retournent des itérateurs:
- elements()
- positions()
Séquences 4.13 Séquences 4.14

ARBRES

* Arbres
* Arbres binaires
» Traversées d'arbres

 Patron de conception: gabarit de méthdadmplate
method pattern

« Structures de données pour arbres

SR

Arbres

» unarbrereprésente une hiérarchie
- structure organisationnelle d’'une corporation

(Electronics R’U§

(R&D) (Sales) @urohasirﬁ (Manufacturin@

L on @4%
(Domestic) Gnterr/natuon@ (cp)

(Canad} (S Americ} (Oversez}

(Africa) (Australié)

- table des matiéres d’un livre

overview

Ienvironment ” programming I Isupport code

Iexams I Ihomeworks I Iprograms I

Arbres 5.1

Arbres 5.2

Un autre exemple
» Systéme de fichier de Unix ou de DOS/Windows

/user/rt/courses/
ﬁ cs252/

homeworks/

grades

programs/

projects/ grades
1 h 2 h prl pr2 pr3
papers/ demos/

buylow | | sellhigh market

Terminologie

* A est le noeudacine.

B est leparent(ou pére) dd® etE.

C est lefrere (sibling) deB.

D etE sont leenfants(ou descendants) de

D, E, F, G | sont desxceuds extérieursoufeuilles.

A, B, C, H sont desceuds intérieurs

La profondeur (niveau) deE est2

La hauteur de 'arbre es8.

Le degré(nombre d’enfants) du nceidest2.

Propriété: (# lieng = (#nceuds— 1

Arbres 5.3

Arbres 5.4

Arbres binaires

 Arbre ordonné: les enfants de chaque nceud sont
ordonnés.

* Arbre binaire: arbre ordonné ou tous les nceuds
intérieurs sont ddegré2.

« Définition récursive d’'un arbre binaire:

» Un arbre binaireest
- unnceud extérieuffeuille), ou

- unnceud intérieuflaracine) et deux arbres
binaires §ous-arbre gauchetsous-arbre droif

Exemples d'arbres binaires

 expression arithmétique

(B x (1 +(4 +6) +(2+8) x5 +(4x(7+2))

* riviere

Arbres 5.5

Arbres 5.6

Exemples d’arbres binaires

» arbres de décision

[Want a fast meal?
YES
(How about coffee?)

YES NO YES NO

NO

(Are you willing to splurgea

Starbucks Do you like fre
samples?

Al Forno Cafe Paragg

>

YES NO

East Side
Pockets

Spike’s

Propriétés des arbres binaires

* (# nceuds extérieuns= (# nceuds intérieuys 1

« (# noceudsw niveau) < 2!

« (#nceuds extérielyss 2 (hauteuy

* (hauteuy = log, (# nceuds extérieuys

* (hauteuy = log, (# nceudp— 1

* (hauteu) < (# noeuds intérieuys ((# nceuds— 1)/2

Arbres 5.7

Arbres 5.8

Le TAD Arbres (Treeg

* méthodes génériques de contenant
- size(), isEmpty(), elements()

» méthodes positionnelles de contenant
- positions(), swapElements(p,q), replaceElement(p,e)

méthodes de requéte
- isRoot(p), isInternal(p), isExternal(p)

» méthodes accessoires
- root(), parent(p), children(p)

méthodes de mise a jour
- spécifiques a I'application

(InspectabIeContainer)

(InspectablePositionalContainer)

InspectableTree

(InspectableVector)
CPositionaIContainer)

InspectableList

TADs pour Arbres Binaires

» méthodes accessoires
- leftChild(p), rightChild(p), sibling(p)

* méthodes de mise a jour
- expandExternal(p), removeAboveExternal(p)
- autres méthodes spécifiques a I'application

(InspectableContainer)

I
(InspectablePositionalContainer)

(PositionaIContainer) InspectableTree)

Tree

(InspectableBinaryTree)

‘ BinaryTree ’

Arbres 5.9

Arbres 5.10

Traversée d’arbres

* traversée epré-ordre
Algorithm preOrder(v)
“visit” node v
for each childw of v do
recursively perfornpreOrder(w)

e comme lire un document du début a la fin

Traversée d’arbres

* traversée epost-ordre

Algorithm postOrder(v)
for each childw of v do
recursively perfornpostOrder(w)
“visit” node v

» commande Unixiu (disk usagg

5124K
Juser/rt/courses/

249K
cs016/
2K

10K
grades homeworksq programsq
8

projects/ | |grades
1K 3K

K 1K 1K
82K 4787K

hwi] fhw2| fhw3| |prlfpr2|]pr3 papers/} demos/]

3k || 2k || 4k | [57k] o7k 74K/1K\ llK

buylow | | sellhigh market
26K 55K 4786K

Arbres 5.11

Arbres 5.12

Evaluation d’expressions
arithmeétiques

« spécialisation d’'une traversée post-ordre

Algorithm evaluateExpression(v)

if vis an external node
return the variable stored at

else
let o be the operator stored\at
X « evaluateExpression(leftChild(v))
y « evaluateExpression(rightChild(v))
return xoy

Traversée d’arbres binaires

* traverséen-ordre
Algorithm inOrder(v)
recursively perforninOrder(leftChild(v))
“visit” node v
recursively perforninOrder(rightChild(v))

« afficher une expression arithmétique
- spécialisation d’une traversée in-ordre
- afficher ‘(" avant la traversée du sous-arbre gau
- afficher “)” aprés la traversée du sous-arbre dro

(@ x @1 + (4 +6) +(2+8)x5)+
(4 x (7 + 2))

che

Arbres 5.13

Arbres 5.14

Traversée par tour d’Euler

* traversée générique d'un arbre binaire

* les traversées pré-ordre, in-ordre et post-ordre so
des cas spéciaux de la traversée par tour d’Euler

* “marche autour” de I'arbre et visite de chacun des
nceuds a trois reprises:

- ala gauche
- par-dessous
- aladroite

Gabarit de méthode
(Template Method Pattem

» mécanisme de calcul générique qui peut étre
spécialisé en redéfinissant certaines étapes (un a
patron de conception)

« réalisation en utilisant une classe abstraite Java a
desméthodes qui peuvent étre redéfinies par ses
classes

public abstract class BinaryTreeTraversal {
protected BinaryTree tree;

protected Object traverseNode(Position p) {

TraversalResult r = initResult();

if (tree.isExternal(p)) {
external(p, r);

}else {
left(p, r);
r.leftResult = traverseNode(tree.leftChild(p));
below(p, r);
r.rightResult = traverseNode(tree.rightChild(p));
right(p, r);

}

return result(r);

}

utre

vec
50US-

Arbres 5.15

Arbres 5.16

Spécialisation de la traversée
géenérigue d’arbres binaires

« affichage d’'une expression arithmétique

public class PrintExpressionTraversal
extends BinaryTreeTraversal {

protected void external(Position p, TraversalResult r) {
System.out.print(p.element());

}

protected void left(Position p, TraversalResult r) {
System.out.print("(");
}

protected void below(Position p, TraversalResult r) {
System.out.print(p.element());

}

protected void right(Position p, TraversalResult r) {
System.out.print(")");
}

Structure de données chainée

pour arbres binaires
A
Size /J

J

root

j\
——]

b
& 7@ \

e G55

Arbres 5.17

Représentation d’arbres généraux

e arbreT

Arbres 5.19

Arbres

5.18

FILES A PRIORITE

Application boursiére (motivation)

Le TAD file a priorité Priority Queug

Réalisation d’'une file & priorité avec une séquenc

Le tri (sorting)

Problémes liés au tri

Application boursiere

* Nous nous concentrerons sur la vente d’'un seul titr¢
Akamai Technologies, fondée en 1998 par des
professeurs et des étudiants du M2T{ employés20
milliards de dollars en capital acton

* Les investisseurs font desmmandegui
comprennent trois itemsdtion, prix, quantité), ou
action est un ou unevente prix est le pire prix
gue vous étes prét a débourser (achat) ou a accept
(vente), eguantité est le nombre d’actions

« A I'équilibre, toutes les commandes d’achai ()
ont des prix plus bas que toutes les commandes de
ventes emande}

» Unecote de niveau tlonne l'offre la plus haute et la
demande la plus basse (telles que fournies par les ¢
financiers populaires et les courtiersesbrokerg

» Unecote de niveau donne toutes les offres et les
demandes pour certains seuils de prix (Island ECN
le Web et cotes pour agents professionriedsi€rs)

» Unetransactionsurvient lorsqu’une nouvelle
commande peut étre jumelée a une ou plusieurs
commandes existantes, ce qui résulte en une série
transactions deuppression

» Les commandes peuvent éaenuléesa tout moment.

sites

sur

Files & priorité 6.1

Files & priorité 6.2

Structures de données pour le
marché boursier

« Pour chaque titre, nous conservons deux structur
la premiere pour les offres et la seconde pour les
demandes

* Les opérations qui doivent étre supportées:

Action Structure Offre
faire une insert(prix,quantité
commande prx.q
obtenir une
cote de min()
niveau 1
effectuer la .
. removeMin()

transaction

annuler | removécommande

» Ces structures de données sont appéiléesa
priorité.
* Les files a priorité de la bourse NASDAQ supporte

en moyenne un volume de transaction quotidien d
milliard d'actions (50 milliards de dollars)

el

Clés et relations d’ordre total

» Unefile a priorité(Priority Queug classe ses
éléments paclé avec une relatiod’ordre total

* Clés:
- Chaque élément a sa propre clé
- Les clés ne sont pas nécessairement uniques

* Relation d’ordre total
- Dénotée par
- Réflexive: k < k
- Antisymétrique: sikq <k, etk, < kq, alorsky <k,
- Transitive: sik; < ks etk, < k3, alorsk; < ks

» Unefile a prioritésupporte ces méthodes
fondamentales sur des paires clé-élément:
- min()
- insertltem(k, €)
- removeMin()

Files & priorité 6.3

Files & priorité 6.4

Tri par file a priorité

« Unefile a prioritéP peut étre utilisée pour trier une
séquencs
- eninsérant les éléments @dansP avec une suite
d’opérationsnsertitem(e, €)
- en retirant les éléments &een ordre croissant et
en les remettant dasavec une suite d'opération
removeMin()

Algorithm PriorityQueueSor§, P):
Entrée: Séquenc& contenanh éléments, avec une
relation d’ordre total, et une file a prioriéqui
compare les clés avec cette méme relation

Sortie: Séquencé&triée a l'aide de la relation d’ordre

total

while !Sisempty() do
e — SremoveFirst()
Pinsertitem(e, €)

while P is not emptydo
e — PremoveMin()
SinsertLast(€)

N

D

Le TAD File a priorité

» Une file a prioritéP supporte les méthodes
suivantes:

size():
Retourne le nombre d’éléments déhs
isEmpty():
Vérifie si P est vide
insertltemk,e):
Insére un nouvel élémeafvec sa clé&
dansP
minElement():
Retourne (mais ne retire pas) un éléme
deP ala plus petite clé; une erreur
survient siP est vide
minKey():
Retourne la plus petite clé e une
erreur survient 9P est vide
removeMin():
Retire et retourne un élément@ea la
plus petite clé; une erreur survientsi
est vide.

nt

Files & priorité 6.5

Files & priorité 6.6

Comparateurs

 Patron de conceptioftomparato)

 La forme la plus générale et la plus réutilisable de
file & priorité utilise des objets appelés
comparateurs.

» Les comparateurs sont externes aux clés a comp
et permettent de comparer deux objets.

* Quand la file a priorité a besoin de comparer deu

clés, elle utilise le comparateur qui lui a été fourni.

« Ainsi, une file a priorité peut étre suffisamment
générale pour contenir n'importe quel objet.

* Le TAD Comparateur inclut:

- isLessTharg, b)

- isLessThanOrEqualTaf)

- isEqualToé, b)

- isGreaterTharg,b)
isGreaterThanOrEqual Tap)
isComparable)

are

Réalisation avec séquence
non-triée
» Essayons de réaliser une file a priorité avec une
séquence non-triée
* Les éléments d8sont composés dela clé, et de,
I'élément.

» Nous pouvons réalisémsertitem()en utilisant
insertLast()sur les séquences. Le temps d’exécutipn
sera alor©(1).

OO

» Cependant, comme nous insérons toujours a la fin,
sans tenir compte de la valeur de la clé, notre
séquence n'est pas ordonnée.

Files & priorité 6.7

Files & priorité 6.8

Réalisation avec séquence
non-triée (suite)

« Ainsi, pour les méthodes tellesnElement()
minKey(), etremoveMin() nous devonszgarder
tous les élémentde S. La complexité du pire des
cas esO(n).

VR VR YR VR

« Sommaire des performances

Réalisation avec séquence triée

» Une autre réalisation possible utilise une séquénc
triée par ordre croissant de clés.

» minElement() minKey(), etremoveMin()
deviennent alor®(1)

» Cependant, pour réalisgisertitem() nous devons
maintenant parcourir la séquence entdans le
pire des casAinsi, insertltem()s’exécute en un
tempsO(n)

R Ve Y V. VN

o OO
minKey, minElement O(n)
removeMin o) » Sommaire des performances
insertltem O(n)
minKey, minElement o)
removeMin o)
Files & priorité 6.9 Files & priorité 6.10

Réalisation avec séquence triée
(suite)

public class SequenceSimplePriorityQueue
implements SimplePriorityQueue {

/limplementation of a priority queue
using a sorted sequence

protected Sequence seq = new NodeSequence();
protected Comparator comp;

/I auxiliary methods

protected Object key (Position pos) {
return ((Item)pos.element()).key();
} /I note casting here

protected Object element (Position pos) {
return ((Item)pos.element()).element();
} /I casting here too

/I methods of the SimplePriorityQueue ADT

Réalisation avec séquence triée
(suite)

public void insertltem (Object k, Object e) throws
InvalidKeyException {

if (lcomp.isComparable(k)) {
throw new InvalidKeyException("The key is not valid");
else {

if (seq.isEmpty()) {
/lif the sequence is empty, this is the
seg.insertFirst(new Item(k,e));//first item

else {//check if it fits right at the end
if (comp.isGreaterThan(k.key(seq.last()))) {
seg.insertAfter(seqg.last(),new Item(k,e));

else {
/lwe have to find the right place for k.
Position curr = seq.first();

while (comp.isGreaterThan(k,key(curr))) {
curr = seq.after(curr);

seg.insertBefore(curr,new Item(k,e));

public SequenceSimplePriorityQueue (Comparator c) { }
comp=c;} }
public int size () {return segq.size(); } }
...Suite a la page suivante.. ...Suite a la page suivante..
Files & priorité 6.11 Files & priorité 6.12

Réalisation avec séquence triée
(suite)

public Object minElement () throws
EmptyContainerException {
if (seq.isEmpty()) {
throw new EmptyContainerException("The priority
queue is empty");

Tri par sélection

* Le tri par sélection est une variation du tri par file
priorité (PriorityQueueSontqui utilise une
séquence non-triépour réaliser la file a prioritE.

» Phase 1l'insertion d’'un item danP® estO(1)

» Phase 2le retrait d'un item d® prend un temps

proportionnel au nombre d’éléments présents Bars

else { Séquencs File & prioritéP
return element(seq.first()); Entrée (7,4,8,2,5,3,9 0
} Phase 1:
(@ 4,8,2,5,3,9 (7
(b) 8,2,5,3,9) (7,4
public boolean isEmpty () {
return seq.isEmpty(); (9) 0 (7,4,8,2,5,39
J Phase 2:
J (a) 2 (7,4,8,5,3,p
(b) 2,3 (7,4,8,5,%
(c) (2, 3,9 (7,8,5,9
(d) (2,3,45) (7,8,9
(e) (2,3,4,57) (89
M| (2,3,4,579))
(9) (2,3,4,5,7,89) 0
Files & priorité 6.13 Files & priorité 6.14

Tri par sélection (suite)

« Comme vous pouvez le constater, la phase 2 est
goulot d'étranglement. La premiére opération
removeMin es(n), la second®(n-1), et ainsi de
suite jusqu’a la derniére, qui e3¢1).

 Le temps total nécessaire a la phase 2 est:

[

O(n+(n=-1) +... +2+1)EO§

M =

e Et comme:

« Le temps d’exécution de la phase 2 est dor®).
Ainsi, la complexité temporelle de I'algorithme esit
o).

le

Tri par insertion

* Le tri par insertion résulte de I'utilisation d’un tri pa
file a priorité ou la file est réalisée avs&quence
triée.

Séquencs File a prioritéP

Entrée (7,4,8,2,5,3,9 0
Phase 1:

@ 4,8,2,5,3,9) @)

()| (8,2,5,3,9) 4,7

(c) (2,5,3,9) (4,7,8)

(d) (5,3,9) (2,4,7,8)

(e) 3,9 (2,4,5,7,8)

4) 9) (2,3,4,5,7,8)

(9) 0 (2,3,4,5,7, 89
Phase 2:

@) 2 (3,4,5,7,8,9)

(b) 2,3 (4,5,7,8,9)

(9] (2,3,4,5,7,89) 0

=

Files & priorité 6.15

Files & priorité 6.16

Tri par insertion (suite)

* Nous améliorons ainsi la phase 2, qui@gt).

« Cependant, la phase 1 devient maintenant le gou
d’'étranglement. Le premiérsertitem estO(1), le
secondd(2), jusqu’au dernier qui lui e€¥(n), pour
un temps d’exécution tot&(n?)

« Le tri par sélection et le tri par insertion ont tous
deux un temps d’exécutid®(n®)

* Le tri par sélection véoujours exécuter un nombre
d’'opérations proportionnelr&?, peu importe la
séquence d'entrée

» Le temps d’exécution du tri par insertion varie sel
la séquence d’entrée

» Aucune n’est une bonne méthode de tri, sauf pou
les petites séquences

* Nous cherchons encore la file a priorité ultime...

lot

DN

=

Le tri

» Maintenant que vous avez une certaine connaissa
du tri, parlons-en un peu plus a fond

* Le tri est essentiel parce qu'urezhercheefficace
dans une base de données ne peut étre faite que
enregistrements sont triés.

* Certains estiment qu’environ 20% du temps de
calcul planétaire est dédié au tri

» Nous observerons gu'il existe un compromis entr
“simplicité” etefficacitédes algorithmes de tri:

* Les tris élémentaires vus jusqu’ici, qui étaient
simples a comprendre et a réaliser, ont un temps
d’exécutionO(n?) (inutilisables pour de grand$

* |l existe des algorithmes plus sophistiq@s logn)

» Comparaison de clésomparons-nous la clé entiére

ou seulement une partie de la clé?

» Espace requigri a méme la structurer{-place)
versus l'utilisation de structures auxiliaires

« Stabilité:un algorithme de trstableconserve
I'ordre relatif des clés égales.

nce

Si les

117

Files & priorité 6.17

Files & priorité 6.18

TAS

» Tas Heap

* Propriétés des tas

 Tri Heap-Sort

 Construction ascendante de tBsttom-Up

» Repéreursl{ocator Design Pattem

Tas

» Untas(heap est un arbre binaifE qui emmagasine
une collection de clés (ou paires clé-élément)
comme nceuds internes et qui satisfait aux deux
propriétés suivantes:

- Propriété d’ordre:clé(parentx clé(enfant)

- Propriété structurelle tous les niveaux sont
pleins, excepté le dernier, ce dernier étant
cependant plein a gauctealfre binaire complet

Tas

6.19

Tas 6.20

Exemples de non-tas

« le dernier niveau n’est pas plein a gauche

Hauteur d’'un tas

Un tasT qui emmagasine clés a une hauteur
h = og(n + 1) qui estO(log n)

enN>1+2+4+..+92+1=01_14+1=%1

« Ainsi2Ml<n< -1

» En calculant le logarithme, nous obtenons
log(h+1)<h<logn+ 1, et dond = dog(n+1)1

6.21

Tas 6.22

Insertion dans un tas

La clé a insérer est

Insertion dans un tas (suite)

Ajoutez la clé a larochaine position disponible
dans le tas.

Commencez maintenant la procéduigheap

Tas

6.23

Tas

6.24

ProcédureUpheap

« Echangezgwayp) les clés parent-enfant non-

ordonnées

Suite deUpheap

Tas

6.25

Tas

6.26

Fin de Upheap

» Upheapse termine quand la nouvelle clé est
plus grande que la clé de son pamnguand
le haut du tas est atteint.

» (#échanges total< (h— 1), qui estO(log n)

Suppression dans un tas
RemoveMin()

« La suppression de la clé racine laisse un trou
* Nous devons réparer le tas

» Premierement, remplacez le trou par la toute
derniére clé du tas

 Ensuite, appliquez la procédubewnheap

Tas 6.27

Tas

6.28

Procédure Downheap

Downheapcompare le parent avec son enfant le
plus petit. Si cet enfant est plus petit que le pa-
rent, alors on les échange I'un pour l'autre.

Suite deDownheap

Tas 6.29

Tas

6.30

Suite deDownheap(2)

Fin de Downheap

» Downheapse termine quand la clé est plus
grande que les clés de ses deux enfamts
quand le bas du tas est atteint.

» (#échanges total< (h- 1), qui estO(log n)

Tas 6.31

Tas 6.32

Réalisation d’un tas

public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

-
« o
heap last

@ 2)
& @ @' D
EIEIEHEDEIEH 0 T

Réalisation d’un tas (suite)

» Deux facons de trouver la position d’insertion

Tas 6.33

Tas 6.34

Réalisation par vecteur {ecton

» Les mises a jour dans l'arbre sous-jacent ne
surviennent seulement qu’au “dernier élément”.

« Un tas peut étre représenté par un vecteaton,
ou le nceud au rang:

- I'enfant de gauche au rang&t

- I'enfant de droite au rang 2 1
1

« Les feuilles n'ont pas a étre emmagasinées.

* Linsertion et la suppression de clés dans le tas
correspondent respectivementsertLast et &
removelLast dans le vecteur.

Tri Heap-Sort

» Toutes les méthodes d'un tas s’exécutent en un
temps logarithmique, ou mieux.

 Si nous réalisons le tAriorityQueueSoravec un
tas comme file a prioritéysertitem etremoveMin
prennent alor®(log k) chacun, ok est le nombre
d’éléments dans le tas a un moment donné.

» Nous avons toujours au plagléments dans le tas,
alors le pire des cas en terme de complexité pour
méthodes e<D(log n).

» Chaque phase prend dod log n), et le temps
d’exécution de I'algorithme est aussi@én log n).

* Ce tri est connu sous le nhom faeap-sort

» Le temps d’exécutio®(n log n) d’un tri heap sort
est bien meilleur que le temps d’exécutm)
d’un tri a bulle, par sélection, ou par insertion.

Tri Heap-Sort in-place

» N'utilise pas de tas (ou d’autre structure) externe,

« Utilise une représentation par vecteur pour conte
le tas. Construction ascendantetfom-up...

—

Tas 6.35

Tas 6.36

Construction ascendante du tas (1)

* construisezr({ + 1)/2 tas a un seul élément (trivial)

;-

7’ ~
e 2
\ \

7
/ \

f&ﬁé@ﬁi&ﬁm

» construisez maintenant des tas a trois éléments

-~

/
1 \
N ‘ot
/ \ \

Construction ascendante du tas (2]

* préservez la propriété d’'ordre avdmvnheap

ces

r

Construction ascendante du tas (3)

-~

Construction ascendante du tas (4)

Tas 6.39

Tas 6.40

Analyse de la construction
ascendante de tas

 Propositionla construction ascendante de tas ave
clés a un temps d’exécuti@in).
- Insérer (+ 1)/2 noeuds
- Insérer (1 + 1)/4 nceuds et utiliselownheap
- Insérer (+ 1)/8 nceuds et utiliselownheap

- analyse visuelle:

* ninsertionsn/2 downheagpour un temps
d’exécution total d’ordr®(n).

Repéreurs (ocatory

 Des repéreurs peuvent étre utilisés pour suivre le
éléments lorsqu’ils sont déplacés dans un conten

» Un repéreur (patron de conceptionator) suit un
élément spécifique, méme si cet élément change
position dans son contenant.

e Le TAD locatorcontient les méthodes
fondamentales suivantes:

- element()retourne I'élément de I'item associé a
locator

- key(): retourne la clé de I'item associé lagator

« A l'aide de repéreurs nous définissons des métho
additionnelles pour le TAD file & priorité:
- insertk,e): insere k,e) dansP et retourne son
locator

- min(): retourne ldocatorde I'élément a la
plus petite clé
- remove(): supprime I'élément alocatorl

» Dans notre application boursiére, nous retournon
un repéreur quand une commande est faite. Un
repéreur permet de spécifier sans ambiguité une
commande lors d’'une annulation.

[2)

ant.

de

des

[72)

Tas 6.41

Tas 6.42

Positions et Repéreurs

« Vous pourriez étre en train de vous demander qué
est la différence entre repéreurs et positions, et
pourquoi les distinguer.

« |l est vrai qu’ils ont des méthodes semblables.

 La différence se situe au niveau de leur utilisation
primaire.

« Lespositionsfont abstraction de la réalisation
spécifique de I'accés aux éléments (indices ou
nceuds).

 Lespositionssont définies relativement I'une par

rapport a l'autre (précédent/prochain, pére/enfant).

» Lesrepéreursurveillent ou se situent les éléments.

Dans la réalisation d’'un TAD pour repéreurs, un
repéreur conserve typiquement la position courar
de I'élément.

» Lesrepéreurassocient les éléments avec leurs clé

blle

D

1%
12

Positions et Repéreurs au travail

« Par exemple, considérez le Service de valet de
stationnement CSI2514 (créé par les AE parce qu
avaient trop de temps libre).

Lorsqu’ils ont démarré leur entreprise, André et

Is

Daniel décidérent de créer une structure de donngées

pour déterminer ou les voitures sont situées.

André suggére qu’'ungosition représentéespace
de stationnementlans lequel la voiture se trouve.

Cependant Daniel sait bien que les AE se promen
avec les voitures partout sur le campus et qu’elleg
seront pas toujours stationnées au méme endroit

Alors ils décident d'installer urepéreur(un
appareil sans fij dans chaque voiture. Chaque

ent
ne

repéreur a un identifiant, qui est inscrit sur le coupon

de retour.

* Quand un client demande sa voiture, I'AE active le

repéreur, et alors la voiture klaxonne et ses lumigres

clignotent! Si la voiture est stationnée, André et

Daniel sauront oul la retrouver dans le stationnement,

sinon, I'AE conduisant cette voiture saura qu'il est

temps de la rapporter.

Tas 6.43

Tas 6.44

DICTIONNAIRES ET
RECHERCHE

* Le TAD Dictionnaire
* Recherche binaire

* Arbres de recherche binaires

Le TAD Dictionnaire

* un dictionnaire dictionary) est un modéle abstrait
de base de données.

» tel une file & priorité, un dictionnaire emmagasine
des paires clé-élément

* la recherche par clé est la principale opération
offerte par un dictionnaire
* méthodes simples de contenant:
- size()
- isEmpty()
- elements()

méthodes de requéte:
- findElement(K)
- findAlIElements(K)

méthodes de mise a jour:
- insertitem(k, €)

- removeElement(K)

- removeAllElements(K)

 élément spécial

- NO_SUCH_KEY, retourné lors d’une recherche
infructueuse.

Dictionnaires et recherche 7.1

Dictionnaires et recherche

7.2

Réalisation d’un dictionnaire a
I'aide d’'une séquence

» séquence non-ordonnée

- chercher et supprimer prennent un tel@fs)
- insérer prend un temix(1)

- application aux registres et journalogs)
(insertions fréquentes, recherches et suppressi
plutbt rares)

» séquence ordonnée a base de vecigur supposant
gue les clés puissent étre ordonnées)

- chercher prend un tem@Xlog n) (recherche
binaire)

- insérer et supprimer prennent un ter@gs)

- application aux tables de recherclmk-up
tables— recherches fréquentes, insertions et
suppressions plutét rares)

NS

Recherche binaire
« restreindre l'intervalle de recherche par stages
* jeu “trop haut - trop bas’hfgh-low)

* findElement(22)

HEEEOE

121 14| 17| 19| 22. 25| 27] 2&1 3? 3T
! high

1 1? 2F25| 27| 28| 33| 37|

low mid

HEEHEE

121 141 1
Igw mid high

12| 141 1119|22~ 25| 27| 28| 3:«1 37|
low mid high
121 141 11 15?22~25| 27| 28| 33| 37|

HENHEER

HEEHEE

low=mid=high

Dictionnaires et recherche 7.3

Dictionnaires et recherche 7.4

Pseudo-code pour recherche
binaire

Algorithm BinarySearc(s, k, low, high)
if low > highthen
return NO_SUCH_KEY
else
mid — (low+high) / 2
if k = key(mid)then
return key(mid)
elseif k < key(mid)then
return BinarySearc(s, k, low, mid-1)
else
return BinarySearc(s, k, midr1, high)

|2|4| 5|7|8| 9| 12114|17|19|221 25| 27| 2&1 31; 3T

low mid

[2lefs]][]
|

high
1 15? 2F25| 27| 28| 33| 37|

1
ow mid high

|2|4| 5|7|8| 9| 12| 141 1119|22‘25| 27| 28| 31 37|

low mid high

Temps d’exécution de la
recherche binaire

* Lintervalle des items qui seront considérés est
réduit de moitié aprés chague comparaison

comparaison intervalle de
recherche
0 n
1 n/2
2 n/4
2 n/2'
log, n 1

» Dans la réalisation a base de vecteur, I'accés par|
rang prend un temp3(1), et donda recherche
binaire s’exécute en un tem@glog n)

Dictionnaires et recherche

7.5

Dictionnaires et recherche

7.6

Arbres de recherche binaires

* Un arbre de recherche binaire est un arbre biffair
ou:
- chaque noeud intereemmagasine un item de
dictionnaire k, e).
- les clés se trouvant dans les nceuds du sous-ar
gauche de& sont plus petit ou égalka

- les clés se trouvant dans les nceuds du sous-ar
droit dev sont plus grand ou égaka

- les naeuds externes ne contiennent pas d’'éléme

11

bre

bre

2nts.

Recherche

» Un arbre de recherche binaifeest unarbre de
décisionou la question posée a un nceud interse
résume a: est-ce que la &lést plus petite, égale, ol
plus grande que la clé se trouvant deths

» Pseudo-code:
Algorithm TreeSearchk, v):
Entrée: une clé de recherclikeet un nceud d’'un
arbre de recherche binaife
Sortie: un nceudv du sous-arbr&(v) deT avecv
comme racine, tel que est un nceud interne
emmagasinark, ouw est un nceud externe
visité lors de la traversée in-ordre D) aprés
tous les nceuds internes aux clés plus petite
guek et avant tous les nceuds internes aux ¢
plus grandes que
if vis an external nodihen
return v
if k= key{) then
return v
elseif k < key(v) then
return TreeSearctk, T.leftChild(v))
else

{ k>key() }
return TreeSearctk, T.rightChild))

I

[%2)

Dictionnaires et recherche

7.7

Dictionnaires et recherche

7.8

Exemple de recherche |

* findElement(76) réussi avec succes

* Une recherche fructueuse traverse un chemin
débutant de la racine et se terminant a un nceud
interne.

* Que dire deindAllelements(K)?

Exemple de recherche Il

« findElement(25) qui ne réussit pas

* Une recherche infructueuse traverse un chemin
débutant de la racine et se terminant a un nosud
externe.

Dictionnaires et recherche 7.9

Dictionnaires et recherche 7.10

Insertion

» Pour exécuteinsertitem(k, €), définissonsv comme
étant le nceud retourné pereeSearck, T.root())

» Siw est externe, alors nous savons kjne se trouve
pas dang. Nous appelons aloespandExternal(w)
surT et emmagasinong,(e) dansw

Insertion i

» Siw est interne, alors nous savons qu’un autre ite
avec une cl& se trouve av. Nous appelons
I'algorithme récursivement a partir deightChild(w)
ou deT.leftChild(w)

m

Dictionnaires et recherche 7.11

Dictionnaires et recherche 7.12

Suppression |

* Nous repérons le ncewdou la clé est emmagasiné
avec l'algorithmeTreeSearch

(1)

» Siw a un fils externez, alors nous supprimonget
z avecremoveAboveExternal(2)

Suppression Il

» Siwn’a pas de fils externe

- trouvez le nceud internesuivantw selon le
parcours in-ordre

- déplacez I'item dg versw

- exécutezemoveAboveExternal(x), oux est le fils
gauche de& (qui sera toujours externe)

Dictionnaires et recherche 7.13

Complexité temporelle

» Une recherche, une insertion, ou une suppression
visite les nceuds de tacine aux feuilles(root-to-
leaf patl), et peut-étre aussi l&é®res de ces noeudsg

» Une duréeD(1) est nécessaire a chaque nceud

 Le temps d’exécution de chaque opératiorC¢h},
ou h est la hauteur de l'arbre

 La hauteur d’'un arbre de recherche binairaest
dans le pire des cas. Un tel arbre ressemble alors a
une ségquence triée

« Afin d’obtenir un bon temps d’exécution, nous
devons garder I'arbréquilibré, c'est-a-dire avec
une hauteur d®(log n)

« Différentes stratégies d’équilibrage seront explorées
dans les prochains cours.

Dictionnaires et recherche 7.15

Dictionnaires et recherche 7.14

ARBRES AVL Arbre AVL
 Les arbres AVL sont équilibrés.

» Arbres AVL » Un arbre AVL est un arbre de recherche binaire og,
pour tout nceud internedeT, les hauteurs des
enfants der sont égales ou différentes de 1 niveay.

* Voici un exemple d’arbre AVL ou les hauteurs sont
indiquées prés des nceuds:
4
00':?:.:';%‘.&3222"%.: ooo. 009 4,00003509800 00:300%.::
48838803580 00 00 :.32%{,0 20 ee tasas et ee 99000 ¢ 400 5000500
o%%%0.:33202:..'0'0%%'00:::..:0'.0ooooooo 090 0000 ‘!.o
Arbres AVL 7.16 Arbres AVL 7.17
Hauteur d’'un arbre AVL Insertion
 Proposition: La hauteur d’un arbre AVIL » Un arbre de recherche binaifestéquilibrési, pour
emmagasinami clés esOD(log n). chaque nceud la hauteur des enfants dsont
. , . égales ou différentes de 1 niveau.
« Justification: I'approche la plus simple est
d’'essayer de trouver le nombre minimal de nceuds * Linsertion d’un nceud dans un arbre AVL implique
internes d'un arbre AVL de hauteurn(h). I'application deexpandExternal(w) aT, qui change
alors les hauteurs de quelques-uns des nceufls de
* Nous observons qu&l) = 1 etn(2) = 2 queld
« Si une insertion fait quE& deviennedéséquilibré
* Pourn2 3, un arbre A\I/L de hé:lutel_hravecn(h) t alors nous traversons l'arbre vers le haut a partir fu
Z(\)/rll_tlgnthau mmmium e nceu (;acrl]ne, un sous-arbre nceud nouvellement créé jusqu'a ce que nous
e hauteun-1 et un autre de hautens2. trouvions le premier nceuddont le grand-péreest
« Ainsi n(h) = 1 +n(h-1) +n(h-2) un nceud déséquilibre.
« Sachant que(h-1) >n(h-2), nous obtenons * Puisquez est devenu désequilibré par l'insertion
n(h) > 2n(-2) dans le sous-arbre enraciné a son eryfant
- n(h) > 2n(-2) hauteury) = hauteur(frérgf) + 2
- n(h) > 4n(-4) « Afin de rééquilibrer le sous-arbre enracing aous
_ devons faire uneestructuration
- n(h) > 2n(h-2i) - nous renommons Yy, etzpara, b, etcen se basant
« Résolution du cas de basgh) > oh/2-1 sur I'ordre de§ nceuds (traversée in-ordre)
- zest remplacé pdr, dont les enfants sont
« Utilisation du logarithmeh < 2logn(h) +2 maintenant etc. Les enfants de ces derniers sont
_ les quatre autres sous-arbres qui étaient auparayvant
« Ainsi la hauteur d’'un arbre AVL e§(log n) enfgnts de, y, etz a P

Arbres AVL 7.18

Arbres AVL 7.19

Insertion (suite)

« Exemple d'insertion dans un arbre AVL.

5 Oh! Déeséquilibre!

Restructuration

« \oici les quatre facons de faire la rotation des nceuds
dans un arbre AVL, représentées graphiquement;
- Rotations simples:

Arbres AVL 7.20

Arbres AVL 7.21

Restructuration (suite)

- Rotations double:

Algorithme de restructuration

Algorithm restructuréx):
Entrée:Un nceudk d’un arbre de recherche binaife
qui ay pour pére et pour grand-pere
Sortie:L'arbre T restructuré par rotation (soit simple
ou double) impliquant les nceuxlsy, etz

1: Soit @, b,) une liste in-ordre des nceudy, etz,
et soit (Tp, T4, T,, T3) une liste in-ordre des quatre
sous-arbres de y, etz non-enraciné &y, ouz

2. Remplacez le sous-arbre enracirsgpar un nou-
veau sous-arbre enracin® a

3. Placea comme enfant de gaucheldlet placez §
et T; comme sous-arbres de gauche et de droitef de
a, respectivement.

4. Placezx comme enfant de droite et placez 3
et T; comme sous-arbres de gauche et de droite de
c, respectivement.

Arbres AVL 7.22

Arbres AVL 7.23

Algorithme de restructuration
Couper/Lier (Cut/Link)

« Etudions cet algorithme de plus pres...

 Tout arbre qui a besoin d’étre restructuré peut étr,
divisé en 7 partiex, y, zet les 4 sous-arbres
enracinés aux enfants de ces nceligls)(

» Créez un nouvel arbre équilibré en déplagant les
parties de I'arbre original de fagon a ce que l'ordr
soit le méme lorsque nous faisons une traversée
ordre du nouvel arbre.

 Ceci fonctionne peu importe la fagon dont I'arbre
original est déséquilibré. Observez...

S0

Algorithme de restructuration
Couper/Lier (suite)
* Numérotez les 7 parties en parcourant I'arbre (in-

ordre). Notez qu, y,et zsont maintenant
renommeés selon leur ordre dans la traversée.

Arbres AVL 7.24

Arbres AVL 7.25

Algorithme de restructuration
Couper/Lier (suite)
* Maintenant créez un vecteur, numéroté de 1 a 7

(I'élément 0 peut étre ignoré avec une perte d'esp
minimale)

2 3 4 5 6

» Coupez les quatre arbrést placez-les dans le
vecteur selon leur rang in-ordre.

To T IPp)

1 2 3 4 5 6

ACE

Algorithme de restructuration
Couper/Lier (suite)
» Maintenant coupeg, y, etz dans cet ordre (fils, pére

grand-pére) and placez-les dans le vecteur selon
rang in-ordre.

Tol A2 fr H A q i
1 2 3 4 5 6 7

» Maintenant nous pouvons relier ces sous-arbres
l'arbre principal.

* Liez le rang 41§) comme étant la racine du sous-
arbre original

o

Arbres AVL 7.26

Arbres AVL 7.27

eur

Algorithme de restructuration
Couper/Lier (suite)

* Liez les rangs 24) et 6 €) comme enfants de 4.

Algorithme de restructuration
Couper/Lier (suite)

» Finalement, liez les rangs 1, 3, 5 et 7 comme enfg
de 2 et 6.

» Vous avez maintenant un arbre équilibré!

nts

Arbres AVL 7.28

Arbres AVL 7.29

Algorithme de restructuration
Couper/Lier (suite)

 Cet algorithme de restructuration a exactement le
méme effet que l'utilisation des quatre cas de
rotation discutés plus tét.

» Avantages: pas d’analyse de cas, plus élégant.
» Désavantage: peut exiger plus de code.

» Mé&me complexité temporelle.

Suppression

» Nous pouvons voir facilement que I'application de

removeAboveExternal(w) peut causer un déséquilibre

dansT.

* Soitz le premier nceudéséquilibréencontré en
traversant I'arbre vers le haut a partivdeéiussi,
soity I'enfant dez a la plus grande hauteur,xet
I'enfant dey a la plus grande hauteur.

» Nous pouvons appliquesstructure(X) pour
rééquilibrer le sous-arbre enracing a

» Comme cette restructuration pourrait déséquilibre
un autre nceud plus haut dans I'arbre, nous devor
continuer a vérifier I'équilibre jusqu’a ce que la
racine deT soit atteinte.

=

Arbres AVL 7.30

Arbres AVL 7.31

Suppression (suite)

« exemple de suppression dans un arbre AVL:
z Oh! Déséquilibré!

Suppression (suite)

» exemple de suppression dans un arbre AVL:
z Oh! Déséquilibreé!

Arbres AVL 7.32

Arbres AVL 7.33

Réalisation

« La réalisation d’'un arbre AVL en Java requiert la
classe de nosud suivante:

public class AVLItem extends Item {
int height,

AVLItem(Object k, Object e, int h) {
super (k, e);
height = h;

}

public int height() {
return height,

}

public int setHeight(int h) {
int oldHeight = height,

Réalisation (suite)
public class SimpleAVLTree

extends SimpleBinarySearchTree
implements Dictionary {

public SimpleAVLTree(Comparator ¢) {
super (¢);
T = new RestructurableNodeBinaryTree();

}

private int height(Position p) {

if (TisExternal(p))
return O;

else
return ((AVLItem) p.element()).height();

}

private void setHeight(Position p) {// called only
/l'if p is internal

((AVLItem) p.element()).setHeight
(1 + Math.max(height(TleftChild(p)),

height = h; height(TrightChild(p))));
return oldHeight, }
}
}
Arbres AVL 7.34 Arbres AVL 7.35

Réalisation (suite)

private boolean isBalanced(Position p) {

/I test whether node p has balance factor
/I between -1 and 1

int bf = height(TleftChild(p)) - height(TrightChild(p));
return ((-1 <= bf) && (bf<= 1));

}

private Position tallerChild(Position p) {

/I return a child of p with height no
/I smaller than that of the other child

if (height(TleftChild(p)) >= height(T.rightChild(p)))
return TleftChild(p);

else
return TrightChild(p);

Réalisation (suite)

private void rebalance(Position zPos) {

Iltraverse the path of Tfrom ZzPos to the root;
/[for each node encountered recompute its

/Iheight and perform a rotation if it is

/lunbalanced

while (!TisRoot(zPos)) {
zPos = T.parent(zPos);
setHeight(zPos);
if (lisBalanced(zPos)) { // perform a rotation
Position xPos = tallerChild(tallerChild(zPos));

zPos = ((RestructurableNodeBinaryTree)
T).restructure(xPos);

setHeight(TleftChild(zPos));
setHeight(T.rightChild(zPos));
setHeight(zPos);
}
}
}

Arbres AVL 7.36

Réalisation (suite)

public void insertltem(Object key, Object element)
throws InvalidkeyException {

super .insertltem(key, element);// may throw an
/I InvalidKeyException

Position zPos = actionPos; // start at the
/I insertion position

T.replace(zPos, new AVLItem(key, element, 1));
rebalance(zPos);

}

public Object remove(Object key)
throws InvalidKeyException {

Object toReturn = super.remove(key); // may throw
/I an InvalidKeyException

if (toReturn'=NO_SUCH_KEY){

Position zPos = actionPos; // start at the
/I removal position

rebalance(zPos);
}
return toReturn,
}
}

Arbres AVL 7.38

Arbres AVL

7.37

Hachage
(Hashing)

Qu’est-ce que c’est?

Une forme de narcotique?

Une forme de découpage?

Probleme

* RT&T est une grande compagnie téléphonique qui

veut offrir un service d'identification de I'appelant
- étant donné un numéro de téléphone, retourne
nom de I'appelant

les numéros sont dans l'intervalle ®& 101%-1

n est le nombre de numéros utilisés

nous désirons une réalisation efficace

Nous connaissons deux fagons de concevoir ce

dictionnaire:

- unarbre de recherche équilibréAVL, red-black
ou uneliste “skip” avec le numéro de téléphone
comme clé a un temps de requ@og n) et un

espaced(n) — bon usage de I'espace mémoire et
bon temps de recherche, mais peut-on réduire le

temps de recherche a une constante?
un vecteurljucket array indexé par le numéro de
téléphone a un temps de requéte opti@(dl,

mais il y a un grand gaspillage d’espa®én + R)

(ull) | (null) (null)

000-000-00000-000-0001... 401-863-7639 ... 999-999-9999

.| Roberto] ...

Hachage

7.39

Hachage

7.40

Autre solution

» Unetable de hachagé¢hash tablg est une solution
alternative avec un temps de requéte antioifig et
un espac®(n + N), ouN est la taille de la table.

Comme un vecteur, mais avec une fonction projet
un grand ensemble de clés sur un plus petit.

- ex.: prenez la clé originalaodulola taille de la
table, et utilisez cette valeur comme index

Insérez I'item (401-863-7639, Roberto) dans une
table de taille 5

- 4018637639 mod 5 = 4, alors I'item (401-863-

7639, Roberto) est emmagasiné dans I'espace
401-
863-7639
Roberto
0 1 2 3 4

Une consultationl¢okup utilise le méme
processus: projection de la clé sur un index, et
vérification de I'espace a cet index

* Insérez a la table (401-863-9350, André) et ensuite

(401-863-2234, Daniel). Nous avons urmdlision!

ant

« Comment gérer deux clés qui sont projetée sur le

» Utilisez lechainage(chaining)

 Le temps anticipé de recherche/insertion/

 La performance de la structure de données peut

Résolution de collision

méme espace d'un vecteur?

- Créez dedistesd’items avec le méme index

o[=01 [+l [

1 +—=11

2 P11 {1 [>m
4 _——»DT—»H

suppression e€(n/N), en supposant que les index
soient distribués uniformément.

affinée en changeant la taille de la talle

e

ptre

Hachage

7.41

Hachage

7.42

De clé a index

« La projection des clés vers les index de la table d
hachage est appelémction de hachage

» Une fonction de hachage est habituellement
composée de deux parties:

- code de hachageclé - integer
- compressioninteger — [0, N = 1]

« La fonction de hachage doit absolument projeter
deux clés égales vers deux index égaux.

« Une “bonne” fonction de hachage minimise la
probabilité de collision.

« Java offre la méthodeshCode() pour la classe
Object, qui retourne typiquement I'adresse-mémo
(32 bits) de I'objet.

» Ce code de hachage par défaut ne serait pas tres
performant pour les objetsteger et String.

» La méthodeashCode() devrait étre redéfinie de
facon adéquate par les classes.

Codes de hachage populaires

» Mettre entier(integer cast)pour les types
numeériques avec 32 bits ou moins, hous pouvons
réinterpréter les bits du nombre commaeriin

» Somme des composant@omponent sumjpour les
types numériques avec plus de 32 bits (exg: et
double), nous pouvons additionner les composants
de 32 bits.

Accumulation polynomialepour les chaines de

caracteres en langage naturel, combinez les vale

de chaque caractére (ASCII, ISO Latin ou Unicod

a3y ... &,-1 €n les considérant comme coefficients

d’un polynémeag + a;x + ...+ X" la,_;

- Le polyndme est calculé avecrkgle de Horner
en ignorant les dépassements de capacité, aveg
valeur fixe pour:

8+ X (art X (agt ... X (a2t X @y-1) ..))
- Le choixx = 33, 37, 39, ou 41 donne au plus 6
collisions sur un vocabulaire de 50,000 mots
anglais!

» Pourquoi la somme des composantes n’est-elle g
bonne pour les chaines de caractéres?

urs
e)

une

as

Hachage 7.43

Hachage 7.44

Méthodes de compression
populaires

* Division: h(k) = |kl mod N
- N = X est un mauvais choix parce que ce ne so
pas tous les bits qui sont pris en compte

- Lataille de la tabl®& est habituellement un
nombre premier

- certains patronggtterngd dans le code de hachag
sont propagés
» Multipliez, additionnez, et divisez
h(k) = jak + b mod N
- élimine les patrons lorsq@emod N # 0

- méme formule utilisée dans les générateurs de
(pseudo) nombres aléatoires linéaires congruen

nt

[¢)

Encore des collisions

» Une clé est projeté sur un espace de la table qui
déja occupé
- que faire?!?
« Utilisez une technique de gestion des collisions
» Nous avons vu lehainage

» Nous pouvons aussi utiliseadressage ouvert
- Hachage double
- Sondage linéairdLinear Probing)

[
[%2]
—

Hachage 7.45

Hachage 7.46

Sondage linéaire

 Sil'espace courant est occupé, essayez l'espace
suivant

linear_probing_insert(K)
if (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

« Une consultation parcours la table jusqu’a ce que
clé ou un espace vide soit trouvé.

« Utilise moins de mémoire que le chainage
- pas besoin d’'emmagasiner tous ces liens

* Plus lent que le chainage
- peut résulter en un long parcours de la table

 La suppression est plus complexe
- marquage de I'espace effacé, ou
- remplir 'espace en déplagant quelques élémen

« h(k) =k mod 13

* Insérez les clés:

Exemple de sondage linéaire

18 41 22 44 59 32 31/3

01 2 3456 7 8 910 1112

Hachage 7.47

Hachage 7.48

Exemple de sondage linéaire
(suite)

41 18/ 44 59 3222 31 713
012 3456 7 8 910 1112

Hachage double

« Utilise deux fonctions de hachage

» Si M est premier, éventuellement tous les espace
la table seront examinés

double_hash_insert(K)
if (table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K

* Plusieurs avantages et désavantages semblables
ceux du sondage linéaire

« Distribue les clés plus uniformément que le sonds
linéaire

ge

Hachage 7.49

Hachage 7.50

Exemple de hachage double

Exemple de hachage double

« h1(K) = K mod 13 (suite)
h2(K) =8 - Kmod 8
- nous voulons que h2 soit un déplacement a ajouter
44 41|73 18| 32/ 59 31| 22
18 41 22 44 59 32 31 73 01 2345678910111
01 2 3456 7 8 910 1112
Hachage 7.51 Hachage 7.52

Résultats théoriques
» Soita =N/M

- le facteur de charge: nombre moyen de clés par

index du vecteur

» L'analyse utilise les probabilités plutét que le pire
des cas

Nombre de visites anticipé

non trouvé trouvé
Chainage 1+a 1+ %
1 1
Sondage linéairg + —=—— 1, _1
2(1-a)° 2 2(1-a)
1 1
Hachage double 1) InT—4

Nombre de visites anticipé /
Facteur de charge

A

Hachage double

0
[}
=
2
>
@
©
o
—
s}
IS
S
pd

1.0

0.5

Non-trouvé
Trouvé

Hachage 7.53

Hachage 7.54

TRI AVANCE

* Révision sur le tri

* Tri par fusion Merge Sort
* EnsemblesSet$

* Tri rapide Quick-Sor}

« A quelle vitesse peut-on trier?

o O
e O

5000,
)
*ﬂ.

Algorithnmes de tri

* Le tri par sélectiorutilise une file a prioritd
réalisée a I'aide d’une séquence non-ordonnée:

- Phase 1linsertion d’'un item dan® prend un
tempsO(1); en toutO(n)

- Phase 2le retrait d'un item requiert un temps
proportionnel au nombre d’éléments déns
c’est-a-direO(n); en touto(n?)

- Complexité temporelteO(n?)

Tri avancé 8.1

Tri avancé 8.2

Algorithmes de tri (suite)

« Le tri par insertiorutilise une file & priorité
réalisée a I'aide d’une séquence ordonnée:

- Phase 1le premiefnsertitem prendO(1), le
secondO(2), jus%u’au derniensertitem qui prend
O(n); en toutO(n°)

- Phase 2le retrait d’un item prend un tempx1);
en toutO(n).

- Complexité temporelted(n?)

« Letri Heap Sorutilise une file a priorit& réalisée a
l'aide d’'un tas.
- insertltem etremoveMin prennent chacu@(log k),

Diviser pour régner
(Divide-and-Conquey

* Diviser pour régneest bien plus qu'une stratégie
militaire; il s'agit aussi d’'une méthode de
conception d’'algorithmes qui a mené a la créatior
d’algorithmes efficaces tel tei par fusion

» En termes d’algorithmes, cette méthode a trois
étapes distinctes:

- Diviser: Si la taille de I'entrée est trop grande po
la traiter de fagon directe, alors divisez les donng
en deux ou plusieurs sous-ensembles disjoints.

LIr
2eS

ouk est le nombre d’éléments du tas a un moment

donné. - Appliquer récursivement: Utilisez I'approche
- Phase 1n éléments insérés: tem@¥%n log n) diviser pour régner afin de résoudre les sous-
- Phase 2n éléments retirés: tem@(n log n) problémes associés aux sous-ensembles de
- Complexité temporelte(n log n) données.

- Conquérir: Prenez les solutions aux sous-
problémes et “fusionnez” ces solutions afin
d’obtenir la solution au probléme initial.

Tri avancé 8.3 Tri avancé 8.4

Tri par fusion (Merge Sor}

« Algorithme:

- Diviser: Si Sa au moins deux éléments (il n'y a
rien a faire sBa zéro ou un élément), retirez tous
les éléments d8 et placez-les dans 2 séquences
S, etS,, chacune contenant environ la moitié de
éléments d& (S; contient les premiersy/20]
éléments e§, contient lesh/200éléments restants

- Appliquer récursivement: Triez récursivement
les séquences; etS,.

- Conquérir: Replacez les éléments da&ien
fusionnant les séquences tri€getS, en une
séquence triée unique.

[72)

« Arbre de tri par fusion:

- Prenez un arbre binaifle
- Chaque nceut représente un appel récursif a

Tri par fusion
((85 24 63 45 17 31 96 @

= S
- ~
- ~
- ~
- ~
- ~
- ~
———————————————— ~ e S - =
4 v/ \
1 /B 1
S e ey —— 4 N e e — = 4
4 N e A Y
4 Y e A Y
4 Y ' A Y
4 Y ' A Y
_______ P PO et — P PO
’ Ny Ny N N
1 1oy o L |
N 7 N _7 N _7 N 7
AR N /N /N
’ \ ’ \ ’ \ ’ \
’ \ / \ / \ ’ \

-t - — -t - — - - — ol — —
’ \ Ny ’ Ny Ny N \
\ [1 [Y [Y [Y [Y [Y 1
~ ' ~ ' N N N N N7 N7

I'algorithme de tri par fusion. . N . N

- Nous associons a chaque noeutd T 'ensemble / N N N Y

7 T . - / N 7 N 7 7

des entrées a l'invocation que&eprésente. Dt e Ut 2k vkt 25t vttt Tk vl

- Les nceuds externes sont associés aux éléments PN dN SN dN
II’!dIVId_L;e|S deS sur lesquels il n'y a pas d’appel R e A A T A T O
recurS|. N_7 N7 N7 N7 N7 N7 N N

Tri avancé 8.5 Tri avancé 8.6

Tri par fusion (suite)

e N
e N
e N
e N
A S
’ N ’ N
(85 24) 63 45) ['
\ _/ N e e 4
/ \ \ / \ / \
/ \ / \ / \
/ \ / \ ’ \ ’ \
-~ -~ - NN TN -
\ 1o 1 1 o [[[I
~_7 ~_7 ~_7 ~_~ ~_~ ~_~ ~_~ ~_7

Tri par fusion (suite)

/ \
C s
/

/ AN
AN
AN
N
P
N N
(e5) 63 ' ‘
/ \
/ \ / \
/ \ / \
-t -—— - -
\ Vd \ \ Vd \
1 1 1 \ 1 \ 1 \ 1
— ~_7 ~_7 ~_7 ~_7

\ 4 Ay 4 Y
4 Ay 4 Y
e N e AN
e N e AN
P A PO A [P
’ Ny A ’ Ny S
) Qee 45) i [') (63 45 i ['
_______ 4 ______—/ ______—/ ______—/
/ \ / \ / \ / \ / \ / \
/ \ / \ 7/ \ / \ / \ / \
/ \ ’ \ ’ \ ’ \ ’ \ / \
s VAR NN RSN e TN T TN EREN TN 7T
\ 1 [[[[I \ [1 1o 1 1o I
N7 N7 N7 N7 N7 N7 ~ ' ~ b ~ b ~ 4 N7 N7
Tri avancé 8.7 Tri avancé 8.8

Tri par fusion (suite)

—_——————— —_—— e ———

Tri par fusion (suite)

(?4 85

/ \ / \ 7 \
/ \ / \ / \

/ \ / \ / \
- —— - —— -t ——
AY 4 AN AY 14 AY AY 14
\ 1 \ 1 \ 1 \ 1 \ i \ i
N7 N7 N7 N7 ~N_7 ~N_7

—_—— e ——— —_———————

/ \ / \ / \

/ \ / \ ’ \ / \ / \ / \

/ \ / \ ’ \ / \ / \ ’ \
- - - -—— - -—— - - =t - - -
¢ ¢ ¢ N N \ \ N \ [\
\ [1 [1 1 i \ [[[[[I
N7 N7 N7 N7 N7 N_7 N7 N N7 N N7 N7

Tri avancé 8.9 Tri avancé 8.10

Tri par fusion (suite)

7’ N
7’ N
7’ N
7 N
—mm el e
’ S ’ A
| LI 1
\ AN _/
7N 7N
/ \ / \
/ \ / \
\ v T
cb \ [[1 I
~ e ~ e N7 N7

C24 85) G 503

-——— - -

Tri par fusion (suite)

C)

N
C D@

P e e =

Tri avancé 8.11

Tri avancé 8.12

Tri par fusion (suite)

Tri par fusion (suite)

C)
) (—4 D)
SN AN
C_ DCE = 2 D GHED R SR S
dododadn | doddd:
(————)
e e e Y e
SONC L AN
D) GHED R R DX GHED & R
S e ey
Tri par fusion (suite) Tri par fusion (suite)
= =3) | | = };@ <u<)
(=D | | C) ()
LN AN AN
DA GHED S SIS E S C o HCcC HC D
AOES s 565858688

Fusionner deux séquences

» Pseudo-code pour fusionner deux séquences triées

en une séquence triée unigue
Algorithme merge(S1, S2, S):
Entrée: Séquenc&1etS2(ou une relation totale su
les éléments est définie) triée en ordre non-décrois
sant, et une séquence vige
Sortie: Séquenc& contenant I'union des éléments
deSletS2triés en ordre non-décroissant; les
séquenceSletS2deviennent vides a la fin de
I'exécution
while S1lis not emptyand S2is not emptydo
if S1first().element(k S2first().element(then
{déplace le ler élément @&lvers la fin de5}
SinsertLastG1lremoveELlfirst()))
else
{ déplace le ler élément &2vers la fin de5}
SinsertLast2removeB2first()))
while S1is not emptydo
{déplace les éléments restantsSleversS}
SinsertLast61lremove§Llfirst()))
while S2is not emptydo
{déplace les éléments restantsSrersS}
SinsertLast62removeB2first()))

Fusionner deux séquences (suite)

* Quelques illustrations:

>

b)
St

G~

S

> @

Tri avancé 8.17

Tri avancé 8.18

Fusionner deux séquences (suite)

» -O-®
. @

Fusionner deux séquences (suite

e)

JORO
HORO

HOROROR0
HOR0
=()
HOROSOROR0

Tri avancé 8.19

Tri avancé 8.20

Fusionner deux séquences (suite

9)

5 ()
(%)
MO OSOROR0OS0
h)

S
(%)
s (-9~~~

Fusionner deux séquences (suite

)
S

S

OO OROROR0O2020

Tri avancé 8.21

Tri avancé 8.22

Réalisation Java du tri par fusion

« Interface SortObject

public interface SortObject {

/Isort sequence S in nondecreasing order
using compartor ¢

public void sort (Sequence S, Comparator c);

}

Réalisation Java du tri par
fusion (suite)
public class ListMergeSort implements SortObject {
public void sort(Sequence S, Comparator c) {
int n= S.size();

if (n<2) return ;//asequence with O or
1 element is already sorted.

/I divide

Sequence S1 = (Sequence)S.newContainer();

/I put the first half of S into S1

for (int =1; i<= (n+1)/2; i++) {

Sl.insertLast(S.remove(S.first()));

}

Sequence S2 = (Sequence)S.newContainer();

/I put the second half of S into S2

for (int =1; i<=ni2; i++) {
S2.insertLast(S.remove(S.first()));

}

sort(S1,c); // recur

sort(S2,c);

merge(S1,S2,c,S); // conquer

Tri avancé 8.23

Tri avancé 8.24

Réalisation Java du tri par
fusion (suite)

public void merge(Sequence S1, Sequence S2,
Comparator ¢, Sequence S) {

while (IS1.isEmpty() && !S2.isEmpty()) {

if (c.isLessThanOrEqualTo(S1. first().element(),
S2first().element())) {
/I S1's 1st elt <= S2's 1st elt
S.insertLast(S1.remove(S1.first()));

}

else {// S2’s 1st elt is the smaller one
S.insertLast(S2.remove(S2.first()));
}
}

if (S1.isEmpty()) {
while (!S2.isEmpty()) {
S.insertLast(S2.remove(S2.first()));
}

}
if (S2.isEmpty()) {
whil e(!1S1.isEmpty()) {
S.insertLast(S1.remove(S1.first()));
}
}
}

Temps d’exécution du
tri par fusion

 Proposition 1 L'arbre associé a I'exécution du tri
par fusion sur une séquencerdéléments a une
hauteur delog nJ

 Proposition 2 Un algorithme de tri par fusion trie
une séquence de tailheen un temp®(n log n)

» Nous supposons seulement que la séquence d’er

trée

Set chacune des sous-séquences crées par chaque

appel récursif de I'algorithme peut accéder, insérer,

et supprimer les premier et dernier nceuds en un
tempsO(1).

» Nous appelons le temps passé a un nezlidn
arbre de tri par fusiom le temps d’exécution de
I'appel récursif associéaen excluant les appels
récursifs faits aux enfants de

Tri avancé 8.25

Tri avancé 8.26

Temps d’exécution du
tri par fusion (suite)

 Sii représente la profondeur du nosuthns I'arbre
de tri par fusion, alors le temps passé au neoasd
O(n/2) puisque la taille associéeva@stn/2'.

« Observez qud posseéde exactemeritrieuds a la
profondeui. Le temps total passé a la profondeur
dans l'arbre est aloi®(2'n/2"), qui est don©(n).
Nous savons que I'arbre a une hautéog nl]
Ainsi, la complexité temporelle e®(n log n).

Le TAD Ensemble Se)

» Un ensembldse) est une structure de donnée
modélisée selon le concept mathématique
d’ensemble. Les opérations fondamentales sur le
ensembles sontuhion I'intersection et la
soustraction

» Un bref rappel du concept mathématique
d’ensemble:

-AOB= {xxOAouxOB}
-AnB={xxOAetxOB}
-A-B = {xxOAetxOB}

» Les méthodes spécifiques pour un ensemble A
incluent:

- union(B):
L'ensemble A devient Al B.

- intersect(B):
L'ensemble A devient A& B.

- subtract(B):
L'ensemble A devient A B.

[72)

Tri avancé 8.27

Tri avancé 8.28

Fusion générique
Algorithme genericMergéA, B):
Entrée: Séquences triedset B
Sortie: Séquence trié€
let A’ be a copy oA { We won't destroyA andB}
let B’ be a copy oB
while A’ andB’ are not emptyglo
a—A'first()
b B’ first()
if a<b then
alsLesga, C)
A'.removeFirst()
else ifa=b then
bothAreEqud(a, b, C)
A’.removeFirst()
B’.removeFirst()
else
blsLesgb, C)
B'.removeFirst()
while A is not emptydo
a— Afirst()
alsLesga, C)
A.removeFirst()
while B’ is not emptydo
b~ B’ first()
blsLesgb, C)
B'.removeFirst()

Opérations sur les ensembles

» Nous pouvons spécialiser I'algorithme de fusion
générique pour réaliser des opérations sur les
ensembles telles I'union, I'intersection, et la
soustraction.

L'algorithme de fusion générique examine et
compare les éléments couraAtstB.

En se basant sur le résultat de la comparaison, il
détermine s'il doit copier I'un des élémentsub
dansC, ou ne rien faire.

Cette décision dépend de I'opération présenteme
en cours (union, intersection ou soustraction).

Dans le cas de I'union, nous copions le plus petit
élément & oub) dansC; sia=b alors I'un ou l'autre
est copié.

 Pour copier, nous définissons nos actions commes
étantalsLessbothAreEqualetblsLess

« Allons voir la réalisation...

Tri avancé 8.29

Tri avancé 8.30

Opérations sur les ensembles
(suite)

 Pour 'union
public class UnionMerger extends Merger {
protected void alsLess(Object a, Object b, Sequence C) {
C.insertLast(a);
}
protected void bothAreEqual(Object a, Object b,
Sequence C) {
C.insertLast(a);
}
protected void blsLess(Object b, Sequence C) {
C.insertLast(b);
}

* Pour l'intersection
public class IntersectMerger extends Merger {

protected void alsLess(Object a, Object b, SequenceC) {
}

protected void bothAreEqual(Object a, Object b,
Sequence C) {
C.insertLast(a);

protected void blsLess(Object b, Sequence C) { }

Opérations sur les ensembles
(suite)

* Pour la soustraction
public class SubtractMerger extends Merger {

protected void alsLess(Object a, Object b,
Sequence C) {
C.insertLast(a);

}

protected void bothAreEqual(Object a, Object b,
Sequence C) {

}

protected void bisLess(Object b, Sequence C) {
}

}

Tri avancé 8.31

Tri avancé 8.32

Tri rapide
Quicksort

Merci mon Dieu!_ C’est
Quicksort Man A l'aide!

J'arrive a ton secours,
Bubble Sort Man

!

Tri rapide Quick-Sort

» Afin de comprendre le tri rapiduick-sort
regardons une description de haut niveau de
l'algorithme.

1) Diviser: Si la séquenc8a plus d'un élément,
sélectionnez un élémexntde S commepivot.
N’'importe quel élément, par exemple le dernier, fe
I'affaire. Retirez tous les éléments 8et divisez-les
en 3 séquences:

- L, contient les éléments &plus petits que

- E, contient les éléments &2gaux &

- G, contient les éléments &plus grands qur

» 2) Appliquer récursivement: Triez récursivemerit
etG

» 3) Conquérir: Afin de remettre les éléments dahs
en ordre, insérez premiérement les éléments de
suivis de ceux dE, et enfin de ceux dé.

« Voici quelques jolies illustrations...

Tri avancé 8.33

Tri avancé 8.34

Idée derriere Quick-Sort

1. Sélectionner
choisissezin élément

|I| I |]|
X
2. Diviser

réorganisez les éléments
de facon a ce que

* x aille a sa I [| I
X
E

3. Appliquer récursive- L G

ment et conquérir

Arbre Quick-Sort

e e, - -

’ \ 4 \
1 1 k 1
N e e e - - 4 ——pm——g=-=7
e N
e N 7’ N
4 N e N
4 AN 4 N
______________ - —_—
’ N I N ’ ’ \
1 | 1 ' | 1 !
N e e =~ 4 \—d ————— 4 \n.—/ \—.—/
IT \ 7 Y
/, \ . \
/ \ ’ \
2 P P
VASEREN V2sinEN ’ N ’ \
|] 1 1 1 ! 1
N N4 N N—v

triez récursivement (TTTTTT TS TS N \
1) A Pe
——p—— =
A) 2 4
e Y 4 Y
e Y e Y
4 Y 4 Ay
o N T N /_s\ ,—~\
I i ! 1 ' ! 1 !
N e~ 4 \—.' ————— / __—, \—’/
X IT \ ’ Y
’ \ ’ s
, \ 4 AY
- - o -
Praialt s s N ’ N
| [1 ! | v K
Tri avancé 8.35 Tri avancé 8.36

Arbre Quick-Sort

©

<10

Arbre Quick-Sort

(8)(10 9)

/ b b
~ ~
~
~
~
~
U .
/
(7o) ,
__7__T_-/
Y
Y 4 Y
Y e Y
4 Ay
,—.-_____\ /_s\ Pkt
_.;____—/ _’, _,/
’ \ ’ .
/ \ ’ \
/ \ ’ \
. - s -
/_'—\ ;7 ’ N ’ \
| [1 | | 1
\ VAN / N L
(v)
<
~
~
~
~
~
P .
’ \
()7 o) '
\-_7__T_-/
Y
Y 4 Y
Y e Y
Y 4 Ay
,—- ————— N /,s\ PN
D@D O
Y _.;____—/ _’/ _,/
Y A Y
S / .
/ \ ’ \
. - s -
/_'—\ 7 ’ N ’ \
| [1 ! ! I
\ VAN ’ oo SN-7
Tri avancé 8.37 Tri avancé 8.38

Arbre Quick-Sort

Arbre Quick-Sort

Tri avancé

8.39

Tri avancé

8.40

D)

(o w

Arbre Quick-Sort

C

2)
*)
D)

]
7
N
-=a
]
7
1
7
1
4

\
1
\
!
\
1
\
1

~
-
-
1

N
——p—— ==
. N
—— e —m
’

N
——7—-=-c-=7
. N

10

1
~
~
~
>

) Q)
Arbre Quick-Sort

[}
-
-
~
~
[}
-
-

)
)

/
=
\

(@D,
5
5
(@
. l
40
C
(@D
/
—
&
N
) D)

7
RS

Tri avancé

C
C
CZ
C

8.44

*)

Dl

Arbre Quick-Sort

-
N 3))
<) © (<)
- - - -
- ! \ P ! \ - ! J - ! \
\ \ ! ’ \ ! ’ AN \ U 7 \ \ _
! - o ! - o ! ! - o ! ! -
1, — | — 1 1, A 1 1,
v v v
1 1 1
| ! | ! . !
n N N
M 71 71 M 71 M
1 7 o} 71 1 /0 1
! -~ 0 ,- /AN | -~ VAN 1 -
4 J \ / Ny \ ~_7” /

1
~
4
4
4
/"—\
1 1
N_

(507 o) ¢
Arbre Quick-Sort

(cw@o

8.43

Tri avancé

Arbre Quick-Sort

N)

/
)
Q

| N [l

Arbre Quick-Sort

(@))

8.45

Tri avancé 8.46

Arbre Quick-Sort

B
N
N

5 6 7

NOEED)

S

o

N Q™)

&
N
5

io\Om

%\

Arbre Quick-Sort
C(2 4 5 6 7)@)

S
PAEIDD)

8.47

Tri avancé 8.48

Arbre Quick-Sort
((2 4 5 6 7))

(O@.)

%6%

\

)

Arbre Quick-Sort

4 6 7)C 9 10))

) o

od

. /
5 eod
AS

6 10)

\

Esli=a=ra
D¢
E 585

Quick-Sort sur place (n-Place)

« Etape de division | parcours la séquence a partir de
la gauche, et de la droite.

(85 24 63 45 17 31 96 5@
[r

« Un échange a lieu quah@st un élément plus grand
que le pivot et est plus petit que le pivot.

SN

(85 24 63 45 17 31 9 50)
r

(31 24 63 45 17 85 96 5@
| r

Quick-Sort sur place (suite)

O\

24 63 45 17 8 96 50)

| r

« Un dernier échange avec le pivot compléte I'étape

division

(31

24 17 45 50 85 96 6@

r [

Tri avancé 8.51

Tri avancé

8.52

de

Réalisation Java du Quick-Sort
sur place

public class ArrayQuickSort implements SortObject {

public void sort(Sequence S, Comparator c){
quicksort(S, C, 0, S.size()-1);

private void quicksort (Sequence S, Comparator c,
int leftBound,
int rightBound) {
/I left and rightmost ranks of
/I sorting range

if (S.size() < 2) return; //a sequence with 0 or
/I 1 elementsisalreadysorted

if (leftBound >= rightBound) return; //terminate
/Irecursion

/I pick the pivot as the current last
/I element in range

Object pivot = S.atRank(rightBound).element();
/lindices used to scan the sorting range
int leftindex = leftBound; // will scan

Réalisation Java du Quick-Sort
sur place (suite)

/I outer loop
while (leftindex <= rightIndex) {

/Iscan rightward until an element larger than
/lthe pivot is found or the indices cross

while ((leftindex <= rightindex) &&
(c.isLessThanOrEqualTo
(S.atRank(leftindex).element(),pivot))
leftindex++;

/Iscan leftward until an element smaller than
/lthe pivot is found or the indices cross

while (rightindex >= leftindex) &&
(c.isGreaterThanOrEqualTo
(S.atRank(rightindex).element(),pivot))
rightindex--;

/lif an element larger than the pivot and an
/lelement smaller than the pivot have been
/[found, swap them

if (leftindex < rightindex)
S.swap(S.atRank(leftindex),S.atRank(rightindex));

/I rightward
S . . } I/ the outer loop continues until
int rightindex = rightBound - 1; //will scan /l the indices cross. End of outer loop.
/I leftward
Tri avancé 8.53 Tri avancé 8.54

Réalisation Java du Quick-Sort
sur place (suite)

/Iput the pivot in its place by swapping it
/lwith the element at leftindex
S.swap(S.atRank(leftindex),S.atRank(rightBound));

/I the pivot is now at leftindex, so recur
/I on both sides

quicksort (S, c, leftBound, leftindex-1);
quickSort (S, c, leftindex+1, rightBound);
} /I end quicksort method
} /I end ArrayQuickSort class

Analyse du temps d’exécution

» Supposez un arbre quick-sart

- 5(n) indique la somme des tailles d’entrée des
nceuds a la profondeudansT.

» Nous savons qug(®) = n puisque la racine deest
associée avec I'ensemble des entrées tout entier.

* Aussi, §(n) =n-1 puisque le pivot n'est pas propagé.

» Donc: s(n) =n - 3, ou encore - 2 (si 'un des
nceuds a une taille d’entrée a zéro).

 Le temps d’exécution de quick-sort est, dans le pjre
des cas:

-1 g
o0y s(nO
- a
=0
Ce qui revient a:
-1 o oMo)
O0dy (n—-1)O= 00y id= O(n%)
q Z a —.a
=0 =1
Donc le tri quick-sort s’exécute @(nz) dans le pire
des cas.

Tri avancé 8.55

Tri avancé 8.56

Analyse du temps d’exécution
(suite)
* Maintenant observons le meilleur des cas:

* Quick-sort se comporte de fagon optimale lorsque
séquencé&est divisée en sous-séquencedt G de
tailles égales.

* Plus précisément:

- () =n

- s(m=n-1
-S(N)=n-(1+2)=n-3
-sy)=n-(1+2+%=n-7

_%.(n):n—(l+2+£+...+é—1)=n'2+1

» Ceci implique qué a une hauteud(log n)

» Complexité temporelle dans le meilleur des cas:
O(nlogn)

Quick-Sort aléatoire

» Sélectionnez un élément de la séquencbasard
comme pivot

» Le temps d’exécution attendu d’un tel tri sur une
séquence de tailleestO(n log n). Le temps passé a
un niveau de I'arbre quick-sort &3¢n)

* Nous démontrons que feuteur escomptéde
I'arbre quick-sort esD(log n)

* Bons et mauvais pivots

o [

0 n/4 3n/4 n

- Bon: 1/4<n /n< 3/4
- Mauvais n /n<1/4 ou n/n>3/4

* La probabilité d’obtenir un bon pivot est 1/2, donc
nous espérorng? bons pivots

» Aprés un bon pivot, la taille de chague sous-séque
est au plus 0.75 fois la taille de la séquence origin

» Aprésh pivots, nous espérons (3‘7/3)n éléments

 La hauteur escomptéede I'arbre quick-sort est d’au

nce
hle

plus:2 logy3 N

Tri avancé 8.57

Tri avancé 8.58

Encore du tri

* Tri numérique adix sor)

* Tri bucket sort

* Tri sur placeif-place

« A quelle vitesse peut-on trier?

,

Tri numeérique (Radix Sor)

» Contrairement aux autres méthodes, le tri
numeérique adix sor) considere la
structure des clés

e Supposons des clés représentées dans un
systéme numérique a base Mdix); si
M = 2, alors les clés sont représentées en

binaire
8 4 2 1 poids
9=1001 (=4
3210 bit #

» Le tri se fait en comparant les bits a la
méme position

» Extension aux clés formées de chaines
alphanumériques

Encore du tri 8.59

Encore du tri 8.60

Tri numérique avec échange
(Radix Exchange Soit

Examinez les bits dgaucheadroite:

1. Triez le vecteur selon le bit le plus a gauche

o
~~[~lolo

2. Partitionnez le vecteur

0 (sous-vecteur
8 0 du haut)
1 _>
i i (sous-vecteur
1 du bas)

3. Récursivité
* triez récursivement le sous-vecteur du
haut, en ignorant le bit le plus a gauche

* triez récursivement le sous-vecteur du
bas, en ignorant le bit le plus a gauche

Temps requis pour triernombres & bits:

O(b n)

Tri numérique avec échange

Comment réalisons-nous le tri de la page précéden
te? Méme idée que la partitiolansQuicksort
répétez
parcourir de haut en bas pour trouver une
clé débutant par un 1;
parcourir de bas en haut pour trouver une
clé débutant par un 0;

échangez les clés;
jusqu'a ce que les indices de parcours se croisent

parcourilr du haut

w3 .
1 1
0 0
1 _ 1
7L premier 1
parcourir du bas echange
parcourilr du haut
\ 0 0
1 T 0
0 1
. deuxieme
échange
parcourir du bas

Encore du tri 8.61

Encore du tri 8.62

Tri numérique avec échange

®
i ([J
vecteur avant le tfig
e
[J
®
b-1
° 2
[J
L4 o vecteur apres le tri
. sur le bit le plus & gauche

Tri numérique avec échange
versus Quicksort

Similarités
 Les deux partitionnent le vecteur

» Les deux trient les sous-vecteurs
récursivement

Différences
» Méthode de partitionnement
* le tri numérigque divise le vecteur selon
la relation plus grand ou égal &b

« quicksort partitionne le vecteur selon la
relation plus grand ou égal & un
élément du vecteur

e « Complexité temporelle
vecteur apres un tfi * Numérigue avec échange @nf
récursif sur\le 2e bt * Quicksort, cas typique Qh(ogn)
le plus & gauchp « Quicksort, pire des cas @7
[]
Encore du tri 8.63 Encore du tri 8.64
Tri numeérique direct Mais que signifie “trier de
Examinez les bits déroite agauche fa(;OH Stable”?
for k=0 to b-1 Dans un tri stable, I'ordre initial relatif de clés
triez le vecteur de facon Stable égales demeure inchangé.
en ne regardant que le bit k . .
. . . Par exemple, observez la premiére étape du tri de
Premiére- Ensuite, ~ Enfin, la page précédente:
ment, triez triez ces bits triez
CeUux-Ci \ cgux-ci 0f1]0 0[1]|0
\ & ¥ 0|00 0/0|0
ol1/o0/ |0|1|0| |OojOJO| |O]|O|O 1101 1/0/0
olojo| |0j0|0O| |1]0JO| |O|O|1 0/0|1 . [1/1]0
1/0/1] |1]/o]o| |1]o]1| |o]1|0 111 101
0/0j1] |1/1{o] o]of1 [ofzr|1 011 001
1/1]1] [1]of1] |o]2fo] [z]o]o 11010 11111
o/1/1] lolof1]| [1]z]o] [2]o02 1]1]0 0j1]1
1/0/0] [1/1)1f [1)2f1] |1]1/0 Notez que I'ordre relatif des clés se terminant par
1/1/0 \0‘1 1] |of|1]1 1111 0 est inchangé, et que la situation est semblable
) -) pour les éléments se terminant par 1.
Notez I'ordre de ces bits aprés le tri.
Encore du tri 8.65 Encore du tri 8.66

L’algorithme est correct
(vrai?)

» Nous démontrerons que n'importe quelle
paire de clés se trouve correctement
ordonnée a la fin de 'algorithme

« Etant donné deux clés, définissdnsom-
me étant la position du bit le plus & gauche
ou elles different

CIECIENEY

\Ollli\OM

« Al'étapek les deux clés sont mises dans un
ordre relatif correct

» Grace a lstabilité les étapes subséquentes
ne changent pas I'ordre relatif des deux
clés!

Par exemple,

Considérez un tri sur un vecteur avec ces deux
clés:

CIESCIENEY

\Ollli\O\l\

0[1]1]0|1

Leur ordre relatif initial n'a aucune
importance.
0|1|0(1|1]

lo/1/of1]1]

Quand le tri visite le bik,
les clés sont mises dans un
ordre relatif correct. lo[1[1]0[1]

|0]1[0[1][1] Comme le tri est stable, I'ordre
des deux clés ne changera pas
lorsque les bits ¥ seront
|0]1[{1|0[1| comparés.

Encore du tri 8.67

Encore du tri 8.68

Le tri numérique peut étre
appligué aux nombres
décimaux

Complexité temporelle du
tri numeérique direct

for k=0tob-1

Premiérement, Ensuite Et enfin triez | ¢ de facastabl
triez ces chiffres ceux-ci CEUX-Ci €z le vecteur de fa¢ 6_1 &
\' \' l en ne regardant que le kit
0]3 2 0131 071115 0115 Supposons gue nous puissions exécuter ce tri
2|2/4 0/3[2| 0]1]6 |0j1/6 stable en un temp3(n). La complexité
0|1/6] [2/5|2| [1({2]3] |0|3]1 temporelle totale serait:
0|15 |1/2|3| 2|2]|4 0|32
031 2/2[4] 0|31 [1]2]3 O(bn)
11619 |01115) |0}312) 11{6)9 Comme vous l'avez peut-étre deviné, nous
11213 0/116f (21512} 12]2]4 pouvons faire un tri stable basé suk?é:hiffre
2|5]2 1/6]19 11649 2|52 des clés en un tem@xn).
$ 4 $ Par quelle méthode? Par unhvicket sortbien
Notez I'ordre des chiffres aprés le tri. sur. >
\oila!
Encore du tri 8.69 Encore du tri 8.70

Tri Bucket Sort

* nnombres
» Chaque nombrél {1, 2, 3, ...m}
* Stable
* Temps: O(n + m)
Par exemplem = 3 et notre vecteur initial est:

2(113]1]|2

(notez qu’il y a deux “2” et deux “1")

Premiérement, nous créoms'seaux” pucket$

|

|

Tri Bucket Sort

Chaque élément du vecteur est placé dans I'un
desm “seau”

D
1] s

LD DE
1 -0
2 [}~

3 L.
4
[] [1]~[1] 5

[J~[2—~[2

N

L=l

w

=

Ici, chaque élément se
trouve dans le bon seau:

1 [~1—~M
2 [~[2—~2

3 (B

N

Encore du tri 8.71

Encore du tri 8.72

Tri Bucket Sort

Maintenant, transférez les éléments des seaux
vers le vecteur

1 D*
2 [j~[2—~[2

3 [

Enfin, le vecteur trié (trié de facatablg:

11122

Tri sur place (in-place)
» Un algorithme de tri est d#ur placesi

« il n'utilise aucune structure de données
auxiliaire (cependantQ(1) variables
auxiliaires sont permises)

« il met a jour la séquence d’entrée en n'utilisg
seulement que les opérationglaceElement et
swapElements

* Quels algorithmes de tri vus jusqu’a maintenan
peuvent fonctionnesur plac&

tri a bulle pubble sor} Y

tri par sélection

tri par insertion

tri par tas feap sort

tri par fusion (herge sor

tri rapide Quick sor}

tri numérique adix sord

tri bucket sort

Encore du tri 8.73

Encore du tri 8.74

nt

Arbre de décision pour tri

basé sur des comparaisons
* nceud interne: comparaison
* nceud externe: permutation
 exécution de I'algorithmeacine vers feuille

oui/\ non ow! ! non - - ow! ! nonoui! ! non
[][] Hin [][] [][]

A quelle vitesse peut-on trier?

 Proposition: Le temps d’exécution de tout

algorithme basé sur des comparaisons et servant a

trier une séquencgden éléments e€@(n log n).
« Justification:

 Le temps d’exécution d’'un algorithme de tri basé
des comparaisons doit étre plus grand ou égal a
profondeur de I'arbre de décisidrassocié a cet
algorithme.

» Chaque nceud interne @eest associé a une comps
raison qui établit I'ordre de deux élémentsSie

» Chaque nceud externe deeprésente une
permutation distincte des élémentsSie

« Ainsi T doit avoir au moins! nceuds externes, ce
qui implique queT a une hauteur d’au moins lod)

» Puisquen! a au moing)/2 termes qui sont plus gran
ou égal a/2, nous avons:
log() = (n/2) log(n/2)

» Complexité temporelle total€@(n log n).

sur
la

o

Encore du tri 8.75

Encore du tri 8.76

GRAPHES
« Définitions
* Le TAD Graphe

« Structures de données pour graphes

Qu’est-ce qu’'un graphe?
» Un graphe G = (V,E) est composé de:
V: ensemble deommets(verticeg

E: ensemble dircs (edge} reliant les
sommetsleV

e Unarc e= (u,v) est une paire dmmmets

» Exemple:
V={a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d.e)}

Graphes 9.1 Graphes 9.2
Applications De meilleurs exemples...
« circuits électroniques
CSI2514 conception d’horaires (planification de projet)
IJ une journée typique...
départ -
P I % T méditation 2514
trouvez le chemin a la moindre résistance menant a
CSI2514 encore 2514
 réseauxroutiers, aériens, de communication)
programmatio
cuire bicsuits
pour AE 2514
[réves sur 2514
Graphes 9.3 Graphes 9.4

Terminologie des graphes

» sommets adjacenteeliés par un arc
» degré(d’'unsomme). # de sommets adjacents

2 deg(v) = 2(# arcs)
vV

 Comme des sommets
adjacents comptent
tous deux I'arc les
reliant, celui-ci sera
compté deux fois.

chemin séquence de sommetsws,. . .\, ol les
sommets consécutifs gt ., sont adjacents.

abedce

Encore de la terminologie...

» chemin simplesans aucun sommet répété

bec

» cycle chemin simple, sauf que le dernier somme
est le méme que le tout premier

ot

Graphes 9.5

Graphes 9.6

Et encore de la terminologie...

 graphe connexdoutes les paires de sommets son
reliées par un chemin

————————————————————————————

non-connexe

connexe

 sous-graphesous-ensemble de sommets et d'arcs
formant un graphe

* composante connexsous-graphe connexe
maximal. Par exemple, le graphe ci-dessous a 3
composantes connexes.

———————————————————————————————

t

iCaramba! Encore de la
terminologie!

« arbre (libre} graphe connexe sans cycle

» forét- ensemble d’arbres

arbre

Graphes 9.7

Graphes 9.8

Connectivité

Soit n = #sommets
m = #arcs

- graphe complettoutes les paires de sommets sa
adjacentes

m= (1/2)2degl) = (1/2)2-(n - 1) =n(n-1)/2

vOv MV

» Chacun des sommets est attachéa 1 arcs,
cependant, nous aurons compté chaque arc deu
fois!!! Ainsi, intuitivement,m =n(n-1)/2.

n=5
m=(504)/2=10

» Donc, si un graphe n’estiscomplet,
m < n(n-1)/2

nt

Plus de connectivité

n = #sommets
m = #arcs

e Pour un arbren=n-1

35

e Sim<n -1, alors le graph& n’est pas connexe

5
3

n
m

Graphes 9.9

Graphes 9.10

Arbre recouvrant
(Spanning Treé
» Un arbre recouvrant (spanning tregdeG est un
sous-graphe qui:
- estun arbre
- contient tous les sommets Ge

G arbre recouvrant de G

» Une faute affectant n'importe quel arc rend le
systeme non-connexe (I'arbre recouvrant est la
configuration la moins tolérante aux fautes)

Bell Canada contre SM&T

(Stan Matwin & Telephone)

 Stan désire appeler ses AE afin de suggérer une
extension pour le prochain devoir...

Mais un opérateur
coupeaccidentellement
un cable téléphonique!lf

» Une faute va déconnecter une partie du graphe!

« Un cycle serait plus tolérant aux fautes et n’exige
guen arcs.

oo

Graphes 9.11

Graphes 9.12

Euler et les ponts de
Koenigsberg

o

Peut-on traverser chaque pont
exactement une fois et retourner
au point de départ?

» Mettez-vous a la place d'un conducteur de UPS qu
de Fedex qui ne voudrait pas revenir sur son chemin

D

« En 1736, Euler a prouvé que ce n’'est pas possible.

Modele de graphe
(avec arcs paralléles)

©

B

 Tour d’Euler chemin qui traverse chaque arc une
fois exactement et qui retourne au premier somm

» Théoreme d’Eulerun graphe a un tour d’Euler si e
seulement si tous les sommets ont un degré pair.

» Trouvez-vous intéressantes de telles idées?

« Aimeriez-vous passer une session entiére a faire
telles preuves...? Il existe un tel cours!

et

de

Graphes 9.13

Graphes 9.14

Le TAD Graphe (Graph)

» Le TAD Graphe est uncontenant positionn@ont

les positions sont les sommets et les arcs du graphe

Retourne le nombre de sommets plus|le

nombre d’arcs contenus daBs
isEmpty()
elements()
positions()
swap()
replaceElement()

- size()

Notation: Graphé&s; Sommetsy, w; Arc €; Objeto

- numVertices()
Retourne le nombre de sommetsGle

numEdges()
Retourne le nombre d’arcs e

- vertices() Retourne une énumération des
sommets dé&.

Retourne une énumération des arcs ge

- edges()

Le TAD Graphe (suite)

directedEdges()
Retourne une énumération de tous le
arcs orientés dé.
undirectedEdges()
Retourne une énumération de tous le
arcs non-orientés da.
incidentEdges/()
Retourne une énumération de tous le
arcs attachéswa
inIncidentEdges()
Retourne une énumération de tous le
arcs entrant dans
outincidentEdgesf
Retourne une énumération de tous le
arcs sortant de
oppositey, €)
Retourne le sommet de I'aeqyui n’est
pasv.
degreey)
Retourne le degré de
inDegreey)
Retourne le degré d’entrée de
outDegree()
Retourne le degré de sortievde

Graphes 9.15

Graphes 9.16

Encore des méthodes...

- adjacentVertices]
Retourne une énumération des
sommets adjacentsva
- inAdjacentVertices()
Retourne une énumération des
sommets adjacentsvaui ont un arc
entrant dans.
outAdjacentVerticesf
Retourne une énumération des
sommets adjacentsvaui ont un arc
sortant dev.
areAdjacent{w)
Indique si les sommetsetw sont
adjacents.
- endVerticesf)
Retourne un vecteur de taille 2 emms
gasinant les sommets aux boutsede

origin(e)
Retourne le sommet duguetort.
- destinationg)
Retourne le sommet auqueegntre.
- isDirected€)
Retourne vrai s@ est orienté.

|

Méthodes de mise a jour

- makeUndirectedy
Déclaree comme arc non-orienté.
- reverseDirectiord)
Inverse les sommets d’origine et de
destination de.
setDirectionFron, v)
Ajuste la direction de de facon a
sortir dev, I'un de ses sommets.
setDirectionTog, v)
Ajuste la direction de de facon a
entrer dang, I'un de ses sommets.
insertEdgey, w, 0)
Insére et retourne un arc non-orienté
entrev etw, tout en emmagasinanta
cette position.
insertDirectedEdge(w, 0)
Insére et retourne un arc orienté entre
etw, tout en emmagasinao cette
position.
- insertVertex¢)
Insére et retourne un nouveau somm
(isolé) emmagasinanta cette position
- removeEdged)
Retire I'arce.

Graphes 9.17

Graphes 9.18

Structures de données
pour graphes
« Un graphe! Comment le représenter?

» Pour débuter, nous conservonsdemmetst les

Liste d’'arcs (Edge Lis)

» La structurdiste d’arcs emmagasine tout
simplement les sommets et les arcs dans des
séquences non-triées.

» Facile a réaliser.

S

arcsdans deux contenants, et chaque objet arc a|des
références vers les sommets qu'il relie. « Trouver l'arc attaché & un sommet donné n’est pa
efficace parce que cela exige le parcours de la
séquence d'arcs toute entiére.
E
NW 35f{DL 247kad AA 49 |dDL 335[A 138 fAA 523dAA 411kdUA 120dAA 9034dUA 87 7hd TW 45
INENNANRRA{RR N2 AN AR s
RNV, \]
Y Y WY UTAST, 4
Calnialnlal
+ Des structures additionnelles peuvent étre utiliseg¢s \Vj
afin de mieux exécuter les méthodes de Graphe.
Graphes 9.19 Graphes 9.20

Performance de la structure

Liste d'arcs
Opération Temps
size, iIsEmpty, replaceElement, swap 0(1)
numVertices, numEdges 0o(1)
vertices O(n)

edges, directedEdges, undirectedEdges| O(m)

elements, positions O(n+m)
endVertices, opposite, origin, destination0(1)

isDirected
incidentEdges, inIncidentEdges, outinci{ O(m)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacent\ertices,

areAdjacentdegree, inDegree, outDegree
insertVertex, insertEdge, insertDirecte- |O(1)
dEdge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setD
rectionTo

removeVertex

Oo(m)

Liste d'adjacence
(traditionnelle)

« Liste d'adjacence d’'un sommet v

séquence de sommets adjacents a

» Représentez le graphe par les listes d’adjacence

tous les sommets
a

(on

o
(¢

OXOIO.
@%@
i
(@ ©

@ ©
@) (®
i
@) (@

» Espace requis &(N + Zdeg@)) =O(N

+M)

Graphes 9.21

Graphes

9.22

Liste d’adjacence
(moderne)

Performance de la structure

Liste d’adjacence

« La structureiste d’adjacenceaméliore la structure de Opération Temps
liste d'arcs en ajoutant desntenants de liaison size, isEmpty, replaceElement, swap | O(1)
(incidence containejsa chaque sommet. .

numVertices, numEdges 0(1)
NW 35fdDL 247 AA 49 DL 335[AA 138 AA 523dAA 411dUA 120dAA 903{dUA 877k TW 45 Vertlces O(n)

\|l \| \|l \|/ \L I\ |/ I| |I

\Vi! \VERAY/ \ ' /

AN
Pl

edges, directedEdges, undirectedEdge3(m)

elements, positions

O(n+m)

endVertices, opposite, origin, destina- O(1)

tion, isDirected, degree, inDegree,
outDegree

Y AR\ 11 NS T — ——
GO ™ i SER A —OR SFO mmdentEdges(v), |nInC|QentEdge§(v), O(dedqVv))
outincidentEdges(v), adjacentVerti-
L / ces(v), inAdjacentVertices(v), outAdjar
KZ A v v v x centVertices(v)
in [outY ((in in | out) ((in ((in JoutY((in Jout) (in [out) areAdjacent(u, v) O(min(dedu),
NW 3¢ AA 49 DL335| | Nw 39 AAs23| Jua 120lua 8774 | Tw 49 d eqv)))
insertVertex, insertEdge, insertDirecte-O(1)
dEdge, removeEdge, makeUndirected,
reverseDirection,
* L'espace requis e€2(n + m) removeVertex(v) O(deqv))
Graphes 9.23 Graphes 9.24

de

Matrice d’adjacence
(traditionnelle)

a b c d e
alF T T T F
b|T FFFT
CIT FFTT
diT FTF T
e|lF T T T F

» Matrice M avec entrées pour toutes les paires de
sommets

« MJi,j] = vrai signifie qu’il y a un arc (i,j) dans le
graphe.

» MJi,j] = faux signifie qu'il n'y a aucun arc (i,j) dans
le graphe.

« |l y a une entrée pour chaque arc possible, donc:
espace requis ®(N?)

Matrice d’adjacence
(moderne)
« Les structures a matrice d’adjacence ajoutent a la

structure liste d’arcs une matrice ol chaque rangee
et colonne correspond a un sommet.

0 1 2 3 4 5 6
0/ 2| @ \w| @ |pDL| 2| @
35 247
1 2| ¢ | @ A | o | DL | @
49 335
2l @ |amnl @] @ |l @ [TW
1387 903 45
3| ¢ | @ | | o] 0|uA| @
120
4| @ |Ama| @ AAl 2| @] @
523 411
5/ 0 | uvAl o | 2| 0| | @
877
6|l o | o | 0| 2| 0| | @

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 5 6

« L'espace requis e€(n® + m)

Graphes 9.25

Performance de la structure
Matrice d’adjacence

Opération Temps
size, iIsEmpty, replaceElement, swap 0(1)
numVertices, numEdges 0o(1)
vertices o(n)

edges, directedEdges, undirectedEdges| O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination O(1)
isDirected, degree, inDegree, outDegree
incidentEdges, inIncidentEdges, outlnci- O(n)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacent\Vertices,
areAdjacent 0o(1)
insertEdge, insertDirectedEdge, remo- |O(1)
veEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

insertVertex, removeVertex o(nZ)

Graphes 9.27

Graphes 9.26

TRAVERSEES DE GRAPHES

« En profondeur@epth-First Search
» En largeur Breadth-First Search

 Patron de conception: méthode du gabasatr(plate
Method Patterh

Explorer un labyrinthe
sans se perdre

Unerecherche en profondeur(depth-first search
ouDFS)dans un graphe non-orienté G, c’est comme

vagabonder dans un labyrinthe avec une corde etjune
cannette de peinture rouge, sans se perdre.

1%

Nous partons d’un sommgten attachant un bout de
notre corde a ce point et en peinturant “visité”sur
Ensuite, nous étiquetoscomme étant notre
sommet courant appelé

Maintenant, nous allons vers un arc arbitréire).

Si I'arc (u,v) nous mene a un sommetléja visité,
alors nous retournonsla

Si le sommet n’a pas été visité, alors nous
déroulons notre corde en allant, geinturons
“visité” surv, étiqguetonsy comme notre sommet
courant, et répétons les étapes précédentes.
Eventuellement, nous seront au point ol tous les
arcs attachés@ameénent a des sommets visités.
Alors, nous revenons sur nos pas en déroulant la
corde vers un sommet déja visitéinsi v devient
notre sommet courant et nous répétons les étape
précédentes.

[72)

Traversées de graphes 9.28

Traversées de graphes 9.29

Explorer un labyrinthe
sans se perdre (suite)

* Sj tous les arcs attachég ménent a des sommets

visités, alors nous revenons sur nos pas comme rous

I'avons fait précédemment. Nous continuons a
revenir sur nos pas en trouvant et en explorant le
arcs inexplorés, et en répétant la procédure.

12)

« Quand nous retournons au sommmet qu'il n'y a
plus d'arc inexploré attaché a ce point, alors nous
avons terminé notre recherchés.

sommet ViSité——p

sommet courant

Recherche en profondeur DFS

Algorithme DFS(V);
Entrée: un sommev dans un graphe
Sortie: un étiquetage des arcs comme étant
découvertsdiscovery edggu arriéres
(backedges
for chaque are attaché & do
if 'arc e est inexploréhen
soitw l'autre extrémité de
if le sommetv est inexploréhen
étiquetere comme arc de découverte
appeler récursivemeitFS(w)
else

étiquetere comme arc arriére
sommet non-visité

arc traversé

T sommet
adjacent

Traversées de graphes 9.30

Traversées de graphes 9.31

Déterminer les arcs attachés
» DFS dépend de la fagon dont ces arcs sont obtenus. "’@"" @"@"@”D

 Si nous commencgons a A et examinons l'arc vers F, "®‘>D Etape 1;
ensuite vers B, E, C, et enfin G: -><#>—>EI

%9*0*@*@*@*'3 [>&-®~0

B O e
[E]-+-&+-0+=&®~0
[6]-&~&~D

arc arriere
retour d’'une
impasse

— arc de découver '
L
L 2

[A]-®&>=E+O+=&+0
[e]-&®—~0 Etape 2[a]

Si maintenant nous examinons I'arbre en
commengcant par A et ensuite G, C, E, B, et enfin F. _’<A>"D
R Ca g Cag RO g Oags []-&~&~0

I'ensemble final d’arcs arriéres et de découverte| de _’©"®"<D>"® ~L1

méme que les points de retour, sont différents. .->®-><D>->@->|:|
« Passons maintenant a un exemple de DFS. [c]=®A=E& -0
Traversées de graphes 9.32 Traversées de graphes 9.33

Bl-&-&-&~O+=&~0 Bl-&+--&-O=@~0
[e]-&®~0 = [e]-&-0 Etape 5. [Alw
[c]-&-0 N
[l-&+&~0

E]l-&=&~O~E~0 El-&+®+o+H+0

[e]-&+&~O [e]-&~&+D

[~ e GrmGm =D [- mGrr&m =10
[e]-&-0 Etape 4: . Arc/arriére [El-&~0 Etape 6: [Al~w.
F--0 TR [El~&~0 N
E-®-®+0
- &= ®mm -0

[]->&+&~D [e]-&~&+DO

Traversées de graphes 9.34 Traversées de graphes 9.35

D e e g e e Ot [A]- &>+~ O=&~0
[e]-&-0O Etape 7 [e]-&-0 Etape 9: [A]~.
-6 G ~
Bl @0 Bl &~ 6~0
El- -0 -O=+0 @LF [El>©&~B+O=B+0 m B
[F]~&+-o-&~0 [~ &+-o~&~0
[l &0 Bl G~ &~0
[A]> O+~ C=&+0 [2]- OO+ O+-C=0
[e]-&-0O Etape 8: [Alw [e]-&-=0 Etape 10:[A]~.
[c]l-®-0O N [c]-®-0O -
Bl 6@ B~ G- 6-0
El-©~G~&+&+0| BHEF El-&=&-0-®
[~ 6= m Gt [e Gt
[c] =& -0 [c]-®=&~0O
[A]-&>B=O+O+-&+0 [A]-&->@=O+O+=&+0
[e]~&~0 Etape 11:[A]~. [e]~&~0 Etape 13:
[c]-&-0 " [c]-&®~O
[E]~®+&+0 [o]-®&+~&~0
[El>&+~B+~0~® l*@*@*@%&m EJ i
[Fl- 600 [Fl- @O0
[e]-&-&~0 [e]-&-&+O
[A]>D>B+O+O=&+0 [A]>&>B>&>O=&=0
[e]~&~0 Etape 12: [e]~ &0 Etape 14: [A]
[c]-&-DO [-®-~0
[o]~®~&~0 ! [o]~&+-&+0 .
[El>&~B+O~O~0; El>&~@>O-EL
F-6-&r®en | e 6-&réen |
El-&+-&+0 [E}-&+-&+0

Traversées de graphes

9.38

Traversées de graphes

9.39

N R R R OO OR g N
[e]-&~0O Etape 15: .'
E-&-0
[o]-®&+~&~0
El-©=B-O-+0
[l =&+ 6--0
[c]-&=&-0

l+®+0+®>©+©+u
—><A>—>|:|
[c]-®—-0O
[o]-&-E&~0 :
El-©=B-O~o+0
[F]l-&+=O-®>0
[c]=&=& 0O

I R R R R OO g N
[E]l-®~0O
[c]-®~-0O
[o]-®&+=&-0
E}-S+B=O~~0
[El-&+=®-®~0
[c]-&=®&=0

E*@*@*@*@*@*D
[e]-&~0O Etape 18:
[c]-&®-DO
[o]-&~&~0
El-&=®=0~o+0
IR
Bl 6= &-0

Traversées de graphes 9.40

Traversées de graphes 9.41

- -@rf-O=6--n
-0
£~ &0
E-&-6-0
B~ &~ ~0-G-0
[-&~0~&~0
[E-&~&~0

Et c’est tout!

Propriétés de DFS

* Proposition 9.12 : Soft un graphe non-orienté sur
lequel une traverséeFS commencant au sommet
a été faite. Alors:

1) La traversée visite tous les sommets dans |
composante connexe de

2) Les arcs de découverte forment un arbre
recouvrant de la composante connexs de

« Justification de 1):

- Essayons une contradiction: supposons qu'il y
au moins un sommetnon-visité et soitv le
premier sommet non-visité sur un chemirsade.

- Commew est le premier sommet non-visité sur |
chemin, il y a un voisim qui a été visité.

- Mais quand nous avons visitéhous devons avoir
observé I'ardu, w). Doncw doit avoir été visité.

« Justification de 2):
- Nous étiquetons seulement les arcs a partir du
moment ou nous allons vers des sommets non-
visités. Ainsi, nous ne formons jamais de cycle

d’arcs de découverte; ces arcs forment un arbre.

- C’est un arbre recouvrant caFS visite chaque
sommet dans la composante connexe.de

Traversées de graphes 9.42

Traversées de graphes 9.43

Analyse du temps d’exécution Etiguetage des sommets

* Souvenez-vous: « Etudions les fagons d’étiqueter les sommets de fagon
- DFSsur chaque sommet une fois exactement. a satisfaire les conditions mentionnées a la page
- Chaque arc est examiné exactement deux fois, une précedente.
fois pour chacun de ses sommets. « Extension des positions de sommet pour inclure une
« Pourng sommets etng arcs dans la composante variable servant a I'étiquetage.
connexe du sommet uneDFS commengant a Avant Apres
s’exécute en un tem@(nS +ms) Si: Position Position
- Le graphe est représenté dans une structure de
données, comme une liste d’adjacence, ot les Y
méthodes pour les sommets et les arcs s’exécuten | Elemen iS'V'arkeé

en un temps constant;
- Etiqueter un sommet comme étant exploré et tester| « Utilisation d’'un mécanisme de table de hachage qui

si un sommet a été exploré prebgtiegré); satisfait ces conditions dans un sens probabiliste
- En étiquetant les nceuds visités, nous pouvons parce qu'un tel mécanisme supporte les opérations
systématiquement considérer les arcs attachés|au d'étiquetage et de test en un temps attedy).

sommet courant, de fagon a ne pas examiner le
méme arc plus d'une fois.

Traversées de graphes 9.44 Traversées de graphes 9.45

Patron de conception: méthode du| | Recherche en profondeur générique

gabarit (Template Method Pattem public abstract class DFS {
protected Object dfsVisit(Vertex v) {
« le patron de conceptionéthode du gabarit offre un protected InspectableGraph graph;
mécanisme de calcul génériqugii peut étre protected Object visitResult;
spécialisé en redéfinissant certaines étapes initResult();
. . startVisit(v);
« pour I'appliquer, nous concevons une classe qui: mark(v)
- realise Iesquelettaj,un algorlthme for (Enumeration inEdges = graph.incidentEdges(v);
- invoque des méthodes auxiliaires qui peuvent éfre inEdges.hasMoreElements();) {
redéfinies par ses sous-classes afin de faire des Edge nextEdge = (Edge) inEdges.nextElement();
calculs utiles if (lisMarked(nextEdge)) { // found an unexplored edge
mark(nextEdge);

» Bénéfices
- fait que la rectitude des calculs spécialisés dépend
de celle de I'algorithme squelette

Vertex w = graph.opposite(v, nextEdge);
if (lisMarked(w)) { // discovery edge

£ . e 4 mark(nextEdge);
- démontre la puissance de I'héritage traverseDiscovery(nextEdge, v):
- promeut la réutilisation de code if (lisDone())

11}

visitResult = dfsVisit(w); }
else // back edge

- encourage le développement de code génériqu

¢ Exemples traverseBack(nextEdge, v);
- traversée générique d’'un arbre binaifgui inclut }
pré-ordre, in-ordre, et post-ordre) et ses }
applications finishVisit(v);
- recherche en profondeur générique d’'un graphe return result();
non-orientéet ses applications }

Traversées de graphes 9.46 Traversées de graphes 9.47

Méthodes auxiliaires de
recherche DFS générique

public Object execute(InspectableGraph g, Vertex start,
Object info) {

graph = g;
return null;

}

protected void initResult() {}

protected void startVisit(Vertex v) {}

protected void traverseDiscovery(Edge e, Vertex from) {}
protected void traverseBack(Edge e, Vertex from) {}
protected boolean isDone() { return false; }

protected void finishVisit(\Vertex v) {}

protected Object result() { return new Object(); }

Observons maintenant 4 facons
de spécialiser DFS générique!

* la classd-indPath spécialisedFs afin de retourner
un chemin du sommetart vers le sommetrget.
public class FindPathDFS extends DFS {

protected Sequence path;
protected boolean done;
protected Vertex target;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);
path = new NodeSequence();
done = false;
target = (Vertex) info;
dfsVisit(start);
return path.elements();

}

protected void startVisit(Vertex v) {
path.insertFirst(v);
if (v == target) { done = true; }

}

protected void finishVisit(Vertex v) {
if ('done) path.remove(path.first());

}

protected boolean isDone() { return done; }

Traversées de graphes 9.48

Traversées de graphes 9.49

Autre spécialisation de DFS
genérique...

» FindAllVertices spécialisedFs afin de retourner
une énumeération des sommets dans la composa
connexe contenant le sommetrt.

public class FindAllVerticesDFS extends DFS {
protected Sequence vertices;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);
vertices = new NodeSequence();
dfsVisit(start);

return vertices.elements();

public void startVisit(Vertex v) {
vertices.insertLast(v);
}
}

nte

Plus de spécialisations de DFS
genérique...

» ConnectivityTest utilise une spécialisation aes
pour déterminer si un graphe est connecté.

public class ConnectivityTest {
protected static DFS tester=new FindAllVerticesDFS();
public static boolean isConnected(InspectableGraph g)

{

if (g.numVertices() == 0) return true; //fempty is
/lconnected

Vertex start = (Vertex)g.vertices().nextElement();

Enumeration compVerts =
(Enumeration)tester.execute(g, start, null);

/I count how many elements are in the enumeration

int count = 0;

while (compVerts.hasMoreElements()) {
compVerts.nextElement();
count++;

}

if (count == g.numVertices()) return true;

return false;

}
}

Traversées de graphes 9.50

Traversées de graphes 9.51

Et une autre spécialisation de
DFS générique!

» FindCycle spécialiseoFs afin de déterminer si la
composante connexe du somrsigtrtcontient un
cycle et alors le retourne.

public class FindCycleDFS extends DFS {
protected Sequence path;
protected boolean done;
protected Vertex cycleStart;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(qg, start, info);
path = new NodeSequence();
done = false;

dfsVisit(start);

/lcopy the vertices up to cycleStart from the path to
/lthe cycle sequence.

Sequence theCycle = new NodeSequence();
Enumeration pathVerts = path.elements();

while (pathVerts.hasMoreElements()) {
Vertex v = (Vertex)pathVerts.nextElement();
theCycle.insertFirst(v);
if (v == cycleStart) {
break;
}
}
return theCycle.elements();
}
protected void startVisit(Vertex v) {path.insertFirst(v);}
protected void finishVisit(Vertex v) {
if (done) {path.remove(path.first());}
}
/IWhen a back edge is found, the graph has a cycle
protected void traverseBack(Edge e, Vertex from) {
Enumeration pathVerts = path.elements();
cycleStart = graph.opposite(from, e);
done = true;

}

protected boolean isDone() {return done;}

}

Traversées de graphes 9.52

Traversées de graphes 9.53

Recherche en largeur BFS
(Breadth-First Search

« CommeDFS, unerecherche en large(BFS)
traverse une composante connexe d’'un graphe, €
faisant définit un arbre recouvrant qui a quelques
propriétés utiles
- Le sommet de dépasia un niveau 0; comme dan

DFS, définissons ce point comme point d’ancrag
- Au premier tour, la corde est déroulée de la

longueur d’'un arc, et tous les arcs a une distan¢

d’un arc du point d'ancrage sont visités.
- Ces arcs sont placés dans le niveau 1.

- Au second tour, tous les nouveaux arcs qui
peuvent étre atteints en déroulant la corde d'un

longueur de 2 arcs sont visités et placés dans le

niveau 2.
- Ceci se poursuit jusgu’a ce que tous les somme
aient été placés dans un niveau.

- L'étiquette de tout sommetcorrespond a la
longueur du plus court chemin dav.

t cq

[72)

je.

e

BFS - Une Représentation
graphique

b)

Traversées de graphes 9.54

Traversées de graphes

Encore BFS

Pseudo-code BFS

Algorithme BF(s):
Entrée: Un sommes dans un graphe
Sortie: Un étiquetage des arcs comme étant
découvertsdiscovery edggou traversés
(cross edges
initialiser le contenant d.avec le sommed
while L; n’est pas video
créer le contenantl4 initialement vide
for chague sommetdans |, do
if l'arc e est attaché ado
soitw l'autre extrémité de
if le sommetv est inexploréhen
étiquetere comme arc de découverte
insérerw dans L, 1
else
étiquetere comme arc traversé
i+l

Traversées de graphes 9.56

Propriétés de BFS

* Proposition SoitG un graphe non-orienté sur leque

une traverséBFSdébutant au sommeta été faite.

Alors:

- La traversée visite tous les sommets dans la
composante connexe de

- Les arcs de découverte forment un arbre
recouvrantl, que nous appelons artiB€S, de
composante connexe de

- Pour chague sommetau niveadu, le chemin de
I'arbre BFST entres etv ai arcs, et tout autre
chemin de G entrgetv a au moins arcs.

- Si(u, v) est un arc qui n’est pas dans I'arBifeS,
alors les niveaux deetv difféerent de 1 au plus.

 Proposition SoitG un graphe avee sommets et
arcs. Une traversé&-SdeG a un temp®(n + m).
Aussi, il existe des algorithmes au ten@i{gs + m)
basés sur BFS pour les problémes suivants:
- Tester siG est connexe
- Calculer I'arbre recouvrant d&
- Calculer les composantes connexe$sde
- Calculer, pour chague sommetie G, le nombre

minimum d’arcs de tout chemin ensetv.

n}

Traversées de graphes 9.58

Traversées de graphes 9.57

DIGRAPHES

» Accessibilité feachability)
» Connectivité
» Fermeture transitiveclosure

« Algorithme de Floyd-Warshall

BOS H

orD)[V]
JFK
V6

RS u ‘\
V.
MIA

DIGRAPHES

2

méditation 2514

une journée typique...

cuire bicsuits
pour AE 2514

11

réves sur 25

9.59

Digraphes 9.60

Qu’est-ce qu’un digraphe?
Un graphe orienté (de I'anglaiérected grapi!

Chaque arc va dans une direction

Larc (a,b) vadea ab, maispas deb aa

Vous dites srement: “Ouin, et si nous avions un
exemple qui démontrerait combien nous pour-
rions étre éclairés par l'utilisation de digraphes?!!
- Et bien, si vous insistez. . .

Applications

Cartes: les digraphes peuvent représenter les
rues a sens unigue
(utiles dans les grands centres-villes)

Tunnel O’ Doom

Scili

Angell

Thomas J. Watson Jr:
Center for
Information
Technology

Waterman

Brook

L'auteur

Digraphes 9.61

Digraphes 9.62

Une autre application

Planification d’horaires: I'arc (a,b) indique
gue la tachea doit étre complétée avant qué
ne démarre.

Les vieux programmeurs ne meurent pas—

Les GOA!
GOA: Graphe Orienté Acyclique
(de I'anglais directed acyclic graph — DA

Pardon?!!

C’est un graphe orientésans cycles orientés

pas un GOA

ils ne font que tomber dans les trous npirs
Digraphes 9.63 Digraphes 9.64
Accessibilité (eachabilit
Recherche en profondeur (Y
Méme algorithme que pour lesyraphes non- Arbre DFS avec racinev: sommets accessibles
orientés a partir de v via les chemins orientés
Sur un digraphe connexe, nous pouvons obte-
nir des arbres DFS non-connexes (c’est-a-dire,
une forét DFS)
&)
®
Digraphes 9.65 Digraphes 9.66

Digraphes fortement connexes

Chaque sommet peut atteindre tous les
autres sommets

Composantes fortement
connexes

~

Digraphes 9.67

Digraphes 9.68

Fermeture transitive

Le digraphe G est obtenu de G en utilisant la
regle:

Si il existe un chemin oriegté da@gdea ab,
alorsajouter I'arc(a,b) aG

Calculer la fermeture
transitive

Nous pouvons utiliser DFS sur chaque sommet
Temps:O(n(n+m))

Ou encore... utiliser I'algorithme de Floyd-
Warshall:

Si nous pou-
vons aller da
ab, etdeb ac,
alors nous
pouvons aller
deaac

“Pink” Floyd

Digraphes 9.69

Digraphes 9.70

Exemple

Algorithme de Floyd-Warshall

* Cet algorithme présuppose que les méthodes
areAdjacent etinsertDirectedEdge prennent un temps
O(1) (par exemple, structure en matrice d'adjacen

Algorithme FloydWarshall(G)
soit vy ... \, un ordre arbitraire des sommets

GO =G
for k=1tondo
/I considérez tous les sommets de routage
/I possiblesyy
Gy = G.1// ce sont les seuls a conserver
foreach(i,j=1,..,n) (it} (i,j!'=k)do
/I pour chaque paire de sommetsty;
if G_1.areAdjacent(v;,vy) and
Gy.p.areAdjacent(vy,v)) then
Gy.insertDirectedEdge(v;,vj,null)
return Gy,

* Le digrapheG, est le sous-digraphe de la fermetu
transitive deG induit par les chemins avec somme
intermédiaires dans I'ensemHtle 4, ..., \ }

« Temps d’exécutionO(n’)

e
IS

Digraphes 9.71

Digraphes 9.72

Exemple
« digraphe G

BOS
ORD) [V4] //A
JFK
SFO

—4 DFW
u
‘\
V.
\—/Mm

Exemple

« digraphe G*

Digraphes 9.73

Digraphes 9.74

Tri topologique

Pour chaque arc (1,v), le sommetu est visité
avant le sommetv

2

méditation 2514

une journée typique...

réves sur 25

Tri topologique

Le résultat du tri topologique
peut ne pasétre unigue

(A)
ABCD
& O
(D)

— A vousde décider

Digraphes 9.75

Digraphes 9.76

Tri topologique
Les étiquettes augmentent le long d’'un che-
min orienté.

Un digraphe a un tri topologique si et seule-
ment siil est acyclique(donc, un GOA)

Algorithme pour tri
topologique

method TopologicalSort
if il y a encore des sommets
soitv une source;
/l un sommet sans arcs d’entrée
étiqueter et supprimer,
TopologicalSort;

(R,

Digraphes 9.77

Digraphes 9.78

Algorithme (suite)

Simuler la suppression de sources en utilisant
des compteurs de degré d’entrée

TopSort{\Vertex v);
étiqueter v;
foreach arc(v,w)
indeg(w) = indeg(w)- 1;
if indeg(w) =0
TopSor{w);

1. Calculer indegf) pour tous les sommets
2. Foreach sommetdo
if v non étiqueté et indeg(=0
thenTopSor{v)

Exemple

Digraphes 9.79

Digraphes

9.80

Connectivité et
Biconnectivité

e composantes connexes
» sommets de séparatiotufvertice$
» composantes biconnexes

Connectivité et biconnectivité 9.81

Relations d’équivalence

Unerelation sur un ensemblgest un ensemble
ordonnér composé de paires d'élémentsSkt
défini par une propriété quelconque.

Exemple:
« S={1,2,3,4}

* R={(i,)) OSxStelquei<ij}
={(1,2),(1,3),(1,4),(2,3),(2,4).{3.4)}

Unerelation d’équivalencesatisfait les
propriétés suivantes:
e (X,X)OR,Ox0OS réflexive)

c(x,y)OR O (yx)OR Gymétrique
* (Xy),(y,2)OR O (x,2)OR (transitive)

La relationC sur I'ensemble des sommets d’'un
graphe:

e (uv)d = uetvsontdans la méme
composante connexe

est une relation d’équivalence.

Connectivité et biconnectivité 9.83

Composantes connexes

Graphe connexe: chaque paire
de sommets relieée par un chemin.

—

connexe non-connexe

Composante connexe: _
sous-graphe connexe maximal

d’'un graphe

Connectivité et biconnectivité 9.82

DFS sur un graphe non-connexe

* DFS() visite tous les sommets et les arcs
dans la composante connexevde

T
°

» Pour déterminer les composantes connexgs:

k = 0 // compteur composante
foreach (vertexv)
if unvisited(v)
/l ajouter a la composante k
/Il les sommets atteints par v
DFS(v, k++)

Connectivité et biconnectivité 9.84

Sommets de séparation
(Cutvertice$

Sommet de séparationdutverte:
son retrait rend le graphe non-connexe

Si I'aéroport deChicagoest fermé, alors il n'y
a aucun moyen d’aller dans les villes de la cbte
ouest a partir de Providence (PVD). Méme chot-
se pour I'aéroport deenver

» Sommets de séparatio@RD. DEN

Connectivité et biconnectivité 9.85

Propriétés des graphes
biconnexes

* Il y adeux chemins disjoinentre
n'importe quelle paire de sommets.

* lly auncycleau travers de n'importe quelle
paire de sommets.

ment un graphe biconnexe, mais ceci ne satisfa
pas les propriétés mentionnées ci-haut.

O—O

Connectivité et biconnectivité 9.87

Par convention, deux nceuds reliés par un arc for-

it

Biconnectivité

Graphe biconnexe: n'a pas de sommet
de séparation.

Nouveaux vols:
LGA-ATL etDFW-LAX
rendent le graphe biconnexe.

Connectivité et biconnectivité 9.86

Composantes biconnexes

» Composante biconnexe (bloc):
sous-graphe biconnexe maximal

» Les composantes biconnexes d’'un grapheg
ne partagent pas d’arc, mais elles partagent
dessommets de séparation

Connectivité et biconnectivité 9.88

Caractérisation des
composantes biconnexes

 Relation d’équivalencer sur lesarcsde G:

e'ete"
* Preuve de Ipropriété transitive

€ &3

» Nous divisons les arcs de Gaasses d'équi-
valencepar rapport a R.

* une composante biconnexe de G

» une composante connexe d’un graphe
dont les sommets sont lascsde G et
dont les arcs sont Igmiresdans la
relation R.

Connectivité et biconnectivité 9.89

Un algorithme a temps linéaire

« La taille de K esO(mn) dans le pire des cas

» Nous pouvons encore réduire la taille du gr
phe mandataire @(m)

* Traitez les arcs selon unesite pré-ordrede
leur sommet de destination dans I'arbre DR

» Annotez les arcs de découverte formant les
cycles

« Arréter d'ajouter des arcs au graphe
mandataire aprés avoir rencontré le premier
annoté

 Le graphe mandataire résultant est une for
« Cet algorithme requiert un tem@gn+m).

(e',e")dRsiilyaun cycle contenant a la fois

» Chaque classe d’équivalence correspond &:

S

arc

ot

Connectivité et biconnectivité

9.91

DFS et composantes biconnexe

e Le graphe H a)(mz) arcs dans le pire des ca

« Aulieu de calculer le graphe H tout entier, ng
utilisons un graphmandataire (proxy) K, qui
est plus petit.

» Débutons avec un graphe K vide dont les
sommets sont les arcs de G.

« Etant donné une DFS sur G, considérez les
(m-n+ 1) cycles de G induits par les arcs.

* Pour chacun de ces cyclesQey, ey, ..., §)
ajoutez les arcsf, e;) ... €, &) a K.

mes que celles de H!

Connectivité et biconnectivité 9.90

Exemple

Connectivité et biconnectivité 9.92

+ Les composantes connexes de K sont les mé-

S

S.
us

» Arcs arrieres étiquetés selon la visite pré-ordre
de leur sommet de destination dans I'arbre DFS

Exemple (suite) Pourquoi pré-ordre?

 arbre DFS » L'ordre dans lequel les arcs arriéres sont trajtés

est essentiel pour la rectitude de I'algorithme
« L'utilisation d’un ordre différent...

e graphe manda-
taire final (un ar-
bre puisque le
graphe est bi-

connexe) o n
* ... Mmene a un grapne e e
. . 2 1
qui contient des 2 1
informations 9 [d] D)
, JE
Incorrectes.
Connectivité et biconnectivité 9.93 Connectivité et biconnectivité 9.94

Essayez I'algorithme sur ce
graphe!

Connectivité et biconnectivité 9.95

CHAINES DE CARACTERES Recherche dans les chaines de

ET APPARIEMENT caracteres
 L'objectif de larecherche dans les chaines de
(STRINGS & PATTERN MATCHING) caractéregstring searchinyest de localiser un

patron textue(text pattern spécifique au sein d’'un
texte plus long (phrase, paragraphe, livre, etc).

1%}

« Pattern matchingaussi appelé appariement, filtrag

ou correspondance de motifs ou de patrons. « Comme pour la plupart des algorithmes, les
_ _ préoccupations principales pour la recherche dans
« Force brute, Rabin-Karp, Knuth-Morris-Pratt les chaines sont la vitesse et I'efficacité.

* |l existe plusieurs algorithmes pour la recherche
dans les chaines, mais les trois que nous étudierpns
sontforce brute Rabin-Karp et Knuth-Morris-Pratt.

» Expressions régulieres

Chaines de caracteres et appariement 10-1 Chaines de caracteres et appariement 10-2
Force brute Pseudo-code pour force brute
« L'algorithmeforce brutecompare le patron au texte, * \oici le pseudo-code
un caractére a la fois, jusqu’a ce que des caracteres repeat
qui ne correspondent pas I'un a I'autre soient if (lettre du texte == lettre du patron)
trouvés: compare prochaine lettre du texte a la prochaine
lettre du patron
TVD ROADS DIVERGED IN A YELLOW WOOD else _
ROADS déplacer le patron a la prochaine lettre
TWWDO ROADS DIVERGED IN A YELLOW WOOD until (patron trouvé ou fin du texte)
ROADS
TWOROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS cool cat Rolo went over the fence
TWO ROADDIVERGED IN A YELLOW WOOD cat
ROADS
cool cat Rolo went over the fence
- Les caractéres comparés sonttalique cat

- Les caractéres qui correspondent sorgreis cool cat Rolo went over the fence

cat
» On peut demander a 'algorithme d’arréter a la cool cat Rolo went over the fence
premiére occurrence du patron, ou a la fin du texte. cat
cool _cat Rolo went over the fence
cat
cool [caf JRolo went over the fence

cat

Chaines de caracteres et appariement 10-3 Chaines de caracteres et appariement 10-4

Force brute — Complexité

 Soit un patron d’'une longueur de M caracteéres et
texte d’'une longueur de N caracteres...

« Pire des cascompare le patron a chaque sous-
chaine de caractéres de longueur M. Par exemplé¢
M=5.

1) AAAACAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons
4) AAAALAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
5 comparaisons AAAAH

* Nombre total de comparaisons: M (N-M+1)

» Complexité du pire des cad(MN)

un

Force brute — Complexité (suite)

 Soit un patron d’'une longueur de M caractéres et
texte d’'une longueur de N caracteres...

» Meilleur des cas si le patron est trouvéTrouve le
patron au début du texte. Par exemple, M=5.

1) AAAABAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparaisons

* Nombre total de comparaisons: M

» Complexité du meilleur des cas(M)

Chaines de caracteres et appariement 10-5

Chaines de caracteres et appariement 10-6

Force brute — Complexité (suite)

 Soit un patron d’'une longueur de M caracteéres et
texte d’'une longueur de N caracteres...

» Meilleur des cas si le patron n’est pas trouvé.e
premier caractére ne correspond jamais. Si M=5;

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparaison OOOOH

* Nombre total de comparaisons: N

» Complexité du meilleur des cad(N)

un

Rabin-Karp

« L'algorithme de recherche dans les chaines de
caracteres de Rabin-Karp calcule wateur de
hachagepour le patron et pour chaque sous-
séquence de M caractéres du texte a étre compal

» Si les valeurs de hachage sont différentes,
I'algorithme calculera la valeur de hachage de la
prochaine sous-séquence de M caractéres.

« Si les valeurs de hachage sont égales, I'algorithm
fera unecomparaison selon I'approche par force

bruteentre le patron et la séquence de M caracter

* De cette fagon, il n’y a seulement qu’une
comparaison par sous-séquence, et I'approche p
force brute n’est nécessaire que quand les valeur
hachage correspondent.

» Un exemple clarifiera probablement certains
points...

un

ré.

Chaines de caracteres et appariement 10-7

Chaines de caracteres et appariement 10-8

Exemple avec Rabin-Karp

La valeur de hachage de “AAAAA” est 37
La valeur de hachage de “AAAAH" est 100

1) AAAAA AAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37£100 1 comparaison
2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparaison
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparaison
4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparaison

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
AAAAH

5 comparaisons 100=100

Algorithme de Rabin-Karp

le patron a une longueur de M caracteres

= valeur de hachage du patron
hash_t = valeur de hachage des M premiers
caractéres du corps du texte

repeat
if (==hash_}
comparaison par force brute entre le patron et la
section de texte sélectionnée
hash_t= valeur de hachage de la prochaine sectiof

de texte, un caractere plus loin
until (fin du texteor

comparaison par force brute == true)

Chaines de caracteres et appariement

Chaines de caracteres et appariement 10-10

Rabin-Karp
» Questions fréquentes a propos de Rabin-Karp:

“Quelle est la fonction de hachage utilisée
pour calculer les valeurs associées aux
séquences de caractéres?”

“L'application de cette fonction a chaque
séquence de M caractéres tirée du corps du
texte ne prend-t-elle pas trop de temps?”

“Cette matiere sera-t-elle a I'examen final?”

« Afin de répondre a quelques-unes de ces questio
nous devrons faire un peu de mathématiques.

Mathématiques de Rabin-Karp

» Considérez une séquence de M caractéeres commie un

nombre de M chiffres ebaseb, oub est le nombre

de lettres dans 'alphabet. La sous-séquence de texte

t[i .. i+M-1] est convertie au nombre suivant:
x(i) = t[i] BML + t[i+1] B2 +..+t[i+M-1]

* De plus, étant donndi), nous pouvons calculer
x(i+1) pour la sous-séquence suivatfitel .. i+M]
en un temps constant:

x(i+1) = t[i+1] BV + t[i+2] BM2 +.. +t[i+M]
x(i+1) = x(i) D
-t[iiBM Moins le chiffre le plus & gauchg

Déplacer a gauche de 1 chiffre.|.

3%

+t[i+M] Plus le nouveau chiffre le plus a
droite

 De cette fagon, nous n’avons jamais a calculer
explicitement une nouvelle valeur. Nous ajustons
tout simplement la valeur existante lorsque nous
passons au caractére suivant.

Chaines de caracteres et appariement 10-11

Chaines de caracteres et appariement 10-12

Exemple mathématique avec
Rabin-Karp
« Supposons que nous ayons un alphabet a 10 lett
e Alphabet=a, b,c,d, e, f, g, h,i,]j

» Supposons que “a” corresponde a 1, que “b”
corresponde a 2 et ainsi de suite.

La valeur de hachage pour la chaine “cah” sera

3*100 + 1*10 + 8*1 = 318

res

Modulo pour Rabin-Karp

« Si M est grand, alors la valeur résultante™)-bera
énorme. Pour cette raison, nous hachons cette valeur
en la prenantnodulo unnombre premieq.

« La fonctionmod (%en Java) est particulierement
utile dans ce cas grace a quelgues-unes de ses
propriétés inhérentes:

- [(x mod q) + (y mod g)] mod g = (x+y) mod q
- (xmod g) mod g =x mod q

* Pour ces raisons:

h(i) = ((¢[i] o™ modaq) +
(t[i+1] ™2 modq) + ... +
(t[i+M-1] mod qg)) modq

h(i+1) =(h(i))(b modq
Déplacer a gauche de 1 chiffre...
-t[i] ™ modq
Moins le chiffre le plus a gauche
+[i+M] mod q)
Plus le nouveau chiffre le plus a
droite
mod(q

Chaines de caracteres et appariement 10-13

Chaines de caracteres et appariement

10-14

Rabin-Karp — Complexité

« Si un nombre premier suffisamment grand est util
pour lafonction de hachagées valeurs de hachage
de deux patrons différents seront habituellement
distinctes.

« Sic'est le cas, la recherche prend un te@¢), ou
N est le nombre de caractéres dans le corps de t¢
le plus grand.

« |l est toujours possible de concevoir un scénario 3
complexité du pire des c&MN). Cependant, cette
situation ne sera portée a survenir que si le nomh
premier utilisé pour le hachage est petit.

é

0

eXte

1 la

L’algorithme
Knuth-Morris-Pratt

« L'algorithme de recherche déuth-Morris-Pratt
(KMP) differe de I'approche par force brute en ce
gu’il conserve l'information obtenue lors des
comparaisons précédentes.

» Unefonction d'échecféilure function)(f) est
calculée, et elle indique quelle partie de la compa
raison précédente peut étre réutilisée en cas d'éghec.

« En fait, f est définie comme le plus long préfixe du
patron PJ[O0,..,j] qui est aussi un suffixe de P[1,..,j]

- Note:pasun suffixe de P[0,..,j]

» Exemple — valeurs de la fonction d'échec KMP:

i 0 1 2 3 4 5
P[j] a b a b a
() 0 0 1 2 3

 Ceci indique quelle partie du début de la chaine

correspond jusqu’a la portion située juste avant une

comparaison infructueuse.

- Sila comparaison échoue a (4), nous savongaque

etb aux positions 2 et 3 sont identiques aux
positions 0 et 1.

Chaines de caracteres et appariement 10-15

Chaines de caracteres et appariement

10-16

Lalgorithme KMP (suite)

« Pseudo-Code de l'algorithme d’appariement

Algorithme KMPMatch(T,P)
Entrée:ChainesT (texte) an caracteres R
(patron) am caractéres.
Sortie Index de départ de la premiere sous-chaing
T qui correspond B, ou une indication qu n’est
pas une sous-chaine de

f « KMPFailureFunctio(P) {construit la f. d’échec}
j<0
whilei <ndo
if P[j] = T[i] then
if j=m- 1then
returni - m- 1{correspondent}
i+l
j-i+1
elseif j > Othen{nous avons avancé...}
j < f(j-1) {considére le préfixe apparié daR}
else
i+l
return“Pas de sous-chaifedansT”

de

Lalgorithme KMP (suite)

» Pseudo-Code de la fonction d’échec KMP

Algorithme KMPFailureFunctiofP);
Entrée:Chaines (patron) am caractéeres.
Sortie La fonction d’éche€ pourP, qui ajustg selor
la longueur du plus long préfixe @equi est aussi
suffixe deP[1,..].

i1
j <0
whilei <m-1do
if P[j] = P[i] then
{nous avons apparig+ 1 caracteres}
fli)y « j+1
i —i+1
j-j*l
else ifj > Othen
{j considere le préfixe apparié ddls
j < 1(-1)
else
{il n’y a pas de correspondance}
fi) < O
i —i+1

Chaines de caracteres et appariement 10-17

Chaines de caracteres et appariement 10-18

Lalgorithme KMP (suite)

» Une représentation graphique de I'algorithme de
recherche dans les chaines KMP

a|b|a|c a a|b|a|c c a|b|a|c|a|b|a|a|

1 2 3 4.5 6
a|b|a|cab|

TR 7
K ab|a|c|ab

\ 8 9 10 11} 12
a| b| a| cla

aucune

comparaison 13

nécessaire ici a b| a| c| a| b|

14 15 16 17 1819

ajbjaf c[a]b]

b}

L'algorithme KMP (suite)

» Analyse de la complexité temporelle
o définissonk =i - j
« A chaque itération de la bouckhile, I'une des trois
choses suivantes surviendra:.
- 1) siT[i] = P[]j], alorsi est incrémenté de 1, tout
commej. k reste inchangé.
- 2) siTJ[i] = P[j] etj > 0, alorg reste inchangé &t
est incrémenté d’au moins 1, puisdue
change de-j ai - f(j-1)
- 3) siT[i] '= P[j] etj = 0, alord est incrémenté de 1
etk est incrémenté de 1 puisqueeste
inchangé.

« Ainsi, a chaque itératiom,ouk est incrémenté d’'au

moins 1, alors le nombre maximal d’itérations est|2

 Ceci présuppose bien sir dfuat été calculé
auparavant.

» Cependantf est calculé sensiblement de la méme
facon que KMPMatch, alors sa complexité est
semblable. KMPFailureFunction pre@gm)

» Complexité temporelle total®(n + m)

Chaines de caracteres et appariement 10-19

Chaines de caracteres et appariement 10-20

Expressions régulieres

» Notation pour décrire un ensemble de chaines de
caracteres, possiblement de taille infinie.

¢ dénote la chaine vide
» ab + c dénote I'ensemble {ab, c}
» a* dénote I'ensemblegf a, aa, aaa, }..

« Exemples
- (a+b)* toutes les chaines avec l'alphabet {a,b}
- b*(ab*a)*b* chaines avec un nombre pair de “a”
- (a+b)*sun(a+b)* chaines contenant le motif “sun’

- (a+b)(a+b)(a+b)a chaine de quatre lettres se
terminant par “a”

Chaines de caracteres et appariement 10-21

PLUS COURTS CHEMINS

(Shortest Paths

» Graphes pondérés

* Plus courts chemins

Graphes pondérés

 Lespoids sur les arcs d'un graphe représentent des

distances, des codts, etc.

» Un exemple d'un graphe pondéré non-orienté:

Plus courts chemins 11-1

Plus courts chemins 11-2

Plus court chemin

* BFS trouve le(s) chemin(s) au nombre d’arcs
minimal & partir du sommet de départ

« Ainsi, BFS trouve le plus court chemin en supposant
gue chaque arc a le méme poids

» Dans plusieurs domaines, par exemple les réseaux

routiers, les arcs d'un graphe ont des poids différentg

« Comment trouver les chemins au poids total
minimal?

» Exemple - Boston a Los Angeles:

Algorithme de Dijkstra

 L'Algorithme de Dijkstra trouve les plus courts
chemins d'un sommet de dépaners tous les
autres sommets d’un graphe avec:
- des arcs non-orientés
- des arc au poids non-négatif

« L’algorithme calcule, pour chague sommela
distance deu a partir du sommet et donc le poids
d’un plus court chemin entreetu.

« L'algorithme conserve I'ensemble des sommets p¢
lesquels la distance a été calculée, appeiée
(cloud) C

» Chaque sommet a une étiquette D. Pour tout som
u, nous appellerons son étiquettaiDP[u] contient
une approximation de la distance et u.
L'algorithme met a jour une valeur Gj[quand il
trouve un chemin plus court gea u.

e Lorsqu’'un sommeti est ajouté au nuage, son
étiquette D{] est égale a la distance actuelle (final
entre le sommet de déparét le sommet.

Initialement, nous choisissons:
- D[v] =0 ...la distance dea lui-méme est 0...
- D[u] = pouru # v ...ceci va changer...

pur

met

D
~

Plus courts chemins 11-3

Plus courts chemins 11-4

Lalgorithme: Expansion du nuage

» Répétez jusqu’a ce que tous les sommets soient ¢
le nuage:

- soitu un sommet hors du nuage qui a la plus pet
étiquette D{I]. (A la premiére itération, il est
évident que le sommet de départ sera choisi)

- ajoutezu au nuage C

- mettez a jour les étiquettes des sommets adjace
au de la fagon suivante:

for chaque sommetadjacent aido
if zest hors du nuaget@en
if D[u] +weight(u,2) < D[Z] then
D[Z] = D[u] + weight(u,2)

* cette étape est appelée uaexation de l'arc (1,2

v est mis dans le nuage en premier. Puis. & ceu.

lans

ite

2Nt

Pseudo-code

» Nous utilisons une file a priori@ pour
emmagasiner les sommets hors du nuag®[ell
est la clé d’'un sommetdansQ

Algorithme ShortestPai(@, v):
Entrée: Un graphe pondé@et un sommet deG.
Sortie: Une étiquettB[u], pour chaque sommatde
G, ouD[u] est la longueur d'un plus court
chemin dev au dansG.

initialisezD[v] « 0 etD[u] ~ +c pour chaque
sommet Zu
soit Q une file a priorité contenant tous les somme
de G utilisant les étiquetteld comme clés.
while Q # O do
{mettreu dans le nuage C}
u — Q.removeMinElement()
for chaque sommetadjacent & otz est dan€) do
{faire I'opération de relaxation sur I'ar,(2)}
if D[u] + w((u, 2)) <D[Z then
D[Z] —D[u] +w((u, 2))
changez la valeur de la clé ZldansQ aD[Z]
returnl’étiquetteD[u] de chaque sommaet

Plus courts chemins 11-5

Plus courts chemins 11-6

Exemple: plus courts chemins a partir de BWI

parent distance
BOS)
BWI 0
DFW 3
JFK BWI 184
LAX)
MIA BWI 946
ORD BWI 621
PVD [
SFO 00

» JFK (New-York) est le plus prés...

parent distance

BOS JEK 371
BWI 0
DFW JEK 1575
JFK BWI 184
LAX 0
MIA BWI 946
ORD BWI 621
PVD JFK 328
SFO 00

Plus courts chemins 11-7

Plus courts chemins 11-8

« suivi de PVD (Providence)...

» BOS (Boston) est juste un peu plus loin.

parent distance

BOS JFK 371
BWI 0
DFW JFK 1575
JFK BWI 184
LAX)
MIA BWI 946
ORD BWI 621
PVD JFK 328
SFO 00

BOS
BWI
DFW
JFK
LAX
MIA
ORD
PVD
SFO

parent distance

JEK 371

0
JFK 1575
BWI 184

o0
BWI 946
BWI 621
JFK 328
BOS 3075

Plus courts chemins

11-9

Plus courts chemins

11-10

* ORD (Chicago) les suit.

» Puis MIA (Miami).

parent distance g0, que la

BOS JFEK 371
BWI 0
DFW ORD 1423
JFK BWI 184
LAX [)
MIA BWI 946
ORD BWI 621
PVD JFK 328
SFO L_ORD 2467

distance D
pour DWF
a été ajustée

a cette étape

méme chose

/pour SFO

BOS
BWI
DFW
JFK
LAX
MIA
ORD
PVD
SFO

parent distance
JFK 371
0
JFK 1423
BWI 184
MIA 3288
BWI 946
BWI 621
JFK 328
BOS 2467

Plus courts chemins

11-11

Plus courts chemins

11-12

* Au tour de DFW.

» Et de SFO...

parent distance parent distance
BOS JEK 371 BOS JEK 371
BWI 0) BWI 0
DFW [_JEK 1423 Distance D DFW | _ORD 1423
JFK BWI 184 pour LAX est JFK BWI 184
LAX [DFW 2658 |~eliSe ajour LAX [[™IA 2658
MIA BWI 946 MIA BWI 946
ORD BWI 621 ORD BWI 621
PVD JEK 328 PVD JEK 328
SFO [_BOS 2467 SFO BOS 2467
Plus courts chemins 11-13 Plus courts chemins 11-14

* Et enfin de LAX.

parent distance

BOS JEK 371
BWI 0
DFW ORD 1423
JFK BWI 184
LAX MIA 2658
MIA BWI 946
ORD BWI 621
PVD JEK 328
SFO BOS 2467

Temps d’exécution

» Supposons une représentation de G avec une liste
d’adjacence. Nous pouvons alors parcourir tous les
sommets adjacentsuéen un temps proportionnel a
leur nombre (don©(j) ouj est le nombre de
sommets adjacentsud

* La file & priorité Q — choix a faire:

- Untas: réaliser Q avec un tas permet une
extraction efficace des sommets a la plus petite
étiquette D Q(log N)). Si Q est réalisé avec des
repéreurslocators, la mise a jour des clés peut ge
faire en un temp®(logN). Le temps d’exécution
total estO((n+m) log n) oun est le nombre de
sommets dans G etest le nombre d’arcs. En
terme den, le pire des cas e6{n? log n).

- Uneséquence non-trieeO(n) pour I'extraction
des éléments minimaux, mais rapide mise a jour
des clés@(1)). Il n'y a seulement que-1
extractions ein relaxations. Le temps d’exécution
estO(n+m)

» En ce qui concerne lare des casle tas est bon

pour de petits ensembles de données, et la séquence

pour de plus grands ensembles.

Plus courts chemins

11-15

Plus courts chemins 11-16

Temps d’exécution (suite)

 Le cas moyerest une toute autre histoire.
Considérez ceci:

- Sila file a priorité Q est réalisée avec un tas, le
goulot d’étranglement de trouve a étre la mise 3
jour de la clé d'un sommet dans Q. Dans le pire
des cas, nous aurions besoin d’une mise a jour
pour chaque arc dans le graphe.

- Cependant, pour la plupart des graphes, ceci
n'arrivera pas. En supposantamre aléatoire de
voisinage nous observons que pour chaque
sommet, ses sommets voisins seront placés dans ¢
nuage dans un ordre quelcongue. Ainsi il n'y a que
O(log n) mises a jour de la clé d'un sommet.

- Avec cette méme supposition, le temps
d’exécution de la réalisation par tas est
O(n log n + m), qui est toujour©(n?).

La réalisation par tas est donc préférable pour
tous les cas sauf ceux qui sont dégénérés.

1374

Algorithme de Dijkstra,
guelques trucs auxquels penser,...

» Dans notre exemple, fids est ladistance
géographique. Cependant, le poids aurait pu tout
aussi bien représenter le co(t ou le temps de vo|.

» Nous pouvons aisémemtodifier I'algorithme de

Dijkstra selon les besoinspar exemple:

- Sinous ne désirons que le plus court chemwal
un sommet particuliew, nous pouvons arréter
I'algorithme aussitdt qua est mis dans le nuage.

- Nous pourrions aussi faire que I'algorithme
retourne un arbre T enracin& au le chemin dan
T dev au est le plus court chemin dexu.

1%

\"2)

« Comment conserver poids et distanced?s arcs
et sommets ne “connaissent” pas leur poids/distance.
Prenez avantage du fait queuDgst la clé pour le
sommetu dans la file a priorité, et ainsi Oj[peut
étre retracé en connaissant le repéreur diens Q.

» Nous avons besoin d’'un fagon de:
- associer des repéreurs PQ aux sommets
- emmagasiner et récupérer le poids des arcs
- retourner les distances finales

Plus courts chemins

11-17

Plus courts chemins

11-18

ARBRE RECOUVRANT
MINIMAL

« Algorithme de Prim-Jarnik

« Algorithme de Kruskal

C’est un bien joli chapeau. j

Ce n’est pas un chapeau
C’est ma téte!
Je suis une téte d’arbre!

4

Graphes pondérés

(poids d’un sous-graph@’) =
(somme des poids des arcsilg

poids(G')= 2 poids(e)

(e0aG)

poids(G') =800 + 400 + 1200
= 2400

Arbre recouvrant minimal 11-19

Arbre recouvrant minimal 11-20

Arbre recouvrant minimal (MST)

« arbre recouvrant de poids total minimal

« par exemple, pour connecter tous les ordinateurs
d’'un édifice avec une quantité minimale de cable

* exemple

Propriété des arbres
recouvrants minimaux

Soit (V',V"), une partition des
sommets de G.

Soite = (v, v"), un arc de poids
minimal traversant la partition,
c’est-a-direv' 0 V' etv" [1V".

Il y a un arbre recouvrant minimal
(MST) contenant I'arc e.

% V"

Arbre recouvrant minimal 11-21

Arbre recouvrant minimal 11-22

Preuve de la propriété

Sile MST ne contient pas un arc de
poids minimale, alors nous pouvons
trouver un MST meilleur ou égal en
échangearg pour un autre arc.

Algorithme de Prim-Jarnik pour
trouver un MST

« agrandit le MSTT d’'un sommet a la fois
« le nuagecouvre la portion dé déja calculée

« étiquettedD[u] etE[u] associées a chaque sommet

- E[u] est le meilleur arc (poids le plus bas)
connectanu aT

- D[u] (distance au nuage) est le poids=ia]

Arbre recouvrant minimal 11-23

Arbre recouvrant minimal 11-24

Différences entre les
algorithmes de Prim et Dijkstra

» Pour tout sommat, D[u] représente (a date) le
poids du meilleur arc qui joint u au reste de
I'arbre (contrairement a la somme totale des poid
d’'arcs sur un chemin du sommet de dépait a

Prim utilise une file a priorité Q dont les clés sont |
étiquettes D, et dont le&déments sont des paires
sommet-arc

» Tout sommet peut étre lsommet de départ

Nous initialisons toujours toutes les valeurs de] D]
a “infini”, mais nousnitialisons aussi E] (les
arcs associés a) a “aucun”.

Retourne I'arbre recouvrant minimal T.

Nous pouvons reutiliser le code
produit par Dijkstra, et ne

changer que quelgues parties.

Observons le pseudo-code....

[
(7))

Pseudo-code

Algorithme PrimJarniKG):
Entrée: un graphe connexe pondéré
Sortie: unarbre recouvrant minimal pourG.
choisir n'importe queV de G
{agrandir I'arbre débutant avec le somnagt
T « {Vv}
D[v] <« O
E[vV] « O
for chaque sommet# v do
D[u] «
soitQ une file a priorité qui contient des sommets
et qui utilise les étiquettds comme clés
while Q# O do
{placeru dans le nuage C}
U~ Q.removeMinElement()
ajouter le sommat et I'arcE[u] & T
for chaque sommetadjacent & do
if zest dan®)
{faire I'opération de relaxationsur I'arc (i, 2)}
if poids(u, 2) <D[Z] then
D[Z] « poids(u, 2)
ElZ < (u 2
changer la clé dedansQ pourD[Z]
return l'arbre T

Arbre recouvrant minimal 11-25

Arbre recouvrant minimal 11-26

Parcourons son exécution...

MSN

1500

800|

400

LAX

Vvoisin D[u]
DFW [STL 400
LAX STL 1800
LGA SIL 1200
MSN [STL 3800

STL Il IS

Voisin D[u]
DFW I
LAX [DEW 1500
LGA [STL 1200
MIA [DFW 1000
MSN [STL 800

STL Il IS

Arbre recouvrant minimal 11-27 Arbre recouvrant minimal 11-28
SEAN -, 1500 MSN SEAN -, 1500 MSN PVD
80(§ 200 80(§ 200
LGA LGA
400 é 1800 400 é 1800
1500 1500
LAX 1500, ””:100 LAX 1500 4
sz MIA i MIA
DFW 1000 DFW 1000
voisin D[u] voisin
DFW N DFW
LAX [DFW 1500 LAX
LGA | MSN 1000 LGA
MIA [DFW 1000 MIA
MSN MSN
PVD [LGA
SEA [MSN 1500 SEA | MSN
STL Il IR sTL 1 IR
Arbre recouvrant minimal 11-29 Arbre recouvrant minimal 11-30

Temps d’exécution

T < {V}
D[v] « O
E[v] - O
for chaque sommet# v do
D[U] « oo
soitQ une file a priorité qui contient des sommets
et qui utilise les étiquettdd comme clés
while Q # 0 do
U — Q.removeMinElement()
ajouter le sommat et 'arcE[u] aT
for chague sommetadjacent & do
if zest dan®)
if poids(u, 2) <D[Z] then
D[Z] « poids(u, 2)
El7 ~ (u,2)
changer la clé dedansQ pourD[Z]
return l'arbre T

O((n+m) log n)
ouin = nombre de sommets,= nombre d’arcs,
et Q est réalisé avec un tas.

Algorithme de Kruskal

* ajoutez les arcs un a la fois, en ordre croissant de

poids.

 acceptez un arc si il ne crée pas de cycle.

Arbre recouvrant minimal 11-31

Arbre recouvrant minimal 11-32

Structures de données pour
I'algorithme de Kruskal
« I'algorithme maintient une forét d'arbres

* un arc est accepté si il relie des sommets d'arbre
distincts

|2}

* nous avons besoin d'une structure de données qu
maintient ungoartition, c’est-a-dire une collection
d’ensembles disjoints, avec les opérations suivantes
- find(u): retourne I'ensemble contenant
- union(u,V): remplace les ensembles contenaat

v par leur union

Représentation d’'une partition

» chaque ensemble est emmagasiné dans une séq

» chaque élément a une référence vers son ensem
OR0=O0=0)

* I'opérationfind(u) requiertO(n) et retourne
'ensemble donu est un membre

 dans l'opératiomuinion(u,V), nous déplacons les
éléments du plus petit ensemble vers la séquenct
plus grand, tout en mettant a jours leurs référenc

» Le temps associé a 'opérationion(u,V) est
min(ny,n,), oun, etn, sont les tailles respectives de
ensembles contenamietv

* lorsqu’un élément est traité, il se retrouve dans u
ensemble de taille au moins du double

lence
ble

2 du
bS

* ainsi, chaque élément est traité au plusidégis

Arbre recouvrant minimal 11-33

Arbre recouvrant minimal 11-34

Pseudo-code

Algorithme Kruskal(G):
Entrée: Un graphe connexe pondéré
Sortie: unarbre recouvrant minimal pourG.

soit P une partition des sommets @eou chaque
sommet forme un ensemble séparé

soitQ une file a priorité emmagasinant les arc&ge
triés selon leur poids

T0O
while Q# O do
(u,v) « Q.removeMinElement()
if Pfind(u) # Pfind(v) then
ajouter I'arc (,v) aT

Parcourons son exécution...

SEA MSN PVD
’ “... 1000 ®

800!

NARETONE 200
SFO . 800% ", LGA
400 1800 - !
.'_:"""' ,.STL 1 1500
LAX Seal L*400
1500 ~~~. g
' === -. MIA
DFW 1000
MSN PVD

SEA
800,. ‘.. 1000 .

e 200
SFO . 800" . " LGA

P.union(u,Vv)
return T 400 1800 . _nmm
memmmEET .1500
hETI STL »
LAX 15007~~~ g 400 1
DFW. -1550-) . A
Temps d’exécutionO((n+m) log n)
Arbre recouvrant minimal 11-35 Arbre recouvrant minimal 11-36
MSN
800" .: - 1000 . . ~. 1000 ‘
200 800 S o 200
SFO . 800 s " LGA SFO ‘ 800 "’ LGA
400
--1-899"""" 1500 0 00
.~ STL] @ ¢ 1500
LAX SO 400 LAX Sead %00 STL »
1500 "~ .______ 1500 == .
DFW 1000 MIA .""". MIA
DFW 1000
MSN
SEA . . .PVD SEA . ‘SN ’PVD
~en 1000 ~
800 200 800 e ~1900 200

sro @ 800" .

400 __1_8_09______--.

" LGA

sro@ 800

400 __1_8_09_______-‘ 'l

1 1500
-~] 1500
LAX 15.0.0 ~ 200 5T LAX Trea 400 S
.‘-----_. MIA 1500 ..~. . MIA
DFW 1000 DFW 1000
Arbre recouvrant minimal 11-37 Arbre recouvrant minimal 11-38

SEA
800
SFO
400
LAX
SEA MSN PVD
800 200
SFO LGA
400 180 R .l
ToThTTe 1 1500
LAX S~ H

1500 “~~u

Examine LGA-MIA, mais ne I'ajoute pasa T
parce que LGA&MIA sont dans le méme ens.

SEA MSN PVD
800 200
SFO LGA
400 :
¢ 1500
LAX N

SEA

800

SFO
400

LAX

Examine ici LAX-STL, mais ne 'ajoute pas a
T parce que LAX et STL sont dans le méme
ensemble. Et c’est fini!

Arbre recouvrant minimal 11-39

Arbre recouvrant minimal 11-40

FLOT MAXIMAL

« Comment le faire...
« Pourquoi le désirer...
» Ou le trouver...

Ford-Fulkerson

* Edmonds-Karp

» Coupe minimale

Le Tao du Flot (Flow):

“Let your body go with the flow.”
-MadonnaMogue

“Go with the flow, Joe.”
-Paul Simon50 ways to leave your lover

“Use the flow, Luke!”
-Obi-Wan KenobiStar Wars

“Connaissez le flot, ou coulez le cours...”
-Fernando Gomes, CSI| 2514

Réseaux de flots

» Réseau de flots:
- digraphe
- poids, appelésapacitésur les arcs
- deux sommets distinctifs:
- Source, “s”:
Sommet sans aucun arc en entrée
- Puits, “t”:
Sommet sans aucun arc en sortie.

Source

Flot maximal 11-41

Flot maximal 11-42

Capacité et flot

 Capacités d’arc:
Poids non négatif sur les arcs de réseau

* Flot:
- Fonction sur les arcs de réseau:
0 < flot < capacité
flot entrant dans un sommeflst sortant
valeur: flots combinés dans lguits

Source

La logique du flot

* Flot:
flot(u,v) O arc(u,Vv)
-Régle de la capacited arc (,v)

0 < flot(u,V) < capacitqu,V)

-Regle de la conservatiorid sommetv £ s, t

2 flot(u,v) = 2 flot(v,w)

ulin(v) wlout(v)

-Valeur du flot:

|f| =2 flot(sw) = 2 flot(u,t)
wllout(s) udin(t)
* Note:
- O signifie “pour tout”
- in(v) est 'ensemble des sommeteu il y a un arc

deuav
- out(v) est I'ensemble des sommetou il y a un
arc devaw
Flot maximal 11-43 Flot maximal 11-44

Probleme du flot maximal

« “Etant donné un résed\ trouvez un flof de valeur
maximale.”

 Applications:
- Circulation
- Systémes hydrauliques
- Circuits électriques
- Configurations

Source

Flot augmentant

2
Un réseau avec flot de
1 valeur3
g\ Chemin
é augmentant
2

* \Woila! nous avons augmenté la valeur de flot a 4!
Main un instant! Qu’est-ce qu’un chemin
augmentant?!? o

Flot maximal 11-45

Flot maximal 11-46

Chemin augmentant

 Arcs avant (forward edge}¥
flot(u,v) < capacitqu,v)
le flot peut étre augmenté!

« Arcs arriéres (backward edgés
flot(u,v) > 0
le flot peut étre diminué!

o

Théoreme du flot maximal

Un flot a une valeur maximale
si et seulement si
il n'a pas de chemin augmentant,

Preuve:
Flot est maximall Pas de chemin augmentant
(La partieseulement sest simple a prouver.)

Pas de chemin augmentantFlot est maximal
(Prouver la partisi s’avere plus difficile.)

Flot maximal 11-47

Flot maximal 11-48

Algorithme de Ford et Fulkerson

initialiser le réseau avec des flots nul
Méthode FindFlow

si un chemin augmentant existe alo
trouver un chemin augmentant;
accroitre le flot;
appeler récursivement FindFlow;

» Et maintenant, place & un peu d’animation
algorithmique...

Trouver le flot maximal
2 Initialiser le réseau avec
\ des flots nuls. Notez
1 lescapacités au des-
22 ;g

sus des arcset les

Envoyer une unité de flot
dans le réseau. Notez
lechemin de I'unité de
flot en rouge Lesva-
leurs de flot augmen-
tées sont en bleu

Envoyez une autre unité
de flot dans le réseau.

Flot maximal 11-49

Flot maximal 11-50

Trouver le flot maximal

Envoyez une autre unité
de flot dans le réseau.
Notez qu’ilexiste en-
core un chemin aug-
mentantqui peut aller
vers l'arriére, contre
I'arc central.

2 Envoyez une unité de flot
dans le chemin aug-
1 mentant Notez qu'il
0 n'y a plus de chemin
2 augmentant. Ce qui
2 signifie...

Avec l'aide de Ford & Ful-
kerson, nous avons at-
teint leflot maximal

1 de ce réseau.

Ca c’est de la puissance!!!

Réseau résiduel
* Réseau résidueliN (V, B, G, S, 1)

N N¢
cr(uv=c(u,v)-f(u,v)
f(uv) v
cuv)

Ci(v,u=f(u,v)

* Dans leréseau résiduel {Ntous les arcsi(2 avec
capacité gw,2 = 0 sont supprimés.
Chemin augmentant ~ Chemin orienté dans
dans le réseau N~ le réseau résiduelN

Les chemins augmentants peuvent étre trouvés
avec une recherche en profondeur (DFS)\sur

Flot maximal 11-51

Flot maximal 11-52

L'algorithme de flot maximal de

Ford-Fulkerson
Algorithme : MaxFlow(N)
Entrée réseau N
Sortie réseau Nau flot maximal

Partie I: Mise en place

Débutez avec un flot nul:
fluv) < 00 (uv) OE;

Initialisez le réseau résiduel:
Nf « N;

Partie Il: Boucle
repeat
recherchez un chemin oriergélans Nde s a t
if (cheminp trouvé)
Ds — min {c¢(u,V), f(u,v) O p};
for (chaque,v) [0 p) do
if (avant (1,V))
f(uv) < f(u,v) + D,
if (arriére (1,v))
f(uv) — f(u,v) - Dg;
mettre & jour N
until (pas de chemin augmentgnt)

Flot maximal:
complexité temporelle

« Et maintenant, le moment tant attendu: la
complexité temporelle de I'algorithme de flot
maximal de Ford et Fulkersoro@lements de
tambour!!!) [Pause pour effet dramatique]

O(F(n+m))
ou F est la valeur du flot maximah,est le nombre
de sommets, eh est le nombre d’arcs

 Le probléeme avec cet algorithme, cependant, est
gu’il dépend fortement de laaleur du flot maximal
F. Par exemple, $t=2" I'algorithme pourrait
prendre un temps exponentiel.

« Alors, arrivent enfin Edmonds et Karp...

Flot maximal 11-53

Flot maximal 11-54

Edmonds-Karp
« Variation sur I'algorithme de Ford et Fulkerson
« Utilise BFS pour choisir le chemin augmentant

 Trouver un plus court chemin d&it. Y envoyer le
plus grand flot possible.

* Répéter.

e C'est terminé.

Pseudo-code

Algorithme: Edmonds-Karp MaxFlow(N)
Entrée réseau N
Sortie réseau Nau flot maximal

Partie I: Mise en place

Débutez avec un flot nul:
f(luy) <« 00 (u,v) OE;

Initialisez le réseau résiduel:
Nf « N;

Partie 1I: Boucle
repeat
p — BFS-Shortest-Path(s, N
if (cheminp trouvé)
€ « (UOYVO)) Cf(uO'VO) = min{Cf(U,V), (U,V) O p}
Dy « ci(er)
for (chaque,v) O p)
f(u,v) « f(u,v) + Dy
Cf(u,\/) - Cf(u!V) - Df
Ni.remove(g
until (pas de chemin augmentant)

Flot maximal 11-55

Flot maximal 11-56

Flot maximal: amélioration
» Théoreme: [Edmonds & Karp, 1972]

En utilisant BFSrecherche en profondguun flot
maximal peut étre calculé en un temps...

O((n + m) n m) = O(n%)
* N est le nombre de sommetdEtle nombre d’'arcs

* Note:

- L'algorithme d’Edmonds et Karp s’exécute en u
tempsO(n3) peu importe la valeur du flot maxima

Qu’est-ce qu’'une coupe?

* Une partition des sommets X={V,), avec
s Vg et tOV;

i | |||||||||IIII\

- Le pire des cas ne survient habituellement pas en
pratique.
* CapacitéX = (Vg \Vy):
-c(X) = 2 capacité{w) = (1+2+1+3) =7
vOVg
« Lapartition coupé€X dans notre cas) doit passer au
travers du réseau entier, et ne peut pas passer all
travers d’'un sommet.
Flot maximal 11-57 Flot maximal 11-58
Flot maximal et Pseudo-code
coupe minimale
Algorithme : MinCut(N) basé sur Edmonds-Karp
(valeur du flot maximal) Entrée réseau N
Sortie Séguence s d’arcs dans la coupe minimale dg N

(capacité de la coupe minimale)

|I' ——

Source

6

Partie I: Mise en place de Edmonds-Karp (page 56)

Partie II: Boucle
repeat
Les sommets des\he sont pas marqués
p — Marking-BFYs,t,N)
/I une modification de BFS qui marque tout
/l sommet lorsqu'’il est visité
if (cheminp trouvé)
y envoyer le plus grand flot possible
until (pas de chemin augmentant)

Partie Ill: Calcul de la séquence MinCut
S « new Sequence()
foreachsommetu 0 Sommets Marqués

foreach
.) "y if (Naunaredeuav)
 Valeur du flot maximal: 7 unités de flot sadd(e)
« Capacité de la coupe minimale: 7 unités de flot
Flot maximal 11-59 Flot maximal 11-60

Pourquoi est-ce une coupe
minimale?

 Soitl un flot de valeuri] etX une coupe de capacité

[X]. Alors, {|<=].

O
S
X

« Ainsi, si nous trouvons un flot* de valeurff | et
une coupe&X* de capacité{*|=|* |, alors™ doit étre
le flot maximal etX* la coupe minimale.

» Nous avons vu que, a partir du flot obtenu via
I'algorithme de Ford et Fulkerson, nous pouvons
construire une coupe a capacité égale a la valeur
flot. Donc,

- nous avons donné une preuve alternative que
I'algorithme de Ford et Fulkerson génére un flof]
maximal

du

- nous avons montré comment construire une coupe

minimale

Flot maximal 11-61

