
2.1Analyse d’algorithmes

ANALYSE D’ALGORITHMES

• Révision mathématique rapide

• Temps d’exécution

• Pseudo-code

• Analyse d’algorithmes

• Notation asymptotique

• Analyse asymptotique

n = 4

AlgorithmeEntrée

T(n)

Sortie

2.2Analyse d’algorithmes

Cas moyen vs. Pire des cas: Temps
d’exécution d’un algorithme

• Un algorithme peut être plus performant avec
certains ensembles de données qu’avec d’autres,

• Trouver le cas moyen peut s’avérer difficile, alors
les algorithmes sont mesurés typiquement selon la
complexité temporelle du pire des cas.

• De plus, pour certain domaines d’application (par
ex. contrôle aérien, chirurgie, gestion de réseau)
connaître la complexité temporelle du pire des cas
est d’importance cruciale.

Entrée

Te
m

p
s

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

pire des cas

meilleur des cas
} cas moyen?

2.3Analyse d’algorithmes

Mesurer le temps d’exécution
• Comment devrions-nous mesurer le temps

d’exécution d’un algorithme?

• Étude expérimentale:
- Écrivez un programme qui réalise l’algorithme.
- Exécutez le programme avec des ensembles de

données de taille et de contenu variés.
- Utilisez une méthode (System.currentTimeMillis())

pour mesurer précisément le temps d’exécution.
- Les mesures résultantes devraient ressembler à:

50 1000

t (ms)

n

10

20

30

40

50

60

2.4Analyse d’algorithmes

Au-delà des études
expérimentales

• Les études expérimentales ont quelques restrictions:
- Il est nécessaire de réaliser et de tester l’algorithme

afin de déterminer son temps d’exécution.
- Les essais peuvent être faits seulement sur un

ensemble limité d’entrées, et ils peuvent ne pas être
indicatifs du temps d’exécution d’autres entrées
non considérées.

- Afin de comparer deux algorithmes, les mêmes
environnements matériel et logiciel devraient être
utilisés.

• Nous développerons maintenant une méthodologie
générale pour analyser le temps d’exécution
d’algorithmes qui:
- Utilise une description de haut niveau de

l’algorithme au lieu de tester sa réalisation.
- Considère toutes les entrées possibles.
- Permet d’évaluer l’efficacité d’un algorithme

indépendamment des environnements matériels et
logiciels.

2.5Analyse d’algorithmes

Pseudo-code
• Le pseudo-code est une description d’algorithme qui

est plus structurée que la prose ordinaire mais moins
formelle qu’un langage de programmation.

• Exemple: trouver l’élément maximal d’un vecteur
(array).

Algorithm arrayMax(A, n):
Entrée: Un vecteur A contenant n entiers.
Sortie: L’élément maximal de A.

currentMax ← A[0]
for i ← 1 to n −1 do

if currentMax < A[i] then
currentMax ← A[i]

return currentMax

• Le pseudo-code est notre notation de choix pour la
description d’algorithmes.

• Cependant, le pseudo-code cache plusieurs
problèmes liés à la conception de programmes.

2.6Analyse d’algorithmes

Qu’est-ce que le pseudo-code?
• Un mélange de langage naturel et de concepts de

programmation de haut niveau qui décrit les idées
générales derrière la réalisation générique d’une
structure de données ou d’un algorithme.
- Expressions: utilisez des symboles mathématiques

standards pour décrire des expressions booléennes
et numériques
- utilisez ← pour des affectations (“=” en Java)

- utilisez = pour la relation d’égalité (“==” en Java)

- Déclaration de méthodes:
- Algorithm nom(param1, param2)

- Éléments de programmation:
- décision: if ... then ... [else ...]

- boucle while: while ... do

- boucle repeat: repeat ... until ...

- boucle for: for ... do

- indexage de vecteur: A[i]

- Méthodes:
- appel: object method(args)

- retour: return value

2.7Analyse d’algorithmes

Analyse d’algorithmes
• Opérations primitives: opérations de bas niveau qui

sont largement indépendantes du langage de
programmation et qui peuvent être identifiées en
pseudo-code, par exemple:
- Appel et retour d’une méthode
- effectuer une opération arithmétique (addition)
- comparer deux nombres, etc.

• En inspectant le pseudo-code, nous pouvons
compter le nombre d’opérations primitives
exécutées par un algorithme.

• Exemple:

Algorithm arrayMax(A, n):
Entrée: Un vecteur A contenant n entiers.
Sortie: L’élément maximal de A.

currentMax ← A[0]
for i ← 1 to n −1 do

if currentMax < A[i] then
currentMax ← A[i]

return currentMax

2.8Analyse d’algorithmes

Notation asymptotique
• But: simplifier l’analyse en se débarrassant de

l’information superflue.
- comme “arrondir” 1 000 001 ≈ 1 000 000
- nous désirons indiquer formellement que 3n2 ≈ n2

• La notation “Grand-O”
soit les fonctions f(n) et g(n), nous disons que
f(n) est O(g(n)) si et seulement si
il y a des constantes positives c et n0 tel que
f(n) ≤ c g(n) pour n ≥ n0

f(n) = 2n + 6

g(n) = n

20 21 22 23 24 25 26 2720
21

22
23

24
25

26
27

c g(n) = 4n

n

2.9Analyse d’algorithmes

Un autre exemple
• n2 n’est pas O(n)

• nous ne pouvons pas trouver c et n0 tel que
n2 ≤ c n for n ≥ n0

f(n) = n2

g(n) = n

20 21 22 23 24 25 26 2720
21

22
23

24
25

26
27

n

c g(n)

2.10Analyse d’algorithmes

Notation asymptotique (suite)
• Note: Même si il est correct de dire

“7n - 3 est O(n3)”, une meilleure formulation est
“7n - 3 est O(n)”, c’est-à-dire, nous devrions faire
l’approximation la plus juste possible.

• Règle simple: laissez tomber les termes d’ordre
inférieur de même que les facteurs
- 7n - 3 est O(n)
- 8n2log n + 5n2 + n est O(n2log n)

• Classes spéciales d’algorithmes:
- logarithmique: O(log n)
- linéaire O(n)
- quadratique O(n2)
- polynomial O(nk), k ≥ 1
- exponentiel O(an), n > 1

• “Parenté” de Grand-O
− Ω(f(n)): Grand-Oméga
− Θ(f(n)): Grand-Thêta

2.11Analyse d’algorithmes

Analyse asymptotique et
temps d’exécution

• Utilisez la notation Grand-O pour indiquer le
nombre d’opérations primitives exécutées en
fonction de la taille d’entrée.

• Par exemple, nous disons que l’algorithme arrayMax
a un temps d’exécution O(n).

• En comparant les temps d’exécution asymptotiques
- un algorithme d’ordre O(n) est meilleur qu’un

autre d’ordre O(n2)
- de la même façon, O(log n) est meilleur que O(n)
- hiérarchie de fonctions:
- log n << n-2 << n << n log n << n2 << n3 << 2n

• Attention!
- Méfiez-vous des facteurs constants très grands. Un

algorithme au temps d’exécution 1 000 000 n est
quand même O(n) et peut être moins efficace sur
votre ensemble de données qu’un autre au temps
d’exécution 2n2, qui est O(n2).

2.12Analyse d’algorithmes

Exemple d’analyse
asymptotique

• Un algorithme pour calculer les moyennes préfixes:

Algorithm prefixAverages1(X):
Entrée: Un vecteur de nombres X à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

A[i] est la moyenne des éléments X[0], ... , X[i].
Soit A un vecteur de n nombres.
for i ← 0 to n - 1 do

a ← 0
for j ← 0 to i do

a ← a + X[j]
A[i] ← a/(i + 1)

return array A

• Analyse ...

2.13Analyse d’algorithmes

Révision mathématique rapide
• Progression arithmétique:

- Un exemple

- deux représentations visuelles

i 1 2 3 … n+ + + +=
i 1=

n

∑
n

2
n+

2
---------------=

1 n/2
0

1

2

n

3

2

n+1

...

1 2 n0

1

2

n

3

3

...

2.14Analyse d’algorithmes

Un autre exemple
• Un meilleur algorithme pour calculer les moyennes

préfixes:

Algorithm prefixAverages2(X):
Entrée: Un vecteur de nombres X à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

A[i] est la moyenne des éléments X[0], ... , X[i].
Soit A un vecteur de n nombres.
s ← 0
for i ← 0 to n - 1 do

s ← s + X[i]
A[i] ← s/(i + 1)

return array A

• Analyse ...

2.15Analyse d’algorithmes

Mathématiques à réviser
• Logarithmes et exposants

- propriétés des logarithmes:

logb(xy) = logbx + logby

logb(x/y) = logbx - logby

logbxα = αlogbx

logxa

logxb

- propriétés des exposants:

a(b+c) = abac

abc = (ab)c

ab/ac = a(b-c)

b = a

bc = a

logba =

logab

c*logab

2.16Analyse d’algorithmes

Mathématiques à réviser (suite)
• Plancher (Floor)

x = le plus grand entier ≤ x

• Plafond (Ceiling)

x = le plus petit entier ≥ x

• Sommations
- définition générale:

- où f est une fonction, s est l’index de départ, et t est
l’index d’arrivée

• Progression géométrique: f(i) = ai

- soit un entier n ≥ 0 et un nombre réel 0 < a ≠ 1

- les progressions géométriques ont une croissance
exponentielle.

f i()
i s=

t

∑ f s() f s 1+() f s 2+() … f t()+ + + +=

ai 1 a a2 … an 1 an 1+–
1 a–

---------------------=+ + + +=
i 0=

n

∑

2.17Analyse d’algorithmes

Sujets avancés: techniques de
justification simples

• Par exemple
- Trouvez un exemple
- Trouvez un contre-exemple

• Par contradiction (“Contra” Attack)
- Trouvez une contradiction dans l’inverse de

l’énoncé
- Contrapositive

• Induction et invariants de boucle
- Induction

- 1) Prouvez le cas de base

- 2) Prouvez que n’importe quel cas n implique que le prochain cas
(n + 1) est aussi vrai

- Invariants de boucle
- 1) Prouvez l’énoncé initial S0

- 2) Démontrez que Si-1 implique que Si sera vrai après l’itération i

2.18Analyse d’algorithmes

Sujets avancés: autres
techniques de justification

• Preuve par excès d’agitation des mains

• Preuve par diagramme incompréhensible

• Preuve par corruption
- voir le professeur ou l’AE après la classe

• La méthode des nouveaux habits de l’Empereur
- “Cette preuve est tellement évidente que seul un

idiot serait incapable de la comprendre”

3.1Piles, files et listes chaînées

PILES, FILES ET LISTES
CHAÎNÉES

• Types abstraits de données (TAD)

• Piles

• Exemple: Analyse boursière

• Files

• Listes chaînées

• Files à deux bouts (deques)

3.2Piles, files et listes chaînées

Types abstraits de données
(TAD)

• Un type abstrait de données (Abstract Data Type
—ADT) est une abstraction de structure de données:
aucun codage n’est impliqué.

• Un TAD spécifie:
- ce qui est contenu dans le TAD
- les opérations qui peuvent être effectuées sur ou

par le TAD.

• Par exemple, si nous cherchons à modéliser un sac
de billes avec un TAD, nous pourrions spécifier que:
- ce TAD contient des billes
- ce TAD supporte l’insertion d’une bille et le retrait

d’une bille.

• Il y a beaucoup de TAD standards et formalisés. Un
sac de billes n’est pas l’un d’entre eux.

• Dans ce cours, nous apprendrons différents TAD
standards (piles, files, listes...).

3.3Piles, files et listes chaînées

Piles (Stacks)
• Une pile est un contenant pour des objets insérés et

retirés selon le principe dernier entré, premier sorti
(last-in-first-out, ou LIFO).

• Les objets peuvent être insérés à tout moment, mais
seulement le dernier (le plus récemment inséré) peut
être retiré.

• Insérer un item correspond à empiler l’item
(pushing). Dépiler la pile (popping) correspond au
retrait d’un item.

• Analogie: distributeur de bonbons PEZ®

3.4Piles, files et listes chaînées

Le TAD Pile (ou Stack)
• Une pile est un type abstrait de données (TAD) qui

supporte deux méthodes principales:

- push(o): Insère l’objet o sur le dessus de la pile.

- pop(): Retire l’objet du dessus de la pile et
retourne-le; si la pile est vide, alors une
erreur survient.

• Les méthodes secondaires suivantes devraient aussi
être définies:

- size(): Retourne le nombre d’objets dans la
pile.

- isEmpty(): Retourne un booléen indiquant si la
pile est vide.

- top(): Retourne l’objet du dessus de la pile,
sans le retirer; si la pile est vide, alors
une erreur survient.

3.5Piles, files et listes chaînées

Exemple
• L’ étendue (span) du prix d’une action à un certain

jour, d, est le nombre maximum de jours consécutifs
(jusqu’à aujourd’hui) où le prix de l’action a été plus
bas ou égal à son prix au jour d.

s6=6

s5=4

s2=1

s3=2

0 1 2 3 4 5 6

s1=1

s0=1

s4=1

3.6Piles, files et listes chaînées

Un algorithme inéfficace
• Il y a une façon directe de calculer l’étendue d’une

action à un jour donné pour n jours:

Algorithm computeSpans1(P):
Entrée: Un vecteur de nombres P à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

S[i] est l’étendue de l’action au jour i
Soit S un vecteur de n nombres
for i=0 to n−1 do

k ←0
done←false
repeat

if P[i-k] ≤P[i] then
k←k+1

else
done←true

until (k=i) or done
S[i]←k

return array S

• Le temps d’exécution de cet algorithme est (ouf!)
O(n2). Pourquoi?

3.7Piles, files et listes chaînées

Une pile peut aider!
• Nous voyons que si au jour i peut être calculé

facilement si nous connaissons le jour le plus proche
avant i où le prix est plus haut lors de ce jour que le
prix au jours i. Si un tel jour existe, appelons-le hi.

• L’étendue est maintenant définie par si = i - hi

Nous utilisons une pile pour calculer hi

0 1 2 3 4 5 6

3.8Piles, files et listes chaînées

Étude de cas: Une applet pour
analyse boursière (suite)

• Le pseudo-code pour notre nouvel algorithme:

Algorithm computeSpan2(P):
Entrée: Un vecteur de nombres P à n éléments.
Sortie: Un vecteur de nombres A à n éléments tel que

S[i] est l’étendue de l’action au jour i
Soit S un vecteur de n nombres et D une pile vide
for i=0 to n-1 do

done←false
while not(D.isEmpty() or done) do

if P[i]≥P[D.top()] then
D.pop()

else
done←true

if D.isEmpty() then
h← -1

else
h←D.top()

S[i]←i-h
D.push(i)

return array S

• Analysons le temps d’exécution de computeSpan2...

3.9Piles, files et listes chaînées

À propos de Java
• Étant donné le TAD pile, nous devons coder cet

ADT afin de l’utiliser dans nos programmes.

• Vous devez comprendre deux concepts de
programmation: les interfaces et les exceptions.

• Une interface est une façon de déclarer ce qu’une
classe peut faire. Elle n’indique pas comment le
faire.

• Pour une interface, vous écrivez simplement les
noms de méthodes et leurs paramètres. Ce qui est
important dans un paramètre est son type.

• Plus tard, quand vous écrirez une classe pour cette
interface, vous coderez alors le contenu de ces
méthodes.

• Séparer l’interface de la réalisation est une technique
de programmation très utile. Exemple d’interface:

public interface radio {

public void play();

public void stop();

}

3.10Piles, files et listes chaînées

Une interface de pile en Java
• Même si la structure de donnée pile est déjà incluse

comme classe Java dans le “package” java.util, il est
possible, et parfois même préférable, de définir votre
propre pile spécifique, comme ceci:

public interface Stack {

// accessor methods

public int size(); // return the number of
// elements in the stack

 public boolean isEmpty(); // see if the stack
// is empty

public Object top() // return the top element

throws StackEmptyException; // if called on
// an empty stack

// update methods

public void push (Object element); // push an
// element onto the stack. Note that
// the type of the parameter is
// specified as an Object

public Object pop() // return and remove the
// top element of the stack

throws StackEmptyException; // if called on
// an empty stack

}

3.11Piles, files et listes chaînées

Exceptions
• Les exceptions sont un autre concept de

programmation très utile, surtout dans un contexte
de gestion d’erreurs.

• Quand vous détectez une erreur (ou un cas
exceptionel), vous lancez (throw) une exception.

• Exemple
public void mangePizza() throws MalAuVentreException

{

...

if (tropMangé)

throw new MalAuVentreException(“Ouch”);

...

}

• Aussitôt l’exception lancée, le flux de contrôle sort
de la méthode en cours d’exécution.

• Alors quand MalAuVentreException est lancée, nous
sortons de la méthode mangePizza() pour aller là où
cette méthode a été appelée.

3.12Piles, files et listes chaînées

Encore des exceptions
• Supposons que le fragment de code suivant ait

appelé la méthode mangePizza() en premier lieu.

private void simuleRencontre()

{

...

try

{

unStupideAE.mangePizza();

}

catch(MalAuVentreException e)

{

System.out.println(“quelqu’un a mal au ventre”);

}

...

}

3.13Piles, files et listes chaînées

Toujours des exceptions
• Nous retournerons à unStupideAE.mangePizza();

parce que, souvenez-vous, mangePizza() lança
l’exception.

• Le bloc try et le bloc catch indiquent que nous
sommes à l’écoute des exceptions qui sont spécifiées
dans le paramètre de catch.

• Parce que catch est à l’écoute de
MalAuVentreException, le contrôle ira au bloc catch, et
System.out.println sera alors exécuté.

• Notez que le bloc catch peut contenir n’importe
quoi, pas seulement un System.out.println. Vous
pouvez gérer les erreurs détectées comme bon vous
semble, et vous pouvez même les relancer.

• Notez aussi que si vous lancez une exception dans
votre méthode, vous devez ajouter une clause throws
à la suite du nom de votre méthode.

• Pourquoi utiliser les exceptions? Vous pouvez
déléguer vers le haut la responsabilité de traiter les
erreurs, c’est-à-dire que le code qui a appelé la
méthode en cours aura à gérer le problème.

3.14Piles, files et listes chaînées

Toujours des exceptions
• Si vous ne traitez pas une exception (avec catch), elle

sera propagée vers le haut le long de la chaîne
d’appels de méthodes jusqu’à ce que l’utilisateur
l’observe.

mangePizza()

allerParty()

pauseCafe()

faireDev16()

suivre2514()

allerUofO()

MalAuVentreException
lancée

vers la console

aucune de ces
classes ne traite

MalAuVentre
les exceptions

3.15Piles, files et listes chaînées

Exceptions finales
• Ainsi, nous savons comment lancer et traiter des

exceptions. Mais que sont-elles exactement en Java?
Des classes!

• Observez MalAuVentreException.

public class MalAuVentreException extends
RuntimeException {

public MalAuVentreException(String err)

{

super(err);

}

}

3.16Piles, files et listes chaînées

Pile à base de vecteur
• Créez une pile en utilisant un vecteur et en spécifiant

une taille maximale N, par ex. N = 1 024.

• La pile est composée d’un vecteur de N éléments S
et d’une variable entière t, l’index de l’élément au-
dessus de la pile S.

• Les indices acceptables pour ce vecteur commencent
à 0, alors nous initialisons t à -1.

• Pseudo-code

Algorithm size():
return t +1

Algorithm isEmpty():
return (t < 0)

Algorithm top():
if isEmpty() then

throw a StackEmptyException
return S[t]

...

S
0 1 2 N−1t

...

3.17Piles, files et listes chaînées

Pile à base de vecteur (suite)
• Pseudo-Code (suite)

Algorithm push(o):
if size() = N then

throw a StackFullException
t ← t + 1
S[t] ← o

Algorithm pop():
if isEmpty() then

throw a StackEmptyException
e←S[t]
S[t]←null
t←t-1
return e

• Chacune des méthodes ci-haut a un temps
d’exécution constant (O(1))

• La réalisation avec vecteur est simple et efficace.

• Il y a une limite supérieure, N, pour la taille de la
pile. Une valeur arbitraire N pourrait être trop petite
pour une application, ou gaspiller de la mémoire.

3.18Piles, files et listes chaînées

Pile à base de vecteur:
Une réalisation en Java

public class ArrayStack implements Stack {
 // Implementation of the Stack interface

// using an array.

 public static final int CAPACITY = 1000; // default
// capacity of the stack

 private int capacity; // maximum capacity of the
// stack.

 private Object S[]; // S holds the elements of
 // the stack

 private int top = -1; // the top element of the
// stack.

 public ArrayStack() { // Initialize the stack
this (CAPACITY);// with default capacity

}

 public ArrayStack(int cap) { // Initialize the
// stack with given capacity

capacity = cap;
S = new Object[capacity];

}

3.19Piles, files et listes chaînées

Pile à base de vecteur —
Réalisation en Java (suite)

 public int size() { //Return the current stack
// size

return (top + 1);
}

 public boolean isEmpty() { // Return true iff
// the stack is empty

return (top < 0);
}

 public void push(Object obj) { // Push a new
// object on the stack

if (size() == capacity) {
throw new StackFullException(“Stack overflow.”);

}
S[++top] = obj;

}

 public Object top() // Return the top stack
 // element

throws StackEmptyException {
if (isEmpty()) {

throw new StackEmptyException(“Stack is
empty.”);

}
return S[top];

}

3.20Piles, files et listes chaînées

Pile à base de vecteur —
Réalisation en Java (suite)

public Object pop() // Pop off the stack element

 throws StackEmptyException {

 Object elem;

 if (isEmpty()) {

 throw new StackEmptyException(“Stack is Empty.”);

 elem = S[top];

 S[top--] = null ; // Dereference S[top] and

// decrement top

 return elem;

 }

}

3.21Piles, files et listes chaînées

Pile extensible à base de vecteur
• Au lieu d’abandonner avec StackFullException, nous

pouvons remplacer le vecteur S par un plus grand
vecteur et continuer à traiter les opérations push.

Algorithm push(o):
if size() = N then

A ← new array of length f(N)
 for i ← 0 to N − 1

 A[i] ← S[i]
 S ← A
t ← t + 1
S[t] ← o

• De quelle taille devrait être le nouveau vecteur?
- stratégie ajustée (additionner c): f(N) = N + c
- stratégie de croissance (doubler): f(N) = 2N

• Afin de comparer ces deux stratégies, nous
utiliserons le modèle de coût suivant:

opération push régulière: ajouter un élément 1

opération push spéciale: créer un vecteur de
taille f(N), copier N éléments, et ajouter un
élément

f(N) +
N + 1

3.22Piles, files et listes chaînées

Stratégie ajustée (c=4)
• Débuter avec un vecteur de taille 0

• Le coût d’une opération push spéciale est 2N + 5

push phase n N coût

1 1 0 0 5

2 1 1 4 1

3 1 2 4 1

4 1 3 4 1

5 2 4 4 13

6 2 5 8 1

7 2 6 8 1

8 2 7 8 1

9 3 8 8 21

10 3 9 12 1

11 3 10 12 1

12 3 11 12 1

13 4 12 12 29

3.23Piles, files et listes chaînées

Performance de la stratégie
ajustée

• Nous considérons k phases, où k = n/c

• Chaque phase correspond à une nouvelle taille de
vecteur

• Le coût d’une phase i est de 2ci

• le coût total de n opérations push est le coût total de
k phases, avec k = n/c:

2c (1 + 2 + 3 + ... + k),

qui est O(k2) et O(n2).

3.24Piles, files et listes chaînées

Stratégie de croissance
• Débuter avec un vecteur de taille 0, ensuite 1, 2, 4, ...

• Le coût d’un push spécial est de 3N + 1, où N > 0

push phase n N coût

1 0 0 0 2

2 1 1 1 4

3 2 2 2 7

4 2 3 4 1

5 3 4 4 13

6 3 5 8 1

7 3 6 8 1

8 3 7 8 1

9 4 8 8 25

10 4 9 16 1

11 4 10 16 1

12 4 11 16 1

...

16 4 15 16 1

17 5 16 16 49

3.25Piles, files et listes chaînées

Performance de la stratégie de
croissance

• Nous considérons k phases, où k = log n

• Chaque phase correspond à une nouvelle taille de
vecteur

• Le coût d’une phase i est de 2i + 1

• le coût total de n opérations push est le coût total de
k phases, avec k = log n

2 + 4 + 8 + ... + 2log n + 1 =

2n + n + n/2 + n/4 + ... + 8 + 4 + 2 = 4n − 1

• La stratégie de croissance gagne!

3.26Piles, files et listes chaînées

Analyse amortie
• Le temps d’exécution amorti d’une opération parmi

une série d’opérations est le temps d’exécution du
pire des cas de la série d’opérations toute entière
divisé par le nombre d’opérations.

• La méthode de comptabilité détermine le temps
d’exécution amorti à l’aide d’un système de crédits et
de débits.

• Nous considérons l’ordinateur comme un appareil à
sous qui exige un cyber-dollar pour une quantité
constante de temps de calcul.

• Nous fixons un procédé pour facturer les opérations.
Il s’agit là d’un procédé d’amortissement.

• Nous pouvons surfacturer certaines opérations et en
sousfacturer d’autres. Par exemple, nous pouvons
facturer un même montant pour chaque opération.

• Le procédé doit toujours nous procurer suffisament
d’argent pour payer le coût réel de l’opération.

• Le coût total de la série d’opérations n’est pas plus
élevé que le montant total facturé.

• (temps amorti) ≤ (total $ facturé) / (# opérations)

3.27Piles, files et listes chaînées

Procédé d’amortissement pour
la stratégie de croissance

• À la fin d’une phase, nous devons avoir assez écono-
misé pour payer le push spécial de la phase suivante.

• À la fin de la phase 3, il faut avoir économisé $24.

• Les économies payent pour la croissance du vecteur.

• Nous facturons $7 pour un push. Les $6 économisés
par push régulier sont “conservés” dans la seconde
moitié du vecteur.

0 2 4 5 6 731

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

$

$

$

$

3.28Piles, files et listes chaînées

Analyse d’amortissement pour
la stratégie de croissance

• Nous facturons $5 (offre spéciale de lancement)
pour le premier push et $7 pour les suivants.

push n N solde facture coût

1 0 0 $0 $5 $2

2 1 1 $3 $7 $4

3 2 2 $6 $7 $7

4 3 4 $6 $7 $1

5 4 4 $12 $7 $13

6 5 8 $6 $7 $1

7 6 8 $12 $7 $1

8 7 8 $18 $7 $1

9 8 8 $24 $7 $25

10 9 16 $6 $7 $1

11 10 16 $12 $7 $1

12 11 16 $18 $7 $1

...

16 15 16 $42 $7 $1

17 16 16 $48 $7 $49

3.29Piles, files et listes chaînées

“Casting” avec une pile
générique

• Avoir un ArrayStack qui peut contenir seulement
des objets Entier ou des objets Étudiant.

• Afin de réaliser ceci à l’aide d’une pile générique,
les objets retournés doivent être “moulés” (cast)
dans le bon type de donnée.

• Un exemple en Java:

public static Integer[] reverse (Integer[] a) {

ArrayStack S = new ArrayStack(a.length);

Integer[] b = new Integer[a.length];

for (int i = 0; i < a.length; i++)

S.push(a[i]);

for (int i = 0; i < a.length; i++)

b[i] = (Integer)(S.pop()); // the popping
// operation gave us an Object, and we
// casted it to an Integer before
// assigning it to b[i].

return b;

}

3.30Piles, files et listes chaînées

Piles dans la Machine Virtuelle
Java (JVM)

• Chaque processus en exécution dans un programme
Java a sa propre pile de méthodes (Method Stack).

• Chaque fois qu’une méthode est appelée, elle est
empilée sur une telle pile.

• L’utilisation d’une pile pour cette opération permet à
Java de faire plusieurs choses utiles:
- Exécuter des appels récursifs de méthode
- Afficher la trace d’une pile pour localiser une

erreur.

• Java inclut aussi une pile d’opérandes qui est utilisée
pour évaluer les instructions arithmétiques:

Integer add(a, b):
OperandStack Op
Op.push(a)
Op.push(b)
temp1 ← Op.pop()
temp2 ← Op.pop()
Op.push(temp1 + temp2)
return Op.pop()

3.31Piles, files et listes chaînées

Pile de méthodes Java

Programme Java

main () {

cool(i);

int i=5;

}

cool (int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool (int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Pile Java

3.32Piles, files et listes chaînées

Files (Queues)
• Une file se distingue d’une pile par ses routines

d’insertion et de retrait qui suivent le principe
premier entré, premier sorti (first-in-first-out, ou
FIFO).

• Des éléments peuvent être insérés à tout moment,
mais seulement l’élément qui a été le plus longtemps
dans la file peut être retiré.

• Les éléments sont enfilés (enqueued) par l’arrière
(rear) et défilé (dequeued) par l’avant (front)

a0 a1 a2 an-1

front rear

. . .

3.33Piles, files et listes chaînées

Le TAD File (ou Queue)
• La file supporte deux méthodes fondamentales:

- enqueue(o): Insère l’objet o à l’arrière de la file

- dequeue(): Retire l’objet du devant de la file et
retourne-le; une erreur survient
lorsque la file est vide

• Les méthodes secondaires suivantes devraient aussi
être définies:

- size(): Retourne le nombre d’objets dans la
file

- isEmpty(): Retourne un booléen indiquant si la
pile est vide

- front(): Retourne, sans le retirer, l’objet au
devant de la file; si la pile est vide,
alors une erreur survient

3.34Piles, files et listes chaînées

File à base de vecteur
• Créez une file en utilisant un vecteur circulaire.

• Spécifiez une taille maximale N, par ex. N = 1 000.

• La file est composée d’un vecteur de N éléments Q
et de deux variables entières:
- f, l’index de l’élément du devant
- r, l’index de l’élément suivant celui de l’arrière

• Configuration “normale”

• Configuration circulaire (“wrapped around”)

• Que veut dire f=r?

N−10 1 2

Q ...

rf

...Q

N−10 1 2 fr

3.35Piles, files et listes chaînées

File à base de vecteur (suite)
• Pseudo-code

Algorithm size():
return (N - f + r) mod N

Algorithm isEmpty():
return (f = r)

Algorithm front():
if isEmpty() then

throw a QueueEmptyException
return Q[f]

Algorithm dequeue():
if isEmpty() then

throw a QueueEmptyException
temp ← Q[f]
Q[f] ← null
f ← (f + 1) mod N
return temp

Algorithm enqueue(o):
if size = N - 1 then

throw a QueueFullException
Q[r] ← o
r ← (r +1) mod N

3.36Piles, files et listes chaînées

Réalisation d’une file à l’aide
d’une liste simplement chaînée

• nœuds connectés en chaîne par des liens (links)

• la tête (head) de la liste est le devant de la file, la
queue de la liste (tail) est le derrière de la file.

• pourquoi pas le contraire?

head

Rome Seattle Toronto

∅

tail

3.37Piles, files et listes chaînées

Retirer l’élément de tête

• avancez la référence de la tête

• insérer un élément à la tête est tout aussi facile.

head

Baltimore Rome Seattle Toronto

∅

tail

head

Baltimore Rome Seattle Toronto

∅

tail

3.38Piles, files et listes chaînées

Insérer un élément à la queue
• créez un nouveau nœud

• enchaînez-le et déplacez la référence à la queue

• comment retirer l’élément de queue?

head

Rome Seattle Toronto

∅

tail

Zurich

∅

head

Rome Seattle Toronto Zurich

∅

tail

3.39Piles, files et listes chaînées

Files à deux bouts
(Double-Ended Queues)

• une file à deux bouts, ou deque, supporte l’insertion
et le retrait à l’avant comme à l’arrière.

• Le TAD Deque:
- insertFirst(e): Insère e au début de la deque

- insertLast(e): Insère e à la fin de la deque

- removeFirst(): retire et retourne le premier élément

- removeLast(): retire et retourne le dernier élément

• Les méthodes secondaires incluent:
- first()
- last()
- size()
- isEmpty()

3.40Piles, files et listes chaînées

Réalisations de piles et de files à
l’aide de Deques

• Piles avec Deques:

• Files avec Deques:

Méthode de Pile
Réalisation
avec Deque

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Méthode de File
Réalisation
avec Deque

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()

3.41Piles, files et listes chaînées

Le patron de conception
Adaptateur (Adaptor Pattern)

• L’utilisation d’une deque pour réaliser une pile ou
une file est un exemple du patron de conception
adaptateur (adoptor pattern). Ce patron réalise une
classe en utilisant des méthodes d’une autre classe.

• Souvent, les classes adaptateur spécialisent des
classes générales.

• Voici deux applications:
- Spécialisation d’une classe générale en changeant

quelques méthodes:
Ex: réalisation d’une pile avec une deque.

- Spécialisation de types d’objets utilisés par une
classe générale:

Ex: définir une classe IntegerArrayStack qui
adapte ArrayStack pour ne contenir que des
entiers.

3.42Piles, files et listes chaînées

Réalisation de deques à l’aide de
listes doublement chaînées

• Effacer l’élément de queue d’une liste simplement
chaînée ne peut pas être fait en un temps constant.

• Pour réaliser une deque, nous utilisons une liste
doublement chaînée avec des nœuds spéciaux pour
l’avant (header) et l’arrière (trailer).

• Un nœud de liste doublement chaînée a un lien
suivant (next) et un lien précédent (prev). Ce nœud
supporte les méthodes suivantes:
- setElement(Object e)
- setNext(Object newNext),
- setPrev(Object newPrev)
- getElement(), getNext(), getPrev()

• En utilisant une liste doublement chaînée, toutes les
méthodes de deque ont un temps d’exécution
constant (c’est-à-dire,O(1))!

header trailer

New York ProvidenceBaltimore

3.43Piles, files et listes chaînées

Réalisation de deques à l’aide de
listes doublement chaînées (suite)
• En réalisant une liste doublement chaînée, nous

ajoutons deux nœuds spéciaux aux extrémités: les
nœuds header et trailer.
- Le nœud header est placé avant le premier élément

de la liste. Il a un prochain lien valide, mais un lien
précédent vide.

- Le nœud trailer est placé après le dernier élément
de la liste. Il a un lien précédent valide, mais un
prochain lien vide.

• les nœuds header et trailer sont des sentinelles ou
nœuds “bidon” parce qu’ils ne contiennent pas
d’éléments.

• Diagramme de notre liste doublement chaînée:

header trailer

New York ProvidenceBaltimore

3.44Piles, files et listes chaînées

Réalisation de deques à l’aide de
listes doublement chaînées (suite)
• Visualisons le code de removeLast().

header trailer

New York Providence San FranciscoBaltimore

header trailer

New York ProvidenceBaltimore

secondtolast

last

header trailer

New York Providence San FranciscoBaltimore

secondtolast last

4.1Séquences

SÉQUENCES

• Vecteurs

• Positions

• Listes

• Séquences générales

• Étude de cas: le tri à bulle (Bubble Sort)

4.2Séquences

Le TAD Vecteur (Vector)
• Une séquence S (avec n éléments) qui supporte les

méthodes suivantes:

- elemAtRank(r):
Retourne l’élément de S au rang r; une
erreur survient si r < 0 ou r > n -1

- replaceAtRank(r,e):
Remplace l’élément au rang r avec e et
retourne l’ancien élément; une erreur
survient si r < 0 ou r > n -1

- insertAtRank(r,e):
Insère un nouvel élément dans S qui aura
le rang r; une erreur survient si r < 0 ou
r > n -1

- removeAtRank(r):
Retire de S l’élément au rang r; une
erreur survient si r < 0 ou r > n -1

4.3Séquences

Réalisation avec vecteur (array)
• Extraits de pseudo-code:

Algorithm insertAtRank(r,e):
for i = n - 1, n - 2, ... , r do

S[i+1] ← s[i]
S[r] ← e
n ← n + 1

Algorithm removeAtRank(r):
e ← S[r]
for i = r, r + 1, ... , n - 2 do

S[i] ← S[i + 1]
n ← n - 1
return

S

N−10 1 2 n−1r

S

N−10 1 2 n−1r

4.4Séquences

Réalisation avec vecteur (suite)
• Complexité temporelle des diverses méthodes:

Méthode Temps

size O(1)

isEmpty O(1)

elemAtRank O(1)

replaceAtRank O(1)

insertAtRank O(n)

removeAtRank O(n)

4.5Séquences

Réalisation avec liste
doublement chaînée

• la liste avant une insertion:

• création d’un nouveau nœud à insérer:

header

Baltimore Paris Providence

trailer

header

Baltimore Paris Providence

trailer

New York

4.6Séquences

• la liste après l’insertion:

public void insertAtRank (int rank, Object element)

 throws BoundaryViolationException {

 if (rank < 0 || rank > size())

throw new BoundaryViolationException(“invalid rank”);

 DLNode next = nodeAtRank(rank); // the new node
//will be right before this

 DLNode prev = next.getPrev(); // the new node
//will be right after this

 DLNode node = new DLNode(element, prev, next);
// new node knows about its next & prev. Now
// we tell next & prev about the new node.

 next.setPrev(node);

 prev.setNext(node);

size++;

 }

header trailer

New York Paris ProvidenceBaltimore

4.7Séquences

Réalisation avec liste
doublement chaînée (suite)

• la liste avant une suppression:

• suppression d’un nœud:

• la liste après la suppression:

header trailer

New York Paris ProvidenceBaltimore

header trailer

New York Paris ProvidenceBaltimore

header trailer

New York ProvidenceBaltimore

4.8Séquences

Réalisation en Java

• code pour supprimer un nœud

public Object removeAtRank (int rank)

 throws BoundaryViolationException {

if (rank < 0 || rank > size()−1)

throw new BoundaryViolationException(“Invalid
rank.”);

DLNode node = nodeAtRank(rank); // node to
// be removed

DLNode next = node.getNext(); // node before it

DLNode prev = node.getPrev(); // node after it

prev.setNext(next);

next.setPrev(prev);

size--;

return node.getElement(); // returns the
// element of the deleted node

 }

4.9Séquences

Réalisation en Java (suite)
• code pour trouver un nœud à un certain rang

private DLNode nodeAtRank (int rank) {

 // auxiliary method to find the node of the
// element with the given rank. We make
// auxiliary methods private or protected.

 DLNode node;

 if (rank <= size()/2) { //scan forward from head

node = header.getNext();

for (int i=0; i < rank; i++)

 node = node.getNext();

 }

 else { // scan backward from the tail

node = trailer.getPrev();

for (int i=0; i < size()-rank-1 ; i++)

 node = node.getPrev();

 }

 return node;

 }

4.10Séquences

Nœuds
• Les listes chaînées supportent l’exécution efficace

d’opérations basées sur les nœuds:
- removeAtNode(Node v) et insertAfterNode(Node v,

Object e), sont de complexité O(1).

• Cependant, les opérations basées sur les nœuds ne
sont pas significatives dans une réalisation basée sur
un vecteur car il n’y a pas de nœud dans un vecteur.

• Les nœuds sont spécifiques à la réalisation.

• Dilemme:
- Si nous ne définissons pas d’opérations basées sur

les nœuds, nous ne profitons pas pleinement des
listes doublement chaînées.

- Si nous en définissons, nous violons la généralité
des types abstraits de données.

4.11Séquences

De nœuds à positions
• Nous présentons le TAD Position

• Notion intuitive de “place” d’un élément

• Les positions n’ont qu’une seule méthode:
element(): Retourne l’élément à cette position

• Les positions sont définies relativement aux autres
positions (relation avant/après)

• Les positions ne sont pas liées à un élément ou à un
rang.

Le TAD Liste (List)
• TAD avec méthodes basées sur les positions

• méthodes génériques size(), isEmpty()

• méthodes de requête isFirst(p), isLast(p)

• méthodes accessoires first(), last(), before(p), after(p)

• méthodes de mise à jour swapElements(p,q),
replaceElement(p,e), insertFirst(e), insertLast(e),
insertBefore(p,e), insertAfter(p,e). remove(p)

• chaque méthode est de complexité O(1) lorsque
réalisées avec une liste doublement chaînée.

4.12Séquences

Le TAD Séquence
• Combine les TAD Vecteur et Liste (héritage

multiple)

• Ajoute des méthodes qui jettent un pont entre rangs
et positions
- atRank(r) retourne une position
- rankOf(p) retourne un rang (entier)

• Une réalisation basée sur un vecteur nécessite
l’utilisation d’objets pour représenter les positions

New York Rome ProvidenceBaltimore

S

N−10 31 2

0 1 2 3

4.13Séquences

Comparaison entre réalisations
de séquences

Opérations
Vecteur
(Array)

Liste

size, isEmpty O(1) O(1)

atRank, rankOf, elemAtRank O(1) O(n)

first, last O(1) O(1)

before, after O(1) O(1)

replaceElement, swapElements O(1) O(1)

replaceAtRank O(1) O(n)

insertAtRank, removeAtRank O(n) O(n)

insertFirst, insertLast O(1) O(1)

insertAfter, insertBefore O(n) O(1)

remove O(n) O(1)

4.14Séquences

Itérateurs
• Abstraction du processus de recherche au sein d’une

collection d’éléments (un élément à la fois)

• Patron de conception

• Encapsulation des notions de “place” et de
“prochain”

• Extension du TAD Position

• Itérateurs génériques et spécialisés

• ObjectIterator
- hasNext()
- nextObject()
- object()

• PositionIterator
- nextPosition()

• Méthodes utiles qui retournent des itérateurs:
- elements()
- positions()

5.1Arbres

ARBRES

• Arbres

• Arbres binaires

• Traversées d’arbres

• Patron de conception: gabarit de méthode (template
method pattern)

• Structures de données pour arbres

5.2Arbres

Arbres
• un arbre représente une hiérarchie

- structure organisationnelle d’une corporation

- table des matières d’un livre

Europe AsiaAfrica Australia

Canada OverseasS. America

Domestic International TV CD Tuner

Sales Purchasing ManufacturingR&D

Electronics R’Us

student guide

overview grading programmingenvironment support code

homeworksexams programs

5.3Arbres

Un autre exemple
• Système de fichier de Unix ou de DOS/Windows

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

5.4Arbres

Terminologie
• A est le nœud racine.

• B est le parent (ou père) de D et E.

• C est le frère (sibling) de B.

• D et E sont les enfants (ou descendants) de B.

• D, E, F, G, I sont des nœuds extérieurs, ou feuilles.

• A, B, C, H sont des nœuds intérieurs.

• La profondeur (niveau) de E est 2

• La hauteur de l’arbre est 3.

• Le degré (nombre d’enfants) du nœud B est 2.

Propriété: (# liens) = (#nœuds) − 1

A

B C

D G H

I

FE

5.5Arbres

Arbres binaires
• Arbre ordonné: les enfants de chaque nœud sont

ordonnés.

• Arbre binaire: arbre ordonné où tous les nœuds
intérieurs sont de degré 2.

• Définition récursive d’un arbre binaire:

• Un arbre binaire est
- un nœud extérieur (feuille), ou
- un nœud intérieur (la racine) et deux arbres

binaires (sous-arbre gauche et sous-arbre droit)

5.6Arbres

Exemples d’arbres binaires
• expression arithmétique

• rivière

+

+

+

+

×

×

+
+

×

3

6

2 8

5

1

4

7 2

4
((((3 × (1 + (4 + 6))) + (2 + 8)) × 5) + (4 × (7 + 2)))

5.7Arbres

Exemples d’arbres binaires
• arbres de décision

East Side Spike’s

Al Forno Cafe Paragon

Pockets

NOYES

NONO

NO

YES YES

Starbucks

Want a fast meal?

Are you willing to splurge?How about coffee?

YES

Do you like free
samples?

5.8Arbres

Propriétés des arbres binaires
• (# nœuds extérieurs) = (# nœuds intérieurs) + 1

• (# nœuds au niveau i) ≤ 2 i

• (# nœuds extérieurs) ≤ 2 (hauteur)

• (hauteur) ≥ log2 (# nœuds extérieurs)

• (hauteur) ≥ log2 (# nœuds) − 1

• (hauteur) ≤ (# nœuds intérieurs) = ((# nœuds) − 1)/2

0

1

2

3

4

Niveau

5.9Arbres

Le TAD Arbres (Trees)
• méthodes génériques de contenant

- size(), isEmpty(), elements()

• méthodes positionnelles de contenant
- positions(), swapElements(p,q), replaceElement(p,e)

• méthodes de requête
- isRoot(p), isInternal(p), isExternal(p)

• méthodes accessoires
- root(), parent(p), children(p)

• méthodes de mise à jour
- spécifiques à l’application

InspectableContainer

InspectablePositionalContainer

InspectableVector InspectableTree

InspectableList

Tree

PositionalContainer

5.10Arbres

TADs pour Arbres Binaires
• méthodes accessoires

- leftChild(p), rightChild(p), sibling(p)

• méthodes de mise à jour
- expandExternal(p), removeAboveExternal(p)
- autres méthodes spécifiques à l’application

InspectableContainer

InspectablePositionalContainer

Tree

BinaryTree

InspectableBinaryTree

InspectableTreePositionalContainer

5.11Arbres

Traversée d’arbres
• traversée en pré-ordre

Algorithm preOrder(v)
“visit” node v
for each child w of v do

recursively perform preOrder(w)

• comme lire un document du début à la fin

Article

Titre Résumé § 1 Références§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

1

2 3 4 147 11

5 6 8 9 10 12 13

5.12Arbres

Traversée d’arbres
• traversée en post-ordre

Algorithm postOrder(v)
for each child w of v do

recursively perform postOrder(w)
“visit” node v

• commande Unix du (disk usage)

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/hw1

3K

hw2

2K

hw3

4K

pr1

57K

pr2

97K

pr3

74K

grades

8K

market

4786K

buylow

26K

sellhigh

55K

grades

3K

2K 1K

1K

1K1K1K

1K 1K

10K 229K 4870K

82K 4787K

5124K

249K 4874K

5.13Arbres

Évaluation d’expressions
arithmétiques

• spécialisation d’une traversée post-ordre
Algorithm evaluateExpression(v)

if v is an external node
return the variable stored at v

else
let o be the operator stored at v
x ← evaluateExpression(leftChild(v))
y ← evaluateExpression(rightChild(v))
return x o y

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

5.14Arbres

Traversée d’arbres binaires
• traversée in-ordre

Algorithm inOrder(v)
recursively perform inOrder(leftChild(v))
“visit” node v
recursively perform inOrder(rightChild(v))

• afficher une expression arithmétique
- spécialisation d’une traversée in-ordre
- afficher “(” avant la traversée du sous-arbre gauche
- afficher “)” après la traversée du sous-arbre droit

+

+

+

+

×

×

+
+

×

3

6

2 8

5

1

4

7 2

4
((((3 × (1 + (4 + 6))) + (2 + 8)) × 5) +
(4 × (7 + 2)))

5.15Arbres

Traversée par tour d’Euler
• traversée générique d’un arbre binaire

• les traversées pré-ordre, in-ordre et post-ordre sont
des cas spéciaux de la traversée par tour d’Euler

• “marche autour” de l’arbre et visite de chacun des
nœuds à trois reprises:
- à la gauche
- par-dessous
- à la droite

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

5.16Arbres

Gabarit de méthode
(Template Method Pattern)

• mécanisme de calcul générique qui peut être
spécialisé en redéfinissant certaines étapes (un autre
patron de conception)

• réalisation en utilisant une classe abstraite Java avec
des méthodes qui peuvent être redéfinies par ses sous-
classes.

public abstract class BinaryTreeTraversal {

protected BinaryTree tree;
...
protected Object traverseNode(Position p) {
 TraversalResult r = initResult();
 if (tree.isExternal(p)) {
 external(p, r);
 } else {
 left(p, r);
 r.leftResult = traverseNode(tree.leftChild(p));
 below(p, r);
 r.rightResult = traverseNode(tree.rightChild(p));
 right(p, r);
 }
 return result(r);
 }

5.17Arbres

Spécialisation de la traversée
générique d’arbres binaires

• affichage d’une expression arithmétique

public class PrintExpressionTraversal
extends BinaryTreeTraversal {

...

protected void external(Position p, TraversalResult r) {
 System.out.print(p.element());
 }

 protected void left(Position p, TraversalResult r) {
 System.out.print("(");
 }

 protected void below(Position p, TraversalResult r) {
 System.out.print(p.element());
 }

 protected void right(Position p, TraversalResult r) {
 System.out.print(")");
 }

}

5.18Arbres

Structure de données chaînée
pour arbres binaires

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size
5

5.19Arbres

Représentation d’arbres généraux
• arbre T

• arbre binaire T' représentant T

A

B D

E F G

C

A

B

C

D

E

F

G

6.1Files à priorité

FILES À PRIORITÉ

• Application boursière (motivation)

• Le TAD file à priorité (Priority Queue)

• Réalisation d’une file à priorité avec une séquence

• Le tri (sorting)

• Problèmes liés au tri

6.2Files à priorité

Application boursière
• Nous nous concentrerons sur la vente d’un seul titre,

Akamai Technologies, fondée en 1998 par des
professeurs et des étudiants du MIT (200 employés, 20
milliards de dollars en capital action)

• Les investisseurs font des commandes qui
comprennent trois items (action, prix, quantité), où
action est un achat ou une vente, prix est le pire prix
que vous êtes prêt à débourser (achat) ou à accepter
(vente), et quantité est le nombre d’actions

• À l’équilibre, toutes les commandes d’achat (offres)
ont des prix plus bas que toutes les commandes de
ventes (demandes)

• Une cote de niveau 1 donne l’offre la plus haute et la
demande la plus basse (telles que fournies par les sites
financiers populaires et les courtiers ou e-brokers)

• Une cote de niveau 2 donne toutes les offres et les
demandes pour certains seuils de prix (Island ECN sur
le Web et cotes pour agents professionnels (traders))

• Une transaction survient lorsqu’une nouvelle
commande peut être jumelée à une ou plusieurs
commandes existantes, ce qui résulte en une série de
transactions de suppression.

• Les commandes peuvent être annulées à tout moment.

6.3Files à priorité

Structures de données pour le
marché boursier

• Pour chaque titre, nous conservons deux structures,
la première pour les offres et la seconde pour les
demandes

• Les opérations qui doivent être supportées:

• Ces structures de données sont appelées files à
priorité.

• Les files à priorité de la bourse NASDAQ supportent
en moyenne un volume de transaction quotidien de 1
milliard d’actions (50 milliards de dollars)

Action Structure Offre Structure Demande

faire une
commande

insert(prix,quantité) insert(prix,quantité)

obtenir une
cote de
niveau 1

min() max()

effectuer la
transaction

removeMin() removeMax()

annuler remove(commande)remove(commande)

6.4Files à priorité

Clés et relations d’ordre total
• Une file à priorité (Priority Queue) classe ses

éléments par clé avec une relation d’ordre total

• Clés:
- Chaque élément a sa propre clé
- Les clés ne sont pas nécessairement uniques

• Relation d’ordre total
- Dénotée par ≤
- Réflexive: k ≤ k
- Antisymétrique: si k1 ≤ k2 et k2 ≤ k1, alors k1 ≤k2
- Transitive: si k1 ≤ k2 et k2 ≤ k3, alors k1 ≤ k3

• Une file à priorité supporte ces méthodes
fondamentales sur des paires clé-élément:
- min()
- insertItem(k, e)
- removeMin()

6.5Files à priorité

Tri par file à priorité
• Une file à priorité P peut être utilisée pour trier une

séquence S:
- en insérant les éléments de S dans P avec une suite

d’opérations insertItem(e, e)
- en retirant les éléments de P en ordre croissant et

en les remettant dans S avec une suite d’opérations
removeMin()

Algorithm PriorityQueueSort(S, P):
Entrée: Séquence S contenant n éléments, avec une

relation d’ordre total, et une file à priorité P qui
compare les clés avec cette même relation

Sortie: Séquence S triée à l’aide de la relation d’ordre
total

while !S.isEmpty() do
e ← S.removeFirst()
P.insertItem(e, e)

while P is not empty do
e ← P.removeMin()
S.insertLast(e)

6.6Files à priorité

Le TAD File à priorité
• Une file à priorité P supporte les méthodes

suivantes:

- size():
Retourne le nombre d’éléments dans P

- isEmpty():
Vérifie si P est vide

- insertItem(k,e):
Insère un nouvel élément e avec sa clé k
dans P

- minElement():
Retourne (mais ne retire pas) un élément
de P à la plus petite clé; une erreur
survient si P est vide

- minKey():
Retourne la plus petite clé de P; une
erreur survient si P est vide

- removeMin():
Retire et retourne un élément de P à la
plus petite clé; une erreur survient si P
est vide.

6.7Files à priorité

Comparateurs
• Patron de conception (Comparator)

• La forme la plus générale et la plus réutilisable de
file à priorité utilise des objets appelés
comparateurs.

• Les comparateurs sont externes aux clés à comparer
et permettent de comparer deux objets.

• Quand la file à priorité a besoin de comparer deux
clés, elle utilise le comparateur qui lui a été fourni.

• Ainsi, une file à priorité peut être suffisamment
générale pour contenir n’importe quel objet.

• Le TAD Comparateur inclut:
- isLessThan(a, b)
- isLessThanOrEqualTo(a,b)
- isEqualTo(a, b)
- isGreaterThan(a,b)
- isGreaterThanOrEqualTo(a,b)
- isComparable(a)

6.8Files à priorité

 Réalisation avec séquence
non-triée

• Essayons de réaliser une file à priorité avec une
séquence non-triée S.

• Les éléments de S sont composés de k, la clé, et de e,
l’élément.

• Nous pouvons réaliser insertItem() en utilisant
insertLast() sur les séquences. Le temps d’exécution
sera alors O(1).

• Cependant, comme nous insérons toujours à la fin,
sans tenir compte de la valeur de la clé, notre
séquence n’est pas ordonnée.

5 8 4 1 6

6.9Files à priorité

Réalisation avec séquence
non-triée (suite)

• Ainsi, pour les méthodes telles minElement(),
minKey(), et removeMin(), nous devons regarder
tous les éléments de S. La complexité du pire des
cas est O(n).

• Sommaire des performances

insertItem O(1)
minKey, minElement O(n)

removeMin O(n)

8 4 1 65

6.10Files à priorité

Réalisation avec séquence triée
• Une autre réalisation possible utilise une séquence S,

triée par ordre croissant de clés.

• minElement(), minKey(), et removeMin()
deviennent alors O(1)

• Cependant, pour réaliser insertItem(), nous devons
maintenant parcourir la séquence entière dans le
pire des cas. Ainsi, insertItem() s’exécute en un
temps O(n)

• Sommaire des performances

insertItem O(n)
minKey, minElement O(1)

removeMin O(1)

4 5 6 81

4 5 6 81 8

6.11Files à priorité

Réalisation avec séquence triée
(suite)

public class SequenceSimplePriorityQueue
implements SimplePriorityQueue {
 //Implementation of a priority queue

using a sorted sequence

 protected Sequence seq = new NodeSequence();
 protected Comparator comp;

// auxiliary methods

 protected Object key (Position pos) {
return ((Item)pos.element()).key();

} // note casting here

 protected Object element (Position pos) {
return ((Item)pos.element()).element();

} // casting here too

 // methods of the SimplePriorityQueue ADT

 public SequenceSimplePriorityQueue (Comparator c) {
comp = c; }

 public int size () {return seq.size(); }

...suite à la page suivante...

6.12Files à priorité

Réalisation avec séquence triée
(suite)

public void insertItem (Object k, Object e) throws
InvalidKeyException {
 if (!comp.isComparable(k)) {

throw new InvalidKeyException("The key is not valid");
}
else {

if (seq.isEmpty()) {
//if the sequence is empty, this is the
seq.insertFirst(new Item(k,e));//first item

}
else { //check if it fits right at the end

if (comp.isGreaterThan(k,key(seq.last()))) {
seq.insertAfter(seq.last(),new Item(k,e));

}
else {

//we have to find the right place for k.

 Position curr = seq.first();
 while (comp.isGreaterThan(k,key(curr))) {

curr = seq.after(curr);
}
seq.insertBefore(curr,new Item(k,e));

}
 }
 }

...suite à la page suivante...

6.13Files à priorité

Réalisation avec séquence triée
(suite)

public Object minElement () throws
EmptyContainerException {

if (seq.isEmpty()) {
throw new EmptyContainerException("The priority
queue is empty");

}
else {

return element(seq.first());
}

public boolean isEmpty () {
return seq.isEmpty();

}

}

6.14Files à priorité

Tri par sélection
• Le tri par sélection est une variation du tri par file à

priorité (PriorityQueueSort) qui utilise une
séquence non-triée pour réaliser la file à priorité P.

• Phase 1, l’insertion d’un item dans P est O(1)

• Phase 2, le retrait d’un item de P prend un temps
proportionnel au nombre d’éléments présents dans P

Séquence S File à priorité P

Entrée (7, 4, 8, 2, 5, 3, 9) ()

Phase 1:
(a)
(b)
...

(g)

(4, 8, 2, 5, 3, 9)
(8, 2, 5, 3, 9)

...
()

(7)
(7, 4)

...
(7, 4, 8, 2, 5, 3, ,9)

Phase 2:
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(2)
(2, 3)

(2, 3, 4)
(2, 3, 4, 5)

(2, 3, 4, 5, 7)
(2, 3, 4, 5, 7, 8)

(2, 3, 4, 5, 7, 8, 9)

(7, 4, 8, 5, 3, 9)
(7, 4, 8, 5, 9)
(7, 8, 5, 9)
(7, 8, 9)
(8, 9)
(9)
()

6.15Files à priorité

Tri par sélection (suite)
• Comme vous pouvez le constater, la phase 2 est le

goulot d’étranglement. La première opération
removeMin est O(n), la seconde O(n−1), et ainsi de
suite jusqu’à la dernière, qui est O(1).

• Le temps total nécessaire à la phase 2 est:

• Et comme:

• Le temps d’exécution de la phase 2 est donc O(n2).
Ainsi, la complexité temporelle de l’algorithme est
O(n2).

O n n 1–() … 2 1+ + + +() O i

i 1=

n

∑
 
 
 

≡

i

i 1=

n

∑
n n 1+()

2
--------------------=

6.16Files à priorité

Tri par insertion
• Le tri par insertion résulte de l’utilisation d’un tri par

file à priorité où la file est réalisée avec séquence
triée.

Séquence S File à priorité P

Entrée (7, 4, 8, 2, 5, 3, 9) ()

Phase 1:
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(4, 8, 2, 5, 3, 9)
(8, 2, 5, 3, 9)
(2, 5, 3, 9)
(5, 3, 9)
(3, 9)
(9)
()

(7)
(4, 7)

(4, 7, 8)
(2, 4, 7, 8)

(2, 4, 5, 7, 8)
(2, 3, 4, 5, 7, 8)

(2, 3, 4, 5, 7, 8, 9)

Phase 2:
(a)
(b)
...

(g)

(2)
(2, 3)

...
(2, 3, 4, 5, 7, 8, 9)

(3, 4, 5, 7, 8, 9)
(4, 5, 7, 8, 9)

...
()

6.17Files à priorité

Tri par insertion (suite)
• Nous améliorons ainsi la phase 2, qui est O(n).

• Cependant, la phase 1 devient maintenant le goulot
d’étranglement. Le premier insertItem est O(1), le
second O(2), jusqu’au dernier qui lui est O(n), pour
un temps d’exécution total O(n2)

• Le tri par sélection et le tri par insertion ont tous
deux un temps d’exécution O(n2)

• Le tri par sélection va toujours exécuter un nombre
d’opérations proportionnel à n2, peu importe la
séquence d’entrée

• Le temps d’exécution du tri par insertion varie selon
la séquence d’entrée

• Aucune n’est une bonne méthode de tri, sauf pour
les petites séquences

• Nous cherchons encore la file à priorité ultime...

6.18Files à priorité

Le tri
• Maintenant que vous avez une certaine connaissance

du tri, parlons-en un peu plus à fond

• Le tri est essentiel parce qu’une recherche efficace
dans une base de données ne peut être faite que si les
enregistrements sont triés.

• Certains estiment qu’environ 20% du temps de
calcul planétaire est dédié au tri

• Nous observerons qu’il existe un compromis entre
“simplicité” et efficacité des algorithmes de tri:

• Les tris élémentaires vus jusqu’ici, qui étaient
simples à comprendre et à réaliser, ont un temps
d’exécution O(n2) (inutilisables pour de grands n)

• Il existe des algorithmes plus sophistiqués O(n logn)

• Comparaison de clés: comparons-nous la clé entière
ou seulement une partie de la clé?

• Espace requis: tri à même la structure (in-place)
versus l’utilisation de structures auxiliaires

• Stabilité: un algorithme de tri stable conserve
l’ordre relatif des clés égales.

6.19Tas

TAS

• Tas (Heap)

• Propriétés des tas

• Tri Heap-Sort

• Construction ascendante de tas (Bottom-Up)

• Repéreurs (Locator Design Pattern)

6.20Tas

Tas
• Un tas (heap) est un arbre binaire T qui emmagasine

une collection de clés (ou paires clé-élément)
comme nœuds internes et qui satisfait aux deux
propriétés suivantes:
- Propriété d’ordre: clé(parent) ≤ clé(enfant)
- Propriété structurelle: tous les niveaux sont

pleins, excepté le dernier, ce dernier étant
cependant plein à gauche (arbre binaire complet)

4

6

207

811

5

9

1214

15

2516

6.21Tas

Exemples de non-tas
• le dernier niveau n’est pas plein à gauche

• clé(parent)> clé(enfant)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.22Tas

Hauteur d’un tas
Un tas T qui emmagasine n clés a une hauteur
h = log(n + 1), qui est O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Ainsi 2h-1 ≤ n ≤ 2h - 1

• En calculant le logarithme, nous obtenons
log (n + 1) ≤ h ≤ log n + 1, et donc h = log(n+1)

4

6

207

5

915

16h − 1

0

1

h − 2

h

h − 1

0

1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.23Tas

3

74

21 10 20 8

22 28 13 25

Insertion dans un tas

La clé à insérer est 6

19

6.24Tas

3

74

21 10 20 8

22 28 13 19

Ajoutez la clé à la prochaine position disponible
dans le tas.

Commencez maintenant la procédure Upheap.

Insertion dans un tas (suite)

25 6

6.25Tas

Procédure Upheap
• Échangez (swap) les clés parent-enfant non-

ordonnées

3

74

21 10 20 8

22 28 13 19 25 6

3

74

21 10 6 8

22 28 13 19 25 20

6.26Tas

Suite de Upheap

3

74

21 10

20

8

22 28 13 19 25

6

3

64

21 10

20

8

22 28 13 19 25

7

6.27Tas

• Upheap se termine quand la nouvelle clé est
plus grande que la clé de son parent ou quand
le haut du tas est atteint.

• (#échanges total) ≤ (h − 1), qui est O(log n)

3

7

4

21 10

20

8

22 28 13 19 25

6

Fin de Upheap

6.28Tas

Suppression dans un tas

RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• La suppression de la clé racine laisse un trou

• Nous devons réparer le tas

• Premièrement, remplacez le trou par la toute
dernière clé du tas

• Ensuite, appliquez la procédure Downheap

3

20

6.29Tas

Procédure Downheap

20

7

4

21 10 8

22 28 13 19 25

6

Downheap compare le parent avec son enfant le
plus petit. Si cet enfant est plus petit que le pa-
rent, alors on les échange l’un pour l’autre.

4

7

20

21 10 8

22 28 13 19 25

6

6.30Tas

Suite de Downheap

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.31Tas

Suite de Downheap (2)

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.32Tas

Fin de Downheap

4

7

10

21 13 8

22 28 20 19 25

6

• Downheap se termine quand la clé est plus
grande que les clés de ses deux enfants ou
quand le bas du tas est atteint.

• (#échanges total) ≤ (h − 1), qui est O(log n)

6.33Tas

Réalisation d’un tas
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

6.34Tas

Réalisation d’un tas (suite)
• Deux façons de trouver la position d’insertion z:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u

6.35Tas

Réalisation par vecteur (Vector)
• Les mises à jour dans l’arbre sous-jacent ne

surviennent seulement qu’au “dernier élément”.

• Un tas peut être représenté par un vecteur (vector),
où le nœud au rang i a:
- l’enfant de gauche au rang 2i et
- l’enfant de droite au rang 2i + 1

• Les feuilles n’ont pas à être emmagasinées.

• L’insertion et la suppression de clés dans le tas
correspondent respectivement à insertLast et à
removeLast dans le vecteur.

1

2

5 6 7

3

4

8 9 10 11 12 13

6.36Tas

Tri Heap-Sort
• Toutes les méthodes d’un tas s’exécutent en un

temps logarithmique, ou mieux.

• Si nous réalisons le tri PriorityQueueSort avec un
tas comme file à priorité, insertItem et removeMin
prennent alors O(log k) chacun, où k est le nombre
d’éléments dans le tas à un moment donné.

• Nous avons toujours au plus n éléments dans le tas,
alors le pire des cas en terme de complexité pour ces
méthodes est O(log n).

• Chaque phase prend donc O(n log n), et le temps
d’exécution de l’algorithme est aussi de O(n log n).

• Ce tri est connu sous le nom de heap-sort.

• Le temps d’exécution O(n log n) d’un tri heap-sort
est bien meilleur que le temps d’exécution O(n2)
d’un tri à bulle, par sélection, ou par insertion.

Tri Heap-Sort in-place
• N’utilise pas de tas (ou d’autre structure) externe.

• Utilise une représentation par vecteur pour contenir
le tas. Construction ascendante (bottom-up)...

6.37Tas

Construction ascendante du tas (1)
• construisez (n + 1)/2 tas à un seul élément (trivial)

• construisez maintenant des tas à trois éléments

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

6.38Tas

Construction ascendante du tas (2)
• préservez la propriété d’ordre avec downheap

• formez maintenant des tas à 7 éléments

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6

6.39Tas

Construction ascendante du tas (3)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4

6.40Tas

Construction ascendante du tas (4)

Fin!

4

6

207

811

5

9

1214

15

2516 23 27

6.41Tas

Analyse de la construction
ascendante de tas

• Proposition: la construction ascendante de tas avec n
clés a un temps d’exécution O(n).
- Insérer (n + 1)/2 nœuds
- Insérer (n + 1)/4 nœuds et utiliser downheap
- Insérer (n + 1)/8 nœuds et utiliser downheap
- ...
- analyse visuelle:

• n insertions, n/2 downheap pour un temps
d’exécution total d’ordre O(n).

4

6

207

811

5

9

1214

15

2516 23 27

6.42Tas

Repéreurs (Locators)
• Des repéreurs peuvent être utilisés pour suivre les

éléments lorsqu’ils sont déplacés dans un contenant.

• Un repéreur (patron de conception locator) suit un
élément spécifique, même si cet élément change de
position dans son contenant.

• Le TAD locator contient les méthodes
fondamentales suivantes:
- element(): retourne l’élément de l’item associé au

locator.
- key(): retourne la clé de l’item associé au locator.

• À l’aide de repéreurs nous définissons des méthodes
additionnelles pour le TAD file à priorité:
- insert(k,e): insère (k,e) dans P et retourne son

locator
- min(): retourne le locator de l’élément à la

plus petite clé
- remove(l): supprime l’élément au locator l

• Dans notre application boursière, nous retournons
un repéreur quand une commande est faite. Un
repéreur permet de spécifier sans ambiguïté une
commande lors d’une annulation.

6.43Tas

Positions et Repéreurs
• Vous pourriez être en train de vous demander quelle

est la différence entre repéreurs et positions, et
pourquoi les distinguer.

• Il est vrai qu’ils ont des méthodes semblables.

• La différence se situe au niveau de leur utilisation
primaire.

• Les positions font abstraction de la réalisation
spécifique de l’accès aux éléments (indices ou
nœuds).

• Les positions sont définies relativement l’une par
rapport à l’autre (précédent/prochain, père/enfant).

• Les repéreurs surveillent où se situent les éléments.
Dans la réalisation d’un TAD pour repéreurs, un
repéreur conserve typiquement la position courante
de l’élément.

• Les repéreurs associent les éléments avec leurs clés.

6.44Tas

Positions et Repéreurs au travail
• Par exemple, considérez le Service de valet de

stationnement CSI2514 (créé par les AE parce qu’ils
avaient trop de temps libre).

• Lorsqu’ils ont démarré leur entreprise, André et
Daniel décidèrent de créer une structure de données
pour déterminer où les voitures sont situées.

• André suggère qu’une position représente l’espace
de stationnement dans lequel la voiture se trouve.

• Cependant Daniel sait bien que les AE se promènent
avec les voitures partout sur le campus et qu’elles ne
seront pas toujours stationnées au même endroit.

• Alors ils décident d’installer un repéreur (un
appareil sans fil) dans chaque voiture. Chaque
repéreur a un identifiant, qui est inscrit sur le coupon
de retour.

• Quand un client demande sa voiture, l’AE active le
repéreur, et alors la voiture klaxonne et ses lumières
clignotent! Si la voiture est stationnée, André et
Daniel sauront où la retrouver dans le stationnement,
sinon, l’AE conduisant cette voiture saura qu’il est
temps de la rapporter.

7.1Dictionnaires et recherche

DICTIONNAIRES ET
RECHERCHE

• Le TAD Dictionnaire

• Recherche binaire

• Arbres de recherche binaires

88

44

17 78

32 50

48 62

7.2Dictionnaires et recherche

Le TAD Dictionnaire
• un dictionnaire (dictionary) est un modèle abstrait

de base de données.

• tel une file à priorité, un dictionnaire emmagasine
des paires clé-élément

• la recherche par clé est la principale opération
offerte par un dictionnaire

• méthodes simples de contenant:
- size()
- isEmpty()
- elements()

• méthodes de requête:
- findElement(k)
- findAllElements(k)

• méthodes de mise à jour:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• élément spécial
- NO_SUCH_KEY, retourné lors d’une recherche

infructueuse.

7.3Dictionnaires et recherche

Réalisation d’un dictionnaire à
l’aide d’une séquence

• séquence non-ordonnée

- chercher et supprimer prennent un temps O(n)
- insérer prend un temps O(1)
- application aux registres et journaux (logs)

(insertions fréquentes, recherches et suppressions
plutôt rares)

• séquence ordonnée à base de vecteur (en supposant
que les clés puissent être ordonnées)

- chercher prend un temps O(log n) (recherche
binaire)

- insérer et supprimer prennent un temps O(n)
- application aux tables de recherche (look-up

tables— recherches fréquentes, insertions et
suppressions plutôt rares)

34 14 12 22 18

12 14 18 22 34

7.4Dictionnaires et recherche

Recherche binaire
• restreindre l’intervalle de recherche par stages

• jeu “trop haut - trop bas” (high-low)

• findElement(22)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 2225 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low high mid

high midlow

highlow mid

low=mid=high

7.5Dictionnaires et recherche

Pseudo-code pour recherche
binaire

Algorithm BinarySearch(S, k, low, high)
if low > high then

return NO_SUCH_KEY
else

mid ← (low+high) / 2
if k = key(mid) then

return key(mid)
else if k < key(mid) then

return BinarySearch(S, k, low, mid−1)
else

return BinarySearch(S, k, mid+1, high)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 2225 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low high mid

high midlow

highlow mid

7.6Dictionnaires et recherche

Temps d’exécution de la
recherche binaire

• L’intervalle des items qui seront considérés est
réduit de moitié après chaque comparaison

• Dans la réalisation à base de vecteur, l’accès par
rang prend un temps O(1), et donc la recherche
binaire s’exécute en un temps O(log n)

comparaison intervalle de
recherche

0 n

1 n/2

2 n/4

... ...

2i n/2i

log2 n 1

7.7Dictionnaires et recherche

Arbres de recherche binaires
• Un arbre de recherche binaire est un arbre binaire T

où:
- chaque nœud interne v emmagasine un item de

dictionnaire (k, e).
- les clés se trouvant dans les nœuds du sous-arbre

gauche de v sont plus petit ou égal à k.
- les clés se trouvant dans les nœuds du sous-arbre

droit de v sont plus grand ou égal à k.
- les nœuds externes ne contiennent pas d’éléments.

97

44

17 88

32 65

54 8228

29 76

80

7.8Dictionnaires et recherche

Recherche
• Un arbre de recherche binaire T est un arbre de

décision où la question posée à un nœud interne v se
résume à: est-ce que la clé k est plus petite, égale, ou
plus grande que la clé se trouvant dans v?

• Pseudo-code:
Algorithm TreeSearch(k, v):

Entrée: une clé de recherche k et un nœud v d’un
arbre de recherche binaire T.

Sortie: un nœud w du sous-arbre T(v) de T avec v
comme racine, tel que w est un nœud interne
emmagasinant k, ou w est un nœud externe
visité lors de la traversée in-ordre de T(v) après
tous les nœuds internes aux clés plus petites
que k et avant tous les nœuds internes aux clés
plus grandes que k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

7.9Dictionnaires et recherche

Exemple de recherche I
• findElement(76) réussi avec succès

• Une recherche fructueuse traverse un chemin
débutant de la racine et se terminant à un nœud
interne.

• Que dire de findAllelements(k)?

97

44

17 88

32 65

54 8228

29
76

80

7.10Dictionnaires et recherche

Exemple de recherche II
• findElement(25) qui ne réussit pas

• Une recherche infructueuse traverse un chemin
débutant de la racine et se terminant à un nœud
externe.

97

44

17 88

32 65

54 8228

29
76

80

7.11Dictionnaires et recherche

Insertion
• Pour exécuter insertItem(k, e), définissons w comme

étant le nœud retourné par TreeSearch(k, T.root())

• Si w est externe, alors nous savons que k ne se trouve
pas dans T. Nous appelons alors expandExternal(w)
sur T et emmagasinons (k, e) dans w

97

88

65

54 82

76

80

97

88

65

54 82

76

80

78

w

w

insertItem(78, e)

7.12Dictionnaires et recherche

Insertion II
• Si w est interne, alors nous savons qu’un autre item

avec une clé k se trouve à w. Nous appelons
l’algorithme récursivement à partir de T.rightChild(w)
ou de T.leftChild(w)

97

88

65

72

54

54
w insertItem(54, e)

54
w

w

w

97

88

65

72

54

54

54

w
54

7.13Dictionnaires et recherche

Suppression I
• Nous repérons le nœud w où la clé est emmagasinée

avec l’algorithme TreeSearch

• Si w a un fils externe z, alors nous supprimons w et
z avec removeAboveExternal(z)

44

17 88

32 65

5428

29

w
z

44

17 88

65

54

28

29

removeElement(32)

7.14Dictionnaires et recherche

Suppression II
• Si w n’a pas de fils externe:

- trouvez le nœud interne y suivant w selon le
parcours in-ordre

- déplacez l’item de y vers w
- exécutez removeAboveExternal(x), où x est le fils

gauche de y (qui sera toujours externe)

32

17 88

65

54

29

w

x
removeElement(32)

y

54

17 88

65

29

w

7.15Dictionnaires et recherche

Complexité temporelle
• Une recherche, une insertion, ou une suppression

visite les nœuds de la racine aux feuilles (root-to-
leaf path), et peut-être aussi les frères de ces nœuds

• Une durée O(1) est nécessaire à chaque nœud

• Le temps d’exécution de chaque opération est O(h),
où h est la hauteur de l’arbre

• La hauteur d’un arbre de recherche binaire est n
dans le pire des cas. Un tel arbre ressemble alors à
une séquence triée

• Afin d’obtenir un bon temps d’exécution, nous
devons garder l’arbre équilibré, c’est-à-dire avec
une hauteur de O(log n)

• Différentes stratégies d’équilibrage seront explorées
dans les prochains cours.

10

20

30

40

7.16Arbres AVL

ARBRES AVL
• Arbres AVL

7.17Arbres AVL

Arbre AVL
• Les arbres AVL sont équilibrés.

• Un arbre AVL est un arbre de recherche binaire où,
pour tout nœud interne v de T, les hauteurs des
enfants de v sont égales ou différentes de 1 niveau.

• Voici un exemple d’arbre AVL où les hauteurs sont
indiquées près des nœuds:

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

7.18Arbres AVL

Hauteur d’un arbre AVL
• Proposition: La hauteur d’un arbre AVL T

emmagasinant n clés est O(log n).

• Justification: l’approche la plus simple est
d’essayer de trouver le nombre minimal de nœuds
internes d’un arbre AVL de hauteur h: n(h).

• Nous observons que n(1) = 1 et n(2) = 2

• Pour n ≥ 3, un arbre AVL de hauteur h avec n(h)
contient au minimum le nœud racine, un sous-arbre
AVL de hauteur n-1 et un autre de hauteur n-2.

• Ainsi n(h) = 1 + n(h-1) + n(h-2)

• Sachant que n(h-1) > n(h-2), nous obtenons
n(h) > 2n(h-2)
- n(h) > 2n(h-2)
- n(h) > 4n(h-4)

...
- n(h) > 2in(h-2i)

• Résolution du cas de base: n(h) ≥ 2h/2-1

• Utilisation du logarithme: h < 2log n(h) +2

• Ainsi la hauteur d’un arbre AVL est O(log n)

7.19Arbres AVL

Insertion
• Un arbre de recherche binaire T est équilibré si, pour

chaque nœud v, la hauteur des enfants de v sont
égales ou différentes de 1 niveau.

• L’insertion d’un nœud dans un arbre AVL implique
l’application de expandExternal(w) à T, qui change
alors les hauteurs de quelques-uns des nœuds de T.

• Si une insertion fait que T devienne déséquilibré,
alors nous traversons l’arbre vers le haut à partir du
nœud nouvellement créé jusqu’à ce que nous
trouvions le premier nœud x dont le grand-père z est
un nœud déséquilibré.

• Puisque z est devenu déséquilibré par l’insertion
dans le sous-arbre enraciné à son enfant y,
hauteur(y) = hauteur(frère(y)) + 2

• Afin de rééquilibrer le sous-arbre enraciné à z, nous
devons faire une restructuration
- nous renommons x, y, et z par a, b, et c en se basant

sur l’ordre des nœuds (traversée in-ordre)
- z est remplacé par b, dont les enfants sont

maintenant a et c. Les enfants de ces derniers sont
les quatre autres sous-arbres qui étaient auparavant
enfants de x, y, et z.

7.20Arbres AVL

Insertion (suite)
• Exemple d’insertion dans un arbre AVL.

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0

T1

T2

T3

x

y

z

Oh! Déséquilibré!

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

Équilibré de nouveau.

1

2

3

4

5

6

7

7.21Arbres AVL

Restructuration
• Voici les quatre façons de faire la rotation des nœuds

dans un arbre AVL, représentées graphiquement:
- Rotations simples:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
rotation simple

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
rotation simple

7.22Arbres AVL

Restructuration (suite)

- Rotations double:

rotation doublea = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

rotation doublec = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

7.23Arbres AVL

Algorithme de restructuration

Algorithm restructure(x):
Entrée: Un nœud x d’un arbre de recherche binaire T

qui a y pour père et z pour grand-père
Sortie: L’arbre T restructuré par rotation (soit simple

ou double) impliquant les nœuds x, y, et z.

1: Soit (a, b, c) une liste in-ordre des nœuds x, y, et z,
et soit (T0, T1, T2, T3) une liste in-ordre des quatre
sous-arbres de x, y, et z non-enraciné à x, y, ou z

2. Remplacez le sous-arbre enraciné à z par un nou-
veau sous-arbre enraciné à b

3. Placez a comme enfant de gauche de b et placez T0
et T1 comme sous-arbres de gauche et de droite de
a, respectivement.

4. Placez c comme enfant de droite de b et placez T2
et T3 comme sous-arbres de gauche et de droite de
c, respectivement.

7.24Arbres AVL

Algorithme de restructuration
Couper/Lier (Cut/Link)

• Étudions cet algorithme de plus près...

• Tout arbre qui a besoin d’être restructuré peut être
divisé en 7 parties: x, y, z et les 4 sous-arbres
enracinés aux enfants de ces nœuds (T0-3)

• Créez un nouvel arbre équilibré en déplaçant les 7
parties de l’arbre original de façon à ce que l’ordre
soit le même lorsque nous faisons une traversée in-
ordre du nouvel arbre.

• Ceci fonctionne peu importe la façon dont l’arbre
original est déséquilibré. Observez...

88

44

17

7850

48

62

54T0

T1

T2

T3

z

y

x

7.25Arbres AVL

Algorithme de restructuration
Couper/Lier (suite)

• Numérotez les 7 parties en parcourant l’arbre (in-
ordre). Notez que x, y, et z sont maintenant
renommés selon leur ordre dans la traversée.

88

44

17

7850

48

62

54T0

T1

T2

T3

z (a)

y (b)

x (c)

1
2

3
4

5
6

7

7.26Arbres AVL

Algorithme de restructuration
Couper/Lier (suite)

• Maintenant créez un vecteur, numéroté de 1 à 7
(l’élément 0 peut être ignoré avec une perte d’espace
minimale)

• Coupez les quatre arbres T et placez-les dans le
vecteur selon leur rang in-ordre.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

T0 T1 T2 T3

7.27Arbres AVL

Algorithme de restructuration
Couper/Lier (suite)

• Maintenant coupez x, y, et z dans cet ordre (fils, père,
grand-père) and placez-les dans le vecteur selon leur
rang in-ordre.

• Maintenant nous pouvons relier ces sous-arbres à
l’arbre principal.

• Liez le rang 4 (b) comme étant la racine du sous-
arbre original

1 2 3 4 5 6 7

T0 T1 T2 T378

c
62

ba
44

62

b4

7.28Arbres AVL

Algorithme de restructuration
Couper/Lier (suite)

• Liez les rangs 2 (a) et 6 (c) comme enfants de 4.

62

b4

44 78

a c2 6

7.29Arbres AVL

Algorithme de restructuration
Couper/Lier (suite)

• Finalement, liez les rangs 1, 3, 5 et 7 comme enfants
de 2 et 6.

• Vous avez maintenant un arbre équilibré!

62

y4

44 78

z x

17

T0

1

2 6

50

48 54

T1

3 5
88

T3

7
T2

7.30Arbres AVL

Algorithme de restructuration
Couper/Lier (suite)

• Cet algorithme de restructuration a exactement le
même effet que l’utilisation des quatre cas de
rotation discutés plus tôt.

• Avantages: pas d’analyse de cas, plus élégant.

• Désavantage: peut exiger plus de code.

• Même complexité temporelle.

7.31Arbres AVL

Suppression
• Nous pouvons voir facilement que l’application de

removeAboveExternal(w) peut causer un déséquilibre
dans T.

• Soit z le premier nœud déséquilibré rencontré en
traversant l’arbre vers le haut à partir de w. Aussi,
soit y l’enfant de z à la plus grande hauteur, et x
l’enfant de y à la plus grande hauteur.

• Nous pouvons appliquer restructure(x) pour
rééquilibrer le sous-arbre enraciné à z.

• Comme cette restructuration pourrait déséquilibrer
un autre nœud plus haut dans l’arbre, nous devons
continuer à vérifier l’équilibre jusqu’à ce que la
racine de T soit atteinte.

7.32Arbres AVL

Suppression (suite)
• exemple de suppression dans un arbre AVL:

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1

T2

T3

z

y

x

0

Oh! Déséquilibré!

8817

78

50

48

62

1

1

2

23

1

54
1

T0

T1

T2

T3

y

x
44

4

z

0

Ouf! Équilibré de nouveau.

7.33Arbres AVL

Suppression (suite)
• exemple de suppression dans un arbre AVL:

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1 T2 T3

z

y

x

0

Oh! Déséquilibré!

88

17 78

50

48

62
1 1

4

2

3

1
54

1

T0 T1 T2

T3

y

x

0

44
2

z

Ouf! Équilibré de nouveau.

7.34Arbres AVL

Réalisation
• La réalisation d’un arbre AVL en Java requiert la

classe de nœud suivante:

public class AVLItem extends Item {

 int height;

 AVLItem(Object k, Object e, int h) {

 super (k, e);

 height = h;

 }

 public int height() {

 return height;

 }

 public int setHeight(int h) {

 int oldHeight = height;

 height = h;

 return oldHeight;

 }

}

7.35Arbres AVL

Réalisation (suite)
public class SimpleAVLTree

 extends SimpleBinarySearchTree
implements Dictionary {

public SimpleAVLTree(Comparator c) {

 super (c);

 T = new RestructurableNodeBinaryTree();

 }

 private int height(Position p) {

 if (T.isExternal(p))

return 0;

 else

return ((AVLItem) p.element()).height();

 }

 private void setHeight(Position p) { // called only
// if p is internal

 ((AVLItem) p.element()).setHeight

(1 + Math.max(height(T.leftChild(p)),
 height(T.rightChild(p))));

 }

7.36Arbres AVL

Réalisation (suite)

private boolean isBalanced(Position p) {
// test whether node p has balance factor
// between -1 and 1

 int bf = height(T.leftChild(p)) - height(T.rightChild(p));

 return ((-1 <= bf) && (bf <= 1));

}

private Position tallerChild(Position p) {
 // return a child of p with height no

 // smaller than that of the other child

 if (height(T.leftChild(p)) >= height(T.rightChild(p)))

return T.leftChild(p);

 else

return T.rightChild(p);

 }

7.37Arbres AVL

Réalisation (suite)

private void rebalance(Position zPos) {
//traverse the path of T from zPos to the root;
//for each node encountered recompute its
//height and perform a rotation if it is
//unbalanced

while (!T.isRoot(zPos)) {

 zPos = T.parent(zPos);

 setHeight(zPos);

 if (!isBalanced(zPos)) { // perform a rotation

 Position xPos = tallerChild(tallerChild(zPos));

 zPos = ((RestructurableNodeBinaryTree)
T).restructure(xPos);

 setHeight(T.leftChild(zPos));

 setHeight(T.rightChild(zPos));

 setHeight(zPos);

 }

}

}

7.38Arbres AVL

Réalisation (suite)

public void insertItem(Object key, Object element)

 throws InvalidKeyException {

super .insertItem(key, element);// may throw an
// InvalidKeyException

Position zPos = actionPos; // start at the
// insertion position

T.replace(zPos, new AVLItem(key, element, 1));

rebalance(zPos);

 }

public Object remove(Object key)

throws InvalidKeyException {

 Object toReturn = super .remove(key); // may throw
// an InvalidKeyException

 if (toReturn != NO_SUCH_KEY) {

Position zPos = actionPos; // start at the
 // removal position

rebalance(zPos);

 }

 return toReturn;

 }

}

7.39Hachage

 Une forme de narcotique?

 Une forme de découpage?

 Une combinaison des deux?

Hachage

(Hashing)

Qu’est-ce que c’est?

7.40Hachage

Problème
• RT&T est une grande compagnie téléphonique qui

veut offrir un service d’identification de l’appelant:
- étant donné un numéro de téléphone, retourne le

nom de l’appelant
- les numéros sont dans l’intervalle 0 à R = 1010−1
- n est le nombre de numéros utilisés
- nous désirons une réalisation efficace

• Nous connaissons deux façons de concevoir ce
dictionnaire:
- un arbre de recherche équilibré (AVL, red-black)

ou une liste “skip” avec le numéro de téléphone
comme clé a un temps de requête O(log n) et un
espace O(n) — bon usage de l’espace mémoire et
bon temps de recherche, mais peut-on réduire le
temps de recherche à une constante?

- un vecteur (bucket array) indexé par le numéro de
téléphone a un temps de requête optimal O(1),
mais il y a un grand gaspillage d’espace: O(n + R)

000-000-0000000-000-0001 401-863-7639... 999-999-9999

......

...

Roberto(null) (null) (null)

7.41Hachage

Autre solution
• Une table de hachage (hash table) est une solution

alternative avec un temps de requête anticipé O(1) et
un espace O(n + N), où N est la taille de la table.

• Comme un vecteur, mais avec une fonction projetant
un grand ensemble de clés sur un plus petit.
- ex.: prenez la clé originale modulo la taille de la

table, et utilisez cette valeur comme index

• Insérez l’item (401-863-7639, Roberto) dans une
table de taille 5
- 4018637639 mod 5 = 4, alors l’item (401-863-

7639, Roberto) est emmagasiné dans l’espace #4

• Une consultation (lookup) utilise le même
processus: projection de la clé sur un index, et
vérification de l’espace à cet index

• Insérez à la table (401-863-9350, André) et ensuite
(401-863-2234, Daniel). Nous avons une collision!

0 1 2 3

Roberto

401-
863-7639

4

7.42Hachage

Résolution de collision
• Comment gérer deux clés qui sont projetée sur le

même espace d’un vecteur?

• Utilisez le chaînage (chaining)
- Créez des listes d’items avec le même index

• Le temps anticipé de recherche/insertion/
suppression est O(n/N), en supposant que les index
soient distribués uniformément.

• La performance de la structure de données peut être
affinée en changeant la taille de la table N

0

1

2

3

4

7.43Hachage

De clé à index
• La projection des clés vers les index de la table de

hachage est appelée fonction de hachage

• Une fonction de hachage est habituellement
composée de deux parties:
- code de hachage: clé → integer

- compression: integer → [0, N − 1]

• La fonction de hachage doit absolument projeter
deux clés égales vers deux index égaux.

• Une “bonne” fonction de hachage minimise la
probabilité de collision.

• Java offre la méthode hashCode() pour la classe
Object, qui retourne typiquement l’adresse-mémoire
(32 bits) de l’objet.

• Ce code de hachage par défaut ne serait pas très
performant pour les objets Integer et String.

• La méthode hashCode() devrait être redéfinie de
façon adéquate par les classes.

7.44Hachage

Codes de hachage populaires
• Mettre entier (integer cast): pour les types

numériques avec 32 bits ou moins, nous pouvons
réinterpréter les bits du nombre comme un int.

• Somme des composantes (component sum): pour les
types numériques avec plus de 32 bits (ex.: long et
double), nous pouvons additionner les composantes
de 32 bits.

• Accumulation polynomiale: pour les chaînes de
caractères en langage naturel, combinez les valeurs
de chaque caractère (ASCII, ISO Latin ou Unicode)
a0a1 ... an−1 en les considérant comme coefficients
d’un polynôme: a0 + a1x + ...+ xn−1an−1
- Le polynôme est calculé avec la règle de Horner,

en ignorant les dépassements de capacité, avec une
valeur fixe pour x:

a0 + x (a1+ x (a2+ ... x (an−2+ x an−1) ...))
- Le choix x = 33, 37, 39, ou 41 donne au plus 6

collisions sur un vocabulaire de 50,000 mots
anglais!

• Pourquoi la somme des composantes n’est-elle pas
bonne pour les chaînes de caractères?

7.45Hachage

Méthodes de compression
populaires

• Division: h(k) = |k| mod N
- N = 2k est un mauvais choix parce que ce ne sont

pas tous les bits qui sont pris en compte
- La taille de la table N est habituellement un

nombre premier
- certains patrons (patterns) dans le code de hachage

sont propagés

• Multipliez, additionnez, et divisez:
h(k) = |ak + b| mod N
- élimine les patrons lorsque a mod N ≠ 0
- même formule utilisée dans les générateurs de

(pseudo) nombres aléatoires linéaires congruents

7.46Hachage

Encore des collisions
• Une clé est projeté sur un espace de la table qui est

déjà occupé
- que faire?!?

• Utilisez une technique de gestion des collisions

• Nous avons vu le chaînage

• Nous pouvons aussi utiliser l’adressage ouvert
- Hachage double
- Sondage linéaire (Linear Probing)

7.47Hachage

Sondage linéaire
• Si l’espace courant est occupé, essayez l’espace

suivant

linear_probing_insert(K)
if (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

• Une consultation parcours la table jusqu’à ce que la
clé ou un espace vide soit trouvé.

• Utilise moins de mémoire que le chaînage
- pas besoin d’emmagasiner tous ces liens

• Plus lent que le chaînage
- peut résulter en un long parcours de la table

• La suppression est plus complexe
- marquage de l’espace effacé, ou
- remplir l’espace en déplaçant quelques éléments

7.48Hachage

Exemple de sondage linéaire
• h(k) = k mod 13

• Insérez les clés:

73

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31

85 2 9 5 7 6 5

7.49Hachage

Exemple de sondage linéaire
(suite)

0 1 2 3 4 5 6 7 8 9 10 11 12

18 2241 44 59 32 31 73

7.50Hachage

Hachage double
• Utilise deux fonctions de hachage

• Si M est premier, éventuellement tous les espaces de
la table seront examinés

double_hash_insert(K)
if (table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K

• Plusieurs avantages et désavantages semblables à
ceux du sondage linéaire

• Distribue les clés plus uniformément que le sondage
linéaire

7.51Hachage

Exemple de hachage double
• h1(K) = K mod 13

h2(K) = 8 - K mod 8
- nous voulons que h2 soit un déplacement à ajouter

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31 73

7.52Hachage

Exemple de hachage double
(suite)

0 1 2 3 4 5 6 7 8 910 11 12

1841 2244 5932 3173

7.53Hachage

Résultats théoriques
• Soit α = Ν/Μ

- le facteur de charge: nombre moyen de clés par
index du vecteur

• L’analyse utilise les probabilités plutôt que le pire
des cas

Nombre de visites anticipé

1 α+ 1
α
2
---+Chaînage

Sondage linéaire
1
2
--- 1

2 1 α–()2
------------------------+ 1

2
--- 1

2 1 α–()
---------------------+

Hachage double
1

1 α–()
----------------- 1

α
--- ln

1
1 α–

non trouvé trouvé

7.54Hachage

0.5 1.0

Trouvé
Non-trouvé

Sondage linéaire

Chaînage

Hachage double

Nombre de visites anticipé /
Facteur de charge

1.0

N
om

br
e

de
 v

is
ite

s

α

8.1Tri avancé

TRI AVANCÉ

• Révision sur le tri

• Tri par fusion (Merge Sort)

• Ensembles (Sets)

• Tri rapide (Quick-Sort)

• À quelle vitesse peut-on trier?

8.2Tri avancé

Algorithmes de tri
• Le tri par sélection utilise une file à priorité P

réalisée à l’aide d’une séquence non-ordonnée:
- Phase 1: l’insertion d’un item dans P prend un

temps O(1); en tout O(n)
- Phase 2: le retrait d’un item requiert un temps

proportionnel au nombre d’éléments dans P,
c’est-à-dire O(n); en tout O(n2)

- Complexité temporelle: O(n2)

8.3Tri avancé

Algorithmes de tri (suite)
• Le tri par insertion utilise une file à priorité P

réalisée à l’aide d’une séquence ordonnée:
- Phase 1: le premier insertItem prend O(1), le

second O(2), jusqu’au dernier insertItem qui prend
O(n); en tout O(n2)

- Phase 2: le retrait d’un item prend un temps O(1);
en tout O(n).

- Complexité temporelle: O(n2)

• Le tri Heap Sort utilise une file à priorité K réalisée à
l’aide d’un tas.
- insertItem et removeMin prennent chacun O(log k),

où k est le nombre d’éléments du tas à un moment
donné.

- Phase 1: n éléments insérés: temps O(n log n)
- Phase 2: n éléments retirés: temps O(n log n)
- Complexité temporelle: O(n log n)

8.4Tri avancé

Diviser pour régner
(Divide-and-Conquer)

• Diviser pour régner est bien plus qu’une stratégie
militaire; il s’agit aussi d’une méthode de
conception d’algorithmes qui a mené à la création
d’algorithmes efficaces tel le tri par fusion.

• En termes d’algorithmes, cette méthode a trois
étapes distinctes:

- Diviser: Si la taille de l’entrée est trop grande pour
la traiter de façon directe, alors divisez les données
en deux ou plusieurs sous-ensembles disjoints.

- Appliquer récursivement: Utilisez l’approche
diviser pour régner afin de résoudre les sous-
problèmes associés aux sous-ensembles de
données.

- Conquérir : Prenez les solutions aux sous-
problèmes et “fusionnez” ces solutions afin
d’obtenir la solution au problème initial.

8.5Tri avancé

Tri par fusion (Merge Sort)
• Algorithme:

- Diviser: Si S a au moins deux éléments (il n’y a
rien à faire si S a zéro ou un élément), retirez tous
les éléments de S et placez-les dans 2 séquences,
S1 et S2, chacune contenant environ la moitié des
éléments de S (S1 contient les premiers n/2
éléments et S2 contient les n/2 éléments restants)

- Appliquer récursivement: Triez récursivement
les séquences S1 et S2.

- Conquérir : Replacez les éléments dans S en
fusionnant les séquences triées S1 et S2 en une
séquence triée unique.

• Arbre de tri par fusion:

- Prenez un arbre binaire T
- Chaque nœud T représente un appel récursif à

l’algorithme de tri par fusion.
- Nous associons à chaque nœud v de T l’ensemble

des entrées à l’invocation que v représente.
- Les nœuds externes sont associés aux éléments

individuels de S, sur lesquels il n’y a pas d’appel
récursif.

8.6Tri avancé

Tri par fusion
85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

8.7Tri avancé

Tri par fusion (suite)

85 24 63 45

17 31 96 50

85 24

63 45

17 31 96 50

8.8Tri avancé

Tri par fusion (suite)

85

24

63 45

17 31 96 50

85

24

63 45

17 31 96 50

8.9Tri avancé

Tri par fusion (suite)

85 24 63 45

17 31 96 50

24 85 63 45

17 31 96 50

8.10Tri avancé

Tri par fusion (suite)

24 85

63 45

17 31 96 50

24 85

63 45

17 31 96 50

8.11Tri avancé

Tri par fusion (suite)

24 85

63 45

17 31 96 50

24 85

63

45

17 31 96 50

8.12Tri avancé

Tri par fusion (suite)

24 85

63

45

17 31 96 50

24 85

63 45

17 31 96 50

8.13Tri avancé

Tri par fusion (suite)

24 85 17 31 96 50

45 63

24 85 17 31 96 5045 63

8.14Tri avancé

Tri par fusion (suite)

24 45 17 31 96 5063 85

24 45

17 31 96 50

63 85

8.15Tri avancé

Tri par fusion (suite)
24 45

17 31 96 50

63 85

24 45

17 31 50 96

63 85

8.16Tri avancé

Tri par fusion (suite)
24 45 17 31 50 9663 85

17 24 31 45 50 63 85 96

8.17Tri avancé

Fusionner deux séquences
• Pseudo-code pour fusionner deux séquences triées

en une séquence triée unique
Algorithme merge (S1, S2, S):

Entrée: Séquence S1 et S2 (où une relation totale sur
les éléments est définie) triée en ordre non-décrois-
sant, et une séquence vide S.
Sortie: Séquence S contenant l’union des éléments
de S1 et S2 triés en ordre non-décroissant; les
séquences S1 et S2 deviennent vides à la fin de
l’exécution
while S1 is not empty and S2 is not empty do

if S1.first().element() ≤ S2.first().element() then
{déplace le 1er élément de S1 vers la fin de S}
S.insertLast(S1.remove(S1.first()))

else
{ déplace le 1er élément de S2 vers la fin de S}
S.insertLast(S2.remove(S2.first()))

while S1 is not empty do
{déplace les éléments restants de S1 vers S}
S.insertLast(S1.remove(S1.first()))

while S2 is not empty do
{déplace les éléments restants de S2 vers S}
S.insertLast(S2.remove(S2.first()))

8.18Tri avancé

Fusionner deux séquences (suite)
• Quelques illustrations:

a)

b)

24 45 63 85S1

17 31 50 96S2

S

24 45 63 85S1

17

31 50 96S2

S

8.19Tri avancé

Fusionner deux séquences (suite)
c)

d)

24

45 63 85S1

17

31 50 96S2

S

24

45 63 85S1

17

50 96S2

S 31

8.20Tri avancé

Fusionner deux séquences (suite)
e)

f)

24

63 85S1

17

50 96S2

S 31 45

24

63 85S1

17

96S2

S 31 45 50

8.21Tri avancé

Fusionner deux séquences (suite)
g)

h)

24

85S1

17

96S2

S 31 45 50 63

24

S1

17

96S2

S 31 45 50 63 85

8.22Tri avancé

Fusionner deux séquences (suite)
i)

24

S1

17

S2

S 31 45 50 63 85 96

8.23Tri avancé

Réalisation Java du tri par fusion
• Interface SortObject

public interface SortObject {

//sort sequence S in nondecreasing order
using compartor c

public void sort (Sequence S, Comparator c);

}

8.24Tri avancé

Réalisation Java du tri par
fusion (suite)

public class ListMergeSort implements SortObject {

public void sort(Sequence S, Comparator c) {

 int n = S.size();

if (n < 2) return ; // a sequence with 0 or
1 element is already sorted.

 // divide

 Sequence S1 = (Sequence)S.newContainer();

// put the first half of S into S1

 for (int i=1; i <= (n+1)/2; i++) {

 S1.insertLast(S.remove(S.first()));

 }

 Sequence S2 = (Sequence)S.newContainer();

// put the second half of S into S2

 for (int i=1; i <= n/2; i++) {

 S2.insertLast(S.remove(S.first()));

}

sort(S1,c); // recur

 sort(S2,c);

merge(S1,S2,c,S); // conquer

 }

8.25Tri avancé

Réalisation Java du tri par
fusion (suite)

public void merge(Sequence S1, Sequence S2,
Comparator c, Sequence S) {

while (!S1.isEmpty() && !S2.isEmpty()) {

if (c.isLessThanOrEqualTo(S1.first().element(),
S2.first().element())) {
// S1’s 1st elt <= S2’s 1st elt
S.insertLast(S1.remove(S1.first()));

}

else { // S2’s 1st elt is the smaller one
S.insertLast(S2.remove(S2.first()));

}
}

if (S1.isEmpty()) {
while (!S2.isEmpty()) {

S.insertLast(S2.remove(S2.first()));
}

}
if (S2.isEmpty()) {

whil e(!S1.isEmpty()) {
S.insertLast(S1.remove(S1.first()));

}
}

}

8.26Tri avancé

Temps d’exécution du
tri par fusion

• Proposition 1: L’arbre associé à l’exécution du tri
par fusion sur une séquence de n éléments a une
hauteur de log n

• Proposition 2: Un algorithme de tri par fusion trie
une séquence de taille n en un temps O(n log n)

• Nous supposons seulement que la séquence d’entrée
S et chacune des sous-séquences crées par chaque
appel récursif de l’algorithme peut accéder, insérer,
et supprimer les premier et dernier nœuds en un
temps O(1).

• Nous appelons le temps passé à un nœud v d’un
arbre de tri par fusion T le temps d’exécution de
l’appel récursif associé à v, en excluant les appels
récursifs faits aux enfants de v.

8.27Tri avancé

Temps d’exécution du
tri par fusion (suite)

• Si i représente la profondeur du nœud v dans l’arbre
de tri par fusion, alors le temps passé au nœud v est
O(n/2i) puisque la taille associée à v est n/2i.

• Observez que T possède exactement 2i nœuds à la
profondeur i. Le temps total passé à la profondeur i
dans l’arbre est alors O(2in/2i), qui est donc O(n).
Nous savons que l’arbre a une hauteur log n.
Ainsi, la complexité temporelle est O(n log n).

8.28Tri avancé

Le TAD Ensemble (Set)
• Un ensemble (set) est une structure de donnée

modélisée selon le concept mathématique
d’ensemble. Les opérations fondamentales sur les
ensembles sont l’union, l’ intersection, et la
soustraction.

• Un bref rappel du concept mathématique
d’ensemble:
- A ∪ B = { x: x ∈ A ou x ∈ B }
- A ∩ B = { x: x ∈ A et x ∈ B }
- A − B = { x: x ∈ A et x ∉ B }

• Les méthodes spécifiques pour un ensemble A
incluent:

- union(B):
L’ensemble A devient A ∪ B.

- intersect(B):
L’ensemble A devient A ∩ B.

- subtract(B):
L’ensemble A devient A − B.

8.29Tri avancé

Fusion générique
Algorithme genericMerge(A, B):

Entrée: Séquences triées A et B
Sortie: Séquence triée C
let A’ be a copy of A { We won’t destroy A and B}
let B’ be a copy of B
while A’ and B’ are not empty do

a←A’.first()
b←B’.first()
if a<b then

aIsLess(a, C)
A’.removeFirst()

else if a=b then
bothAreEqual(a, b, C)
A’.removeFirst()
B’.removeFirst()

else
bIsLess(b, C)
B’.removeFirst()

while A’ is not empty do
a←A’.first()
aIsLess(a, C)
A’.removeFirst()

while B’ is not empty do
b←B’.first()
bIsLess(b, C)
B’.removeFirst()

8.30Tri avancé

Opérations sur les ensembles
• Nous pouvons spécialiser l’algorithme de fusion

générique pour réaliser des opérations sur les
ensembles telles l’union, l’intersection, et la
soustraction.

• L’algorithme de fusion générique examine et
compare les éléments courants A et B.

• En se basant sur le résultat de la comparaison, il
détermine s’il doit copier l’un des éléments a ou b
dans C, ou ne rien faire.

• Cette décision dépend de l’opération présentement
en cours (union, intersection ou soustraction).

• Dans le cas de l’union, nous copions le plus petit
élément (a ou b) dans C; si a=b alors l’un ou l’autre
est copié.

• Pour copier, nous définissons nos actions comme
étant aIsLess, bothAreEqual, et bIsLess.

• Allons voir la réalisation...

8.31Tri avancé

Opérations sur les ensembles
(suite)

• Pour l’union
public class UnionMerger extends Merger {

protected void aIsLess(Object a, Object b, Sequence C) {

C.insertLast(a);

}

protected void bothAreEqual(Object a, Object b,

Sequence C) {

C.insertLast(a);

}

protected void bIsLess(Object b, Sequence C) {

C.insertLast(b);

}

• Pour l’intersection
public class IntersectMerger extends Merger {

protected void aIsLess(Object a, Object b, SequenceC) {
}

protected void bothAreEqual(Object a, Object b,
 Sequence C) {

C.insertLast(a);
}

protected void bIsLess(Object b, Sequence C) { }
}

8.32Tri avancé

Opérations sur les ensembles
(suite)

• Pour la soustraction
public class SubtractMerger extends Merger {

protected void aIsLess(Object a, Object b,
 Sequence C) {

C.insertLast(a);
}

protected void bothAreEqual(Object a, Object b,
Sequence C) {

}

protected void bIsLess(Object b, Sequence C) {
}

}

8.33Tri avancé

Merci mon Dieu! C’est
Quicksort Man! À l’aide!

J’arrive à ton secours,
Bubble Sort Man.

Tri rapide
Quicksort

8.34Tri avancé

Tri rapide Quick-Sort
• Afin de comprendre le tri rapide quick-sort,

regardons une description de haut niveau de
l’algorithme.

• 1) Diviser: Si la séquence S a plus d’un élément,
sélectionnez un élément x de S comme pivot.
N’importe quel élément, par exemple le dernier, fera
l’affaire. Retirez tous les éléments de S et divisez-les
en 3 séquences:
- L, contient les éléments de S plus petits que x
- E, contient les éléments de S égaux à x
- G, contient les éléments de S plus grands que x

• 2) Appliquer récursivement: Triez récursivement L
et G

• 3) Conquérir : Afin de remettre les éléments dans S
en ordre, insérez premièrement les éléments de L,
suivis de ceux de E, et enfin de ceux de G.

• Voici quelques jolies illustrations...

8.35Tri avancé

Idée derrière Quick-Sort

1. Sélectionner
choisissez un élément

2. Diviser
réorganisez les éléments
de façon à ce que
• x aille à sa position

finale E

3. Appliquer récursive-
 ment et conquérir

triez récursivement

x

x

x

L E G

8.36Tri avancé

Arbre Quick-Sort
7 6 2 10 4 5 9 8

7 8 10 96 2 4 5

8.37Tri avancé

Arbre Quick-Sort
8 10 9

7 6 2 4 5

8 10 9

2 4 5 7 6

8.38Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

8.39Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

4

2

8 10 9

5 7 6

2 4

8.40Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

8.41Tri avancé

Arbre Quick-Sort
8 10 9

5 7 6

2 4

8 10 9

5 7 62 4

8.42Tri avancé

Arbre Quick-Sort
8 10 9

52 4

7 6

8 10 9

52 4

76

8.43Tri avancé

Arbre Quick-Sort
8 10 9

52 4

76

8 10 9

52 4

76

8.44Tri avancé

Arbre Quick-Sort
8 10 9

52 4

6

7

8 10 9

52 4

6 7

8.45Tri avancé

Arbre Quick-Sort
8 10 9

52 4

6 7

8 10 9

52 4 6 7

8.46Tri avancé

Arbre Quick-Sort
8 10 92 4 5 6 7

82 4 5 6 7

10 9

8.47Tri avancé

Arbre Quick-Sort
8 10 92 4 5 6 7

9 10

82 4 5 6 7

9 10

8.48Tri avancé

Arbre Quick-Sort
82 4 5 6 7

9 10

82 4 5 6 7

9

10

8.49Tri avancé

Arbre Quick-Sort
82 4 5 6 7

9 10

82 4 5 6 7

9 10

8.50Tri avancé

Arbre Quick-Sort
8 9 102 4 5 6 7

2 4 5 6 7 9 108

8.51Tri avancé

Quick-Sort sur place (In-Place)
• Étape de division: l parcours la séquence à partir de

la gauche, et r de la droite.

• Un échange a lieu quand l est un élément plus grand
que le pivot et r est plus petit que le pivot.

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl

31 24 63 45 17 85 96 50

rl

8.52Tri avancé

Quick-Sort sur place (suite)

• Un dernier échange avec le pivot complète l’étape de
division

31 24 63 45 17 85 96 50

rl

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

lr

31 24 17 45 50 85 96 63

lr

8.53Tri avancé

Réalisation Java du Quick-Sort
sur place

public class ArrayQuickSort implements SortObject {

public void sort(Sequence S, Comparator c){
quicksort(S, C, 0, S.size()-1);

}

private void quicksort (Sequence S, Comparator c,
int leftBound,
int rightBound) {

// left and rightmost ranks of
// sorting range

if (S.size() < 2) return; //a sequence with 0 or
// 1 elements is already sorted

if (leftBound >= rightBound) return; //terminate
//recursion

// pick the pivot as the current last
// element in range

Object pivot = S.atRank(rightBound).element();

// indices used to scan the sorting range

int leftIndex = leftBound; // will scan
// rightward

int rightIndex = rightBound - 1; //will scan
// leftward

8.54Tri avancé

Réalisation Java du Quick-Sort
sur place (suite)

// outer loop

while (leftIndex <= rightIndex) {

//scan rightward until an element larger than
//the pivot is found or the indices cross

while ((leftIndex <= rightIndex) &&

(c.isLessThanOrEqualTo

(S.atRank(leftIndex).element(),pivot))

leftIndex++;

//scan leftward until an element smaller than
//the pivot is found or the indices cross

while (rightIndex >= leftIndex) &&

(c.isGreaterThanOrEqualTo

(S.atRank(rightIndex).element(),pivot))

rightIndex--;

//if an element larger than the pivot and an
//element smaller than the pivot have been
//found, swap them

if (leftIndex < rightIndex)

S.swap(S.atRank(leftIndex),S.atRank(rightIndex));

} // the outer loop continues until
// the indices cross. End of outer loop.

8.55Tri avancé

Réalisation Java du Quick-Sort
sur place (suite)

//put the pivot in its place by swapping it
//with the element at leftIndex

S.swap(S.atRank(leftIndex),S.atRank(rightBound));

// the pivot is now at leftIndex, so recur
// on both sides

quicksort (S, c, leftBound, leftIndex-1);

quickSort (S, c, leftIndex+1, rightBound);

} // end quicksort method

} // end ArrayQuickSort class

8.56Tri avancé

Analyse du temps d’exécution
• Supposez un arbre quick-sort T:

- si(n) indique la somme des tailles d’entrée des
nœuds à la profondeur i dans T.

• Nous savons que s0(n) = n puisque la racine de T est
associée avec l’ensemble des entrées tout entier.

• Aussi, s1(n) = n-1 puisque le pivot n’est pas propagé.

• Donc: s2(n) = n - 3, ou encore n - 2 (si l’un des
nœuds a une taille d’entrée à zéro).

• Le temps d’exécution de quick-sort est, dans le pire
des cas:

Ce qui revient à:

Donc le tri quick-sort s’exécute en O(n2) dans le pire
des cas.

O si n()
i 0=

n 1–

∑
 
 
 

O n i–()
i 0=

n 1–

∑
 
 
 

O i

i 1=

n

∑
 
 
 

O n
2()= =

8.57Tri avancé

Analyse du temps d’exécution
(suite)

• Maintenant observons le meilleur des cas:

• Quick-sort se comporte de façon optimale lorsque la
séquence S est divisée en sous-séquences L et G de
tailles égales.

• Plus précisément:
- s0(n) = n
- s1(n) = n - 1
- s2(n) = n - (1 + 2) = n - 3
- s3(n) = n - (1 + 2 + 22) = n - 7

...
- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1

...

• Ceci implique que T a une hauteur O(log n)

• Complexité temporelle dans le meilleur des cas:
O(n log n)

8.58Tri avancé

Quick-Sort aléatoire
• Sélectionnez un élément de la séquence au hasard

comme pivot

• Le temps d’exécution attendu d’un tel tri sur une
séquence de taille n est O(n log n). Le temps passé à
un niveau de l’arbre quick-sort est O(n)

• Nous démontrons que la hauteur escomptée de
l’arbre quick-sort est O(log n)

• Bons et mauvais pivots

- Bon: 1/4 ≤ nL/n ≤ 3/4
- Mauvais: nL/n < 1/4 ou nL/n > 3/4

• La probabilité d’obtenir un bon pivot est 1/2, donc
nous espérons k/2 bons pivots

• Après un bon pivot, la taille de chaque sous-séquence
est au plus 0.75 fois la taille de la séquence originale

• Après h pivots, nous espérons (3/4)h/2 n éléments

• La hauteur escomptée h de l’arbre quick-sort est d’au
plus: 2 log4/3 n

nL

0 n/4 n3n/4

8.59Encore du tri

Encore du tri

• Tri numérique (radix sort)
• Tri bucket sort
• Tri sur place (in-place)
• À quelle vitesse peut-on trier?

8.60Encore du tri

Tri numérique (Radix Sort)

• Contrairement aux autres méthodes, le tri
numérique (radix sort) considère la
structure des clés

• Supposons des clés représentées dans un
système numérique à base M (radix); si
M = 2, alors les clés sont représentées en
binaire

• Le tri se fait en comparant les bits à la
même position

• Extension aux clés formées de chaînes
alphanumériques

1 0 0 19 =
8 4 2 1 poids

(b = 4)

3 2 1 0 bit #

8.61Encore du tri

Tri numérique avec échange
(Radix Exchange Sort)

Examinez les bits de gauche à droite:

1. Triez le vecteur selon le bit le plus à gauche

1
1
0
1
0

0
0
1
1
1

2. Partitionnez le vecteur

0
0
1
1
1

0
0

1
1
1

3. Récursivité
• triez récursivement le sous-vecteur du

haut, en ignorant le bit le plus à gauche
• triez récursivement le sous-vecteur du

bas, en ignorant le bit le plus à gauche

Temps requis pour trier n nombres à b bits:
O(b n)

(sous-vecteur
du haut)

(sous-vecteur
du bas)

8.62Encore du tri

Tri numérique avec échange
Comment réalisons-nous le tri de la page précéden-
te? Même idée que la partition dans Quicksort.

répétez
parcourir de haut en bas pour trouver une

clé débutant par un 1;
parcourir de bas en haut pour trouver une

clé débutant par un 0;
échangez les clés;

jusqu’à ce que les indices de parcours se croisent

0
1

1
0
1

parcourir du haut

parcourir du bas
premier

0

1

0

1
1

deuxième
échange

échange

1
1

0

0

1

1

0
1 0

1

parcourir du haut

parcourir du bas

8.63Encore du tri

Tri numérique avec échange

vecteur avant le tri

vecteur après le tri
sur le bit le plus à gauche

vecteur après un tri
récursif sur le 2e bit

le plus à gauche

2b-1

8.64Encore du tri

Tri numérique avec échange
versus Quicksort

Similarités
• Les deux partitionnent le vecteur
• Les deux trient les sous-vecteurs

récursivement

Différences
• Méthode de partitionnement

• le tri numérique divise le vecteur selon
la relation plus grand ou égal à 2b-1

• quicksort partitionne le vecteur selon la
relation plus grand ou égal à un
élément du vecteur

• Complexité temporelle
• Numérique avec échange O (bn)
• Quicksort, cas typique O (n log n)
• Quicksort, pire des cas O (n2)

8.65Encore du tri

Tri numérique direct

for k := 0 to b−1
triez le vecteur de façon stable,
en ne regardant que le bit k

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 0
0 0 0
1 0 1
0 0 1

1 1 1
0 1 1
1 0 0
1 1 0

Examinez les bits de droite à gauche

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

Première-
ment, triez
ceux-ci

Ensuite,
triez ces bits

Enfin,
triez
ceux-ci

Notez l’ordre de ces bits après le tri.

8.66Encore du tri

Mais que signifie “trier de
façon stable”?

Dans un tri stable, l’ordre initial relatif de clés
égales demeure inchangé.

Par exemple, observez la première étape du tri de
la page précédente:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

Notez que l’ordre relatif des clés se terminant par
0 est inchangé, et que la situation est semblable
pour les éléments se terminant par 1.

8.67Encore du tri

L’algorithme est correct
(vrai?)

• Nous démontrerons que n’importe quelle
paire de clés se trouve correctement
ordonnée à la fin de l’algorithme

• Étant donné deux clés, définissons k com-
me étant la position du bit le plus à gauche
où elles diffèrent

0 1 0 1 1

0 1 1 0 1

k

• À l’étape k les deux clés sont mises dans un
ordre relatif correct

• Grâce à la stabilité, les étapes subséquentes
ne changent pas l’ordre relatif des deux
clés!

8.68Encore du tri

Par exemple,

Considérez un tri sur un vecteur avec ces deux
clés:

0 1 0 1 1

0 1 1 0 1

k

Leur ordre relatif initial n’a aucune
importance.

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 0 1 1
Quand le tri visite le bit k,
les clés sont mises dans un
ordre relatif correct.

0 1 1 0 1

0 1 0 1 1 Comme le tri est stable, l’ordre
des deux clés ne changera pas
lorsque les bits > k seront
comparés.

8.69Encore du tri

Voilà!

Le tri numérique peut être
appliqué aux nombres

décimaux
Premièrement,
triez ces chiffres

Ensuite
ceux-ci

Et enfin
ceux-ci

Notez l’ordre des chiffres après le tri.

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5

8.70Encore du tri

Complexité temporelle du
tri numérique direct

for k = 0 to b - 1
triez le vecteur de façon stable,
en ne regardant que le bit k

Supposons que nous puissions exécuter ce tri
stable en un temps O(n). La complexité
temporelle totale serait:

O(bn)
Comme vous l’avez peut-être deviné, nous
pouvons faire un tri stable basé sur le ke chiffre
des clés en un temps O(n).

Par quelle méthode? Par un tri bucket sort, bien
sûr.

8.71Encore du tri

Tri Bucket Sort

• n nombres
• Chaque nombre ∈ {1, 2, 3, ... m}
• Stable
• Temps: O(n + m)

Par exemple, m = 3 et notre vecteur initial est:

2 1 3 1 2

(notez qu’il y a deux “2” et deux “1”)

Premièrement, nous créons m “seaux” (buckets)

1

2

3m =

8.72Encore du tri

Chaque élément du vecteur est placé dans l’un
des m “seau”

2 1 3 1 2

Tri Bucket Sort

1

2

3

1

1

2

3

1 3 1 2

2

2

3

1

2

3

1 2

2

1

3

1

2

4

5

1

2

3

2

1

3

1

2

Ici, chaque élément se
trouve dans le bon seau:

8.73Encore du tri

Tri Bucket Sort

1

2

3

2

1

3

1

2

Maintenant, transférez les éléments des seaux
vers le vecteur

1 1 2 2 3

1

1

2

3

2

3

1

2

1

2
3 4

5

Enfin, le vecteur trié (trié de façon stable):

8.74Encore du tri

Tri sur place (in-place)
• Un algorithme de tri est dit sur place si

• il n’utilise aucune structure de données
auxiliaire (cependant, O(1) variables
auxiliaires sont permises)

• il met à jour la séquence d’entrée en n’utilisant
seulement que les opérations replaceElement et
swapElements

• Quels algorithmes de tri vus jusqu’à maintenant
peuvent fonctionner sur place?

tri à bulle (bubble sort) Y

tri par sélection

tri par insertion

tri par tas (heap sort)

tri par fusion (merge sort)

tri rapide (quick sort)

tri numérique (radix sort)

tri bucket sort

8.75Encore du tri

Arbre de décision pour tri
basé sur des comparaisons

• nœud interne: comparaison
• nœud externe: permutation
• exécution de l’algorithme: racine vers feuille

s1 ≥ s2

s1 ≥ s3

s1 ≥ sns1 ≥ sn

s1 ≥ s3

s1 ≥ sn s1 ≥ sn

. . .

. . .
sn-1 ≥ sn sn-1 ≥ sn sn-1 ≥ sn sn-1 ≥ sn

oui non

nonnon

non nonnon

non non non non

oui oui

oui oui oui oui
non

oui oui oui oui

. . .

8.76Encore du tri

À quelle vitesse peut-on trier?
• Proposition: Le temps d’exécution de tout

algorithme basé sur des comparaisons et servant à
trier une séquence S de n éléments est Ω(n log n).

• Justification:

• Le temps d’exécution d’un algorithme de tri basé sur
des comparaisons doit être plus grand ou égal à la
profondeur de l’arbre de décision T associé à cet
algorithme.

• Chaque nœud interne de T est associé à une compa-
raison qui établit l’ordre de deux éléments de S.

• Chaque nœud externe de T représente une
permutation distincte des éléments de S.

• Ainsi T doit avoir au moins n! nœuds externes, ce
qui implique que T a une hauteur d’au moins log(n!)

• Puisque n! a au moins n/2 termes qui sont plus grand
ou égal à n/2, nous avons:
 log(n!) ≥ (n/2) log(n/2)

• Complexité temporelle totale: Ω(n log n).

9.1Graphes

GRAPHES

• Définitions

• Le TAD Graphe

• Structures de données pour graphes

LAX

PVD

LAX

DFW

FTL

STL

HNL

9.2Graphes

Qu’est-ce qu’un graphe?
• Un graphe G = (V,E) est composé de:

V: ensemble de sommets (vertices)

E: ensemble d’arcs (edges) reliant les
 sommets de V

• Un arc e = (u,v) est une paire de sommets

• Exemple:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

9.3Graphes

Applications
• circuits électroniques

trouvez le chemin à la moindre résistance menant à
CSI2514

• réseaux (routiers, aériens, de communication)

CSI2514

départ

LAX

PVD

LAX

DFW

FTL

STL

HNL

9.4Graphes

De meilleurs exemples...

• conception d’horaires (planification de projet)

réveil

bouffe

travail

méditation 2514

encore 2514

jeux

cuire bicsuits
pour AE 2514

dodo

rêves sur 2514

programmation

une journée typique...

tic-tac-toe

9.5Graphes

Terminologie des graphes
• sommets adjacents: reliés par un arc

• degré (d’un sommet): # de sommets adjacents

chemin: séquence de sommets v1,v2,. . .vk où les
sommets consécutifs vi et vi+1 sont adjacents.

a b

c

d e

a b

c

d e

a b e d c e b e d c

3

3 3

3

2
Σ deg(v) = 2(# arcs)
v∈V

• Comme des sommets
adjacents comptent
tous deux l’arc les
reliant, celui-ci sera
compté deux fois.

9.6Graphes

Encore de la terminologie...
• chemin simple: sans aucun sommet répété

• cycle: chemin simple, sauf que le dernier sommet
est le même que le tout premier

a b

c

d e

b e c

a c d a

a b

c

d e

9.7Graphes

Et encore de la terminologie...
• graphe connexe: toutes les paires de sommets sont

reliées par un chemin

• sous-graphe: sous-ensemble de sommets et d’arcs
formant un graphe

• composante connexe: sous-graphe connexe
maximal. Par exemple, le graphe ci-dessous a 3
composantes connexes.

connexe non-connexe

9.8Graphes

¡Caramba! Encore de la
terminologie!

• arbre (libre) - graphe connexe sans cycle

• forêt - ensemble d’arbres

arbre

forêt

arbre

arbre

arbre

9.9Graphes

Connectivité
Soit n = #sommets

m = #arcs

- graphe complet - toutes les paires de sommets sont
adjacentes

m= (1/2)Σdeg(v) = (1/2)Σ(n - 1) = n(n-1)/2
 v∈V v∈V

• Chacun des n sommets est attaché à n - 1 arcs,
cependant, nous aurons compté chaque arc deux
fois!!! Ainsi, intuitivement, m = n(n-1)/2.

• Donc, si un graphe n’est pas complet,
m < n(n-1)/2

n = 5
m = (5 ∗ 4)/2 = 10

9.10Graphes

Plus de connectivité
n = #sommets
m = #arcs

• Pour un arbre m = n - 1

• Si m < n - 1, alors le graphe G n’est pas connexe

n = 5
m = 4

n = 5
m = 3

9.11Graphes

Arbre recouvrant
(Spanning Tree)

• Un arbre recouvrant (spanning tree) de G est un
sous-graphe qui:
- est un arbre
- contient tous les sommets de G

• Une faute affectant n’importe quel arc rend le
système non-connexe (l’arbre recouvrant est la
configuration la moins tolérante aux fautes)

G arbre recouvrant de G

9.12Graphes

Bell Canada contre SM&T
(Stan Matwin & Telephone)

• Stan désire appeler ses AE afin de suggérer une
extension pour le prochain devoir...

• Une faute va déconnecter une partie du graphe!

• Un cycle serait plus tolérant aux fautes et n’exige
que n arcs.

TA

TA

TA

TA

TA

Mais un opérateur
coupeaccidentellement
un câble téléphonique!!!

9.13Graphes

Euler et les ponts de
Koenigsberg

• Mettez-vous à la place d’un conducteur de UPS ou
de Fedex qui ne voudrait pas revenir sur son chemin.

• En 1736, Euler a prouvé que ce n’est pas possible.

A

B

C

DRivière Pregal

Peut-on traverser chaque pont
exactement une fois et retourner
au point de départ?

Île de Gilligan?

9.14Graphes

Modèle de graphe
(avec arcs parallèles)

• Tour d’Euler: chemin qui traverse chaque arc une
fois exactement et qui retourne au premier sommet

• Théorème d’Euler: un graphe a un tour d’Euler si et
seulement si tous les sommets ont un degré pair.

• Trouvez-vous intéressantes de telles idées?

• Aimeriez-vous passer une session entière à faire de
telles preuves...? Il existe un tel cours!

C

A

B

D

9.15Graphes

Le TAD Graphe (Graph)
• Le TAD Graphe est un contenant positionnel dont

les positions sont les sommets et les arcs du graphe.

- size() Retourne le nombre de sommets plus le
nombre d’arcs contenus dans G.

- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: Graphe G; Sommets v, w; Arc e; Objet o
- numVertices()

Retourne le nombre de sommets de G.
- numEdges()

Retourne le nombre d’arcs de G.
- vertices() Retourne une énumération des

sommets de G.
- edges() Retourne une énumération des arcs de

G.

9.16Graphes

Le TAD Graphe (suite)
- directedEdges()

Retourne une énumération de tous les
arcs orientés de G.

- undirectedEdges()
Retourne une énumération de tous les
arcs non-orientés de G.

- incidentEdges(v)
Retourne une énumération de tous les
arcs attachés à v.

- inIncidentEdges(v)
Retourne une énumération de tous les
arcs entrant dans v.

- outIncidentEdges(v)
Retourne une énumération de tous les
arcs sortant de v.

- opposite(v, e)
Retourne le sommet de l’arc e qui n’est
pas v.

- degree(v)
Retourne le degré de v.

- inDegree(v)
Retourne le degré d’entrée de v.

- outDegree(v)
Retourne le degré de sortie de v.

9.17Graphes

Encore des méthodes...
- adjacentVertices(v)

Retourne une énumération des
sommets adjacents à v.

- inAdjacentVertices(v)
Retourne une énumération des
sommets adjacents à v qui ont un arc
entrant dans v.

- outAdjacentVertices(v)
Retourne une énumération des
sommets adjacents à v qui ont un arc
sortant de v.

- areAdjacent(v,w)
Indique si les sommets v et w sont
adjacents.

- endVertices(e)
Retourne un vecteur de taille 2 emma-
gasinant les sommets aux bouts de e.

- origin(e)
Retourne le sommet duquel e sort.

- destination(e)
Retourne le sommet auquel e entre.

- isDirected(e)
Retourne vrai ssi e est orienté.

9.18Graphes

Méthodes de mise à jour
- makeUndirected(e)

Déclare e comme arc non-orienté.
- reverseDirection(e)

Inverse les sommets d’origine et de
destination de e.

- setDirectionFrom(e, v)
Ajuste la direction de e de façon à
sortir de v, l’un de ses sommets.

- setDirectionTo(e, v)
Ajuste la direction de e de façon à
entrer dans v, l’un de ses sommets.

- insertEdge(v, w, o)
Insère et retourne un arc non-orienté
entre v et w, tout en emmagasinant o à
cette position.

- insertDirectedEdge(v, w, o)
Insère et retourne un arc orienté entre v
et w, tout en emmagasinant o à cette
position.

- insertVertex(o)
Insère et retourne un nouveau sommet
(isolé) emmagasinant o à cette position

- removeEdge(e)
Retire l’arc e.

9.19Graphes

Structures de données
pour graphes

• Un graphe! Comment le représenter?

• Pour débuter, nous conservons les sommets et les
arcs dans deux contenants, et chaque objet arc a des
références vers les sommets qu’il relie.

• Des structures additionnelles peuvent être utilisées
afin de mieux exécuter les méthodes de Graphe.

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

 2
47

AA 523

N
W

 3
5

U
A

 8
77

D
L

 3
35

AA 49

UA 12
0

JFK

BOS

MIA

ORD

LAX
DFW

SFO

9.20Graphes

Liste d’arcs (Edge List)
• La structure liste d’arcs emmagasine tout

simplement les sommets et les arcs dans des
séquences non-triées.

• Facile à réaliser.

• Trouver l’arc attaché à un sommet donné n’est pas
efficace parce que cela exige le parcours de la
séquence d’arcs toute entière.

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

9.21Graphes

Performance de la structure
Liste d’arcs

Opération Temps

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination,
isDirected

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent, degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirecte-
dEdge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo

O(1)

removeVertex O(m)

9.22Graphes

Liste d’adjacence
(traditionnelle)

• Liste d’adjacence d’un sommet v:
séquence de sommets adjacents à v

• Représentez le graphe par les listes d’adjacence de
tous les sommets

• Espace requis = Θ(N + Σdeg(v)) = Θ(N + M)

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

a

b

c

d

e

9.23Graphes

Liste d’adjacence
(moderne)

• La structure liste d’adjacence améliore la structure de
liste d’arcs en ajoutant des contenants de liaison
(incidence containers) à chaque sommet.

• L’espace requis est O(n + m).

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 411

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 411

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

9.24Graphes

Performance de la structure
Liste d’adjacence

Opération Temps

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdgesO(m)

elements, positions O(n+m)

endVertices, opposite, origin, destina-
tion, isDirected, degree, inDegree,
outDegree

O(1)

incidentEdges(v), inIncidentEdges(v),
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(u),
 deg(v)))

insertVertex, insertEdge, insertDirecte-
dEdge, removeEdge, makeUndirected,
reverseDirection,

O(1)

removeVertex(v) O(deg(v))

9.25Graphes

Matrice d’adjacence
(traditionnelle)

• Matrice M avec entrées pour toutes les paires de
sommets

• M[i,j] = vrai signifie qu’il y a un arc (i,j) dans le
graphe.

• M[i,j] = faux signifie qu’il n’y a aucun arc (i,j) dans
le graphe.

• Il y a une entrée pour chaque arc possible, donc:
espace requis = Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
a
b
c
d
e

9.26Graphes

Matrice d’adjacence
(moderne)

• Les structures à matrice d’adjacence ajoutent à la
structure liste d’arcs une matrice où chaque rangée
et colonne correspond à un sommet.

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 5 6

• L’espace requis est O(n2 + m)

0 1 2 3 4 5 6

0 Ø Ø NW
35

Ø DL
247

Ø Ø

1 Ø Ø Ø AA
49

Ø DL
335

Ø

2 Ø AA
1387

Ø Ø AA
903

Ø TW
45

3 Ø Ø Ø Ø Ø UA
120

Ø

4 Ø AA
523

Ø AA
411

Ø Ø Ø

5 Ø UA
877

Ø Ø Ø Ø Ø

6 Ø Ø Ø Ø Ø Ø Ø

9.27Graphes

Performance de la structure
Matrice d’adjacence

Opération Temps

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination,
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,

O(n)

areAdjacent O(1)

insertEdge, insertDirectedEdge, remo-
veEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

insertVertex, removeVertex O(n2)

9.28Traversées de graphes

TRAVERSÉES DE GRAPHES

• En profondeur (Depth-First Search)

• En largeur (Breadth-First Search)

• Patron de conception: méthode du gabarit (Template
Method Pattern)

M N O P

I J K L

E F G H

A B C D

9.29Traversées de graphes

Explorer un labyrinthe
sans se perdre

• Une recherche en profondeur (depth-first search
ou DFS) dans un graphe non-orienté G, c’est comme
vagabonder dans un labyrinthe avec une corde et une
cannette de peinture rouge, sans se perdre.

• Nous partons d’un sommet s, en attachant un bout de
notre corde à ce point et en peinturant “visité” sur s.
Ensuite, nous étiquetons s comme étant notre
sommet courant appelé u.

• Maintenant, nous allons vers un arc arbitraire (u,v).

• Si l’arc (u,v) nous mène à un sommet v déjà visité,
alors nous retournons à u.

• Si le sommet v n’a pas été visité, alors nous
déroulons notre corde en allant à v, peinturons
“visité” sur v, étiquetons v comme notre sommet
courant, et répétons les étapes précédentes.

• Éventuellement, nous seront au point où tous les
arcs attachés à u mènent à des sommets visités.
Alors, nous revenons sur nos pas en déroulant la
corde vers un sommet déjà visité v. Ainsi v devient
notre sommet courant et nous répétons les étapes
précédentes.

9.30Traversées de graphes

Explorer un labyrinthe
sans se perdre (suite)

• Si tous les arcs attachés à v mènent à des sommets
visités, alors nous revenons sur nos pas comme nous
l’avons fait précédemment. Nous continuons à
revenir sur nos pas en trouvant et en explorant les
arcs inexplorés, et en répétant la procédure.

• Quand nous retournons au sommet s et qu’il n’y a
plus d’arc inexploré attaché à ce point, alors nous
avons terminé notre recherche DFS.

9.31Traversées de graphes

Recherche en profondeur DFS

Algorithme DFS(v);
Entrée: un sommet v dans un graphe
Sortie: un étiquetage des arcs comme étant

découverts (discovery edges) ou arrières
(backedges)

for chaque arc e attaché à v do
if l’arc e est inexploré then

soit w l’autre extrémité de e
if le sommet w est inexploré then

étiqueter e comme arc de découverte
appeler récursivement DFS(w)

else

étiqueter e comme arc arrière

B C

D E

F

G

sommet non-visité

A

arc traversé

F

sommet courant

sommet

sommet visité

adjacent

9.32Traversées de graphes

Déterminer les arcs attachés
• DFS dépend de la façon dont ces arcs sont obtenus.

• Si nous commençons à A et examinons l’arc vers F,
ensuite vers B, E, C, et enfin G:

Le graphe résultant est:
arc de découverte
arc arrière
retour d’une
impasse

Si maintenant nous examinons l’arbre en
commençant par A et ensuite G, C, E, B, et enfin F.

l’ensemble final d’arcs arrières et de découverte, de
même que les points de retour, sont différents.

• Passons maintenant à un exemple de DFS.

A F B E C G

A G C E B F

A

F

ED

B
C

G

9.33Traversées de graphes

B C

D E

G

A

F

A

C

B

D

F

G

Étape 1:

B C

D E

G

A

F

A

Étape 2:

F B E C G

A

A

F E

E D A

A E

F B E C G

B A

C A

D F E

F E D A

G A E

E G D FA

E G D FA

9.34Traversées de graphes

B C

D

G

A

F

A

Étape 3:

F B E C G

B A

C A

D F E

E G D F

F E D A

G A E

E

B C

D

A

F

A

Étape 4:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

A

E G D FA

Arc arrière

9.35Traversées de graphes

B C

D

A

F

A

Étape 5:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

D

A

F

A

Étape 6:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

9.36Traversées de graphes

B C

D

A

F

A

Étape 7:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

A

F

A

Étape 8:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

9.37Traversées de graphes

B C

A

F

A

Étape 10:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Étape 9:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

9.38Traversées de graphes

B C

A

F

A

Étape 11:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Étape 12:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

9.39Traversées de graphes

B
C

A

F

A

Étape 13:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

C

A

F

A

Étape 14:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

9.40Traversées de graphes

C

A

F

A

Étape 15:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

C

A

F

A

Étape 16:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

9.41Traversées de graphes

A

F

A

Étape 17:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

A

F

A

Étape 18:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

9.42Traversées de graphes

A

F

A

Étape 19:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

Et c’est tout!

9.43Traversées de graphes

Propriétés de DFS
• Proposition 9.12 : Soit G un graphe non-orienté sur

lequel une traversée DFS commençant au sommet s
a été faite. Alors:

1) La traversée visite tous les sommets dans la
 composante connexe de s

2) Les arcs de découverte forment un arbre
 recouvrant de la composante connexe de s

• Justification de 1):
- Essayons une contradiction: supposons qu’il y ait

au moins un sommet v non-visité et soit w le
premier sommet non-visité sur un chemin de s à v.

- Comme w est le premier sommet non-visité sur le
chemin, il y a un voisin u qui a été visité.

- Mais quand nous avons visité u nous devons avoir
observé l’arc (u, w). Donc w doit avoir été visité.

• Justification de 2):
- Nous étiquetons seulement les arcs à partir du

moment où nous allons vers des sommets non-
visités. Ainsi, nous ne formons jamais de cycle
d’arcs de découverte; ces arcs forment un arbre.

- C’est un arbre recouvrant car DFS visite chaque
sommet dans la composante connexe de s.

9.44Traversées de graphes

Analyse du temps d’exécution
• Souvenez-vous:

- DFS sur chaque sommet une fois exactement.
- Chaque arc est examiné exactement deux fois, une

fois pour chacun de ses sommets.

• Pour ns sommets et ms arcs dans la composante
connexe du sommet s, une DFS commençant à s
s’exécute en un temps O(ns +ms) si:
- Le graphe est représenté dans une structure de

données, comme une liste d’adjacence, où les
méthodes pour les sommets et les arcs s’exécutent
en un temps constant;

- Étiqueter un sommet comme étant exploré et tester
si un sommet a été exploré prend O(degré);

- En étiquetant les nœuds visités, nous pouvons
systématiquement considérer les arcs attachés au
sommet courant, de façon à ne pas examiner le
même arc plus d’une fois.

9.45Traversées de graphes

Étiquetage des sommets
• Étudions les façons d’étiqueter les sommets de façon

à satisfaire les conditions mentionnées à la page
précédente.

• Extension des positions de sommet pour inclure une
variable servant à l’étiquetage.

• Utilisation d’un mécanisme de table de hachage qui
satisfait ces conditions dans un sens probabiliste,
parce qu’un tel mécanisme supporte les opérations
d’étiquetage et de test en un temps attendu O(1).

Avant
Position

Element

Après
Position

Element isMarked

9.46Traversées de graphes

Patron de conception: méthode du
gabarit (Template Method Pattern)
• le patron de conception méthode du gabarit offre un

mécanisme de calcul générique qui peut être
spécialisé en redéfinissant certaines étapes

• pour l’appliquer, nous concevons une classe qui:
- réalise le squelette d’un algorithme
- invoque des méthodes auxiliaires qui peuvent être

redéfinies par ses sous-classes afin de faire des
calculs utiles

• Bénéfices
- fait que la rectitude des calculs spécialisés dépend

de celle de l’algorithme squelette
- démontre la puissance de l’héritage
- promeut la réutilisation de code
- encourage le développement de code générique

• Exemples
- traversée générique d’un arbre binaire (qui inclut

pré-ordre, in-ordre, et post-ordre) et ses
applications

- recherche en profondeur générique d’un graphe
non-orienté et ses applications

9.47Traversées de graphes

Recherche en profondeur générique
public abstract class DFS {

 protected Object dfsVisit(Vertex v) {

 protected InspectableGraph graph;

 protected Object visitResult;

 initResult();

 startVisit(v);

 mark(v);

 for (Enumeration inEdges = graph.incidentEdges(v);

 inEdges.hasMoreElements();) {

 Edge nextEdge = (Edge) inEdges.nextElement();

 if (!isMarked(nextEdge)) { // found an unexplored edge

 mark(nextEdge);

 Vertex w = graph.opposite(v, nextEdge);

 if (!isMarked(w)) { // discovery edge

 mark(nextEdge);

 traverseDiscovery(nextEdge, v);

 if (!isDone())

 visitResult = dfsVisit(w); }

 else // back edge

 traverseBack(nextEdge, v);

 }

 }

 finishVisit(v);

 return result();

 }

9.48Traversées de graphes

Méthodes auxiliaires de
recherche DFS générique

public Object execute(InspectableGraph g, Vertex start,
 Object info) {

 graph = g;

 return null;

}

protected void initResult() {}

protected void startVisit(Vertex v) {}

 protected void traverseDiscovery(Edge e, Vertex from) {}

protected void traverseBack(Edge e, Vertex from) {}

protected boolean isDone() { return false; }

protected void finishVisit(Vertex v) {}

protected Object result() { return new Object(); }

9.49Traversées de graphes

Observons maintenant 4 façons
de spécialiser DFS générique!

• la classe FindPath spécialise DFS afin de retourner
un chemin du sommet start vers le sommet target.
public class FindPathDFS extends DFS {

 protected Sequence path;

 protected boolean done;

 protected Vertex target;

 public Object execute(InspectableGraph g, Vertex start,
 Object info) {

 super.execute(g, start, info);

 path = new NodeSequence();

 done = false;

 target = (Vertex) info;

 dfsVisit(start);
 return path.elements();

 }

 protected void startVisit(Vertex v) {

 path.insertFirst(v);

 if (v == target) { done = true; }

 }

 protected void finishVisit(Vertex v) {

 if (!done) path.remove(path.first());

 }

 protected boolean isDone() { return done; }

9.50Traversées de graphes

Autre spécialisation de DFS
générique...

• FindAllVertices spécialise DFS afin de retourner
une énumération des sommets dans la composante
connexe contenant le sommet start.

public class FindAllVerticesDFS extends DFS {

protected Sequence vertices;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

vertices = new NodeSequence();

dfsVisit(start);

return vertices.elements();

}

public void startVisit(Vertex v) {

vertices.insertLast(v);

}

}

9.51Traversées de graphes

Plus de spécialisations de DFS
générique...

• ConnectivityTest utilise une spécialisation de DFS
pour déterminer si un graphe est connecté.

public class ConnectivityTest {
protected static DFS tester=new FindAllVerticesDFS();
public static boolean isConnected(InspectableGraph g)
{

if (g.numVertices() == 0) return true; //empty is
//connected

Vertex start = (Vertex)g.vertices().nextElement();
Enumeration compVerts =

(Enumeration)tester.execute(g, start, null);
// count how many elements are in the enumeration
int count = 0;
while (compVerts.hasMoreElements()) {

compVerts.nextElement();
count++;

}
if (count == g.numVertices()) return true;
return false;

}
}

9.52Traversées de graphes

Et une autre spécialisation de
DFS générique!

• FindCycle spécialise DFS afin de déterminer si la
composante connexe du sommet start contient un
cycle, et alors le retourne.

public class FindCycleDFS extends DFS {

protected Sequence path;

protected boolean done;

protected Vertex cycleStart;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

path = new NodeSequence();

done = false;

dfsVisit(start);

//copy the vertices up to cycleStart from the path to
//the cycle sequence.

Sequence theCycle = new NodeSequence();

Enumeration pathVerts = path.elements();

9.53Traversées de graphes

while (pathVerts.hasMoreElements()) {

Vertex v = (Vertex)pathVerts.nextElement();

theCycle.insertFirst(v);

if (v == cycleStart) {

break;

}

}

return theCycle.elements();

}

protected void startVisit(Vertex v) {path.insertFirst(v);}

protected void finishVisit(Vertex v) {

if (done) {path.remove(path.first());}

}

//When a back edge is found, the graph has a cycle

protected void traverseBack(Edge e, Vertex from) {

Enumeration pathVerts = path.elements();

cycleStart = graph.opposite(from, e);

done = true;

}

protected boolean isDone() {return done;}

}

9.54Traversées de graphes

Recherche en largeur BFS
(Breadth-First Search)

• Comme DFS, une recherche en largeur (BFS)
traverse une composante connexe d’un graphe, et ce
faisant définit un arbre recouvrant qui a quelques
propriétés utiles
- Le sommet de départ s a un niveau 0; comme dans

DFS, définissons ce point comme point d’ancrage.
- Au premier tour, la corde est déroulée de la

longueur d’un arc, et tous les arcs à une distance
d’un arc du point d’ancrage sont visités.

- Ces arcs sont placés dans le niveau 1.
- Au second tour, tous les nouveaux arcs qui

peuvent être atteints en déroulant la corde d’une
longueur de 2 arcs sont visités et placés dans le
niveau 2.

- Ceci se poursuit jusqu’à ce que tous les sommets
aient été placés dans un niveau.

- L’étiquette de tout sommet v correspond à la
longueur du plus court chemin de s à v.

9.55Traversées de graphes

BFS - Une Représentation
graphique

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

9.56Traversées de graphes

Encore BFS
e) f)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

9.57Traversées de graphes

Pseudo-code BFS

Algorithme BFS(s):
Entrée: Un sommet s dans un graphe
Sortie: Un étiquetage des arcs comme étant

découverts (discovery edges) ou traversés
(cross edges)

initialiser le contenant L0 avec le sommet s
i ← 0
while Li n’est pas vide do

créer le contenant Li+1 initialement vide
for chaque sommet v dans Li do

if l’arc e est attaché à v do
soit w l’autre extrémité de e
if le sommet w est inexploré then

étiqueter e comme arc de découverte
insérer w dans Li+1

else
étiqueter e comme arc traversé

i ← i + 1

9.58Traversées de graphes

Propriétés de BFS
• Proposition: Soit G un graphe non-orienté sur lequel

une traversée BFS débutant au sommet s a été faite.
Alors:
- La traversée visite tous les sommets dans la

composante connexe de s.
- Les arcs de découverte forment un arbre

recouvrant T, que nous appelons arbre BFS, de
composante connexe de s.

- Pour chaque sommet v au niveau i, le chemin de
l’arbre BFS T entre s et v a i arcs, et tout autre
chemin de G entre s et v a au moins i arcs.

- Si (u, v) est un arc qui n’est pas dans l’arbre BFS,
alors les niveaux de u et v diffèrent de 1 au plus.

• Proposition: Soit G un graphe avec n sommets et m
arcs. Une traversée BFS de G a un temps O(n + m).
Aussi, il existe des algorithmes au temps O(n + m)
basés sur BFS pour les problèmes suivants:
- Tester si G est connexe
- Calculer l’arbre recouvrant de G
- Calculer les composantes connexes de G
- Calculer, pour chaque sommet v de G, le nombre

minimum d’arcs de tout chemin entre s et v.

9.59

DIGRAPHES
• Accessibilité (reachability)

• Connectivité

• Fermeture transitive (closure)

• Algorithme de Floyd-Warshall

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

9.60Digraphes

DIGRAPHES

réveil

bouffe

travail

méditation 2514

encore 2514

jeux

cuire bicsuits
pour AE 2514

dodo

rêves sur 2514

programmation

une journée typique...

tic-tac-toe

1

2 3

4 5

7

9

10

11

6

8

9.61Digraphes

Qu’est-ce qu’un digraphe?

Un graphe orienté (de l’anglais directed graph)!

Chaque arc va dans une direction

L’arc (a,b) va de a à b, mais pas de b à a

Vous dites sûrement: “Ouin, et si nous avions un
exemple qui démontrerait combien nous pour-
rions être éclairés par l’utilisation de digraphes?!!
− Et bien, si vous insistez. . .

a

b

9.62Digraphes

Applications
Cartes: les digraphes peuvent représenter les

rues à sens unique
(utiles dans les grands centres-villes)

Thayer

W
a

te
rm

a
n

Brook

A
n

ge
llSciLi

Thomas J. Watson Jr.
Center for
Information
Technology

L’auteur!

143

Store
24

Bookstore
D’Angelo’s!

Tunnel O’ Doom

9.63Digraphes

Une autre application

Planification d’horaires: l’arc (a,b) indique
que la tâche a doit être complétée avant que b
ne démarre.

cs16
cs15

cs31

cs126

 cs32

cs127

cs167

cs141

cs22

Les vieux programmeurs ne meurent pas—
ils ne font que tomber dans les trous noirs

9.64Digraphes

GOA: Graphe Orienté Acyclique

(de l’anglais directed acyclic graph — DAG)

Les GOA!

Pardon?!!

C’est un graphe orienté sans cycles orientés

a b

c

d e

a b

c

d e

GOA pas un GOA

9.65Digraphes

Recherche en profondeur

Même algorithme que pour les graphes non-
orientés

Sur un digraphe connexe, nous pouvons obte-
nir des arbres DFS non-connexes (c’est-à-dire,
une forêt DFS)

a b

c

d e

f

a

b

c

d

e

f

9.66Digraphes

Accessibilité (reachability)

Arbre DFS avec racine v: sommets accessibles
à partir de v via les chemins orientés

a b

c

d e

f

c

a

b d

e

b f

d

c

a

9.67Digraphes

Digraphes fortement connexes

Chaque sommet peut atteindre tous les
autres sommets

a

b

d

c

e

f

g

9.68Digraphes

Composantes fortement
connexes

a

b

d

c

e

f

g

{ a , c , g }

{ f , d , e , b }

9.69Digraphes

Fermeture transitive

Le digraphe G* est obtenu de G en utilisant la
règle:

Si il existe un chemin orienté dans G de a à b,
alors ajouter l’arc (a,b) à G*

G G*

9.70Digraphes

Calculer la fermeture
transitive

Nous pouvons utiliser DFS sur chaque sommet
Temps: O(n(n+m))

Ou encore... utiliser l’algorithme de Floyd-
Warshall:

Si nous pou-
vons aller de a
à b, et de b à c,
alors nous
pouvons aller
de a à c

“Pink” Floyd

9.71Digraphes

Exemple

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

9.72Digraphes

Algorithme de Floyd-Warshall
• Cet algorithme présuppose que les méthodes

areAdjacent et insertDirectedEdge prennent un temps
O(1) (par exemple, structure en matrice d’adjacence)

Algorithme FloydWarshall(G)
soit v1 ... vn un ordre arbitraire des sommets
G0 = G
for k = 1 to n do

// considérez tous les sommets de routage
// possibles vk
Gk = Gk-1 // ce sont les seuls à conserver
for each (i, j = 1, ..., n) (i != j) (i, j != k) do

// pour chaque paire de sommets vi et vj
if Gk-1.areAdjacent(vi,vk) and

Gk-1.areAdjacent(vk,vj) then
Gk.insertDirectedEdge(vi,vj,null)

return Gn

• Le digraphe Gk est le sous-digraphe de la fermeture
transitive de G induit par les chemins avec sommets
intermédiaires dans l’ensemble { v1, ..., vk }

• Temps d’exécution: O(n3)

9.73Digraphes

Exemple
• digraphe G

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

9.74Digraphes

Exemple
• digraphe G*

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

9.75Digraphes

Tri topologique

Pour chaque arc (u,v), le sommet u est visité
avant le sommet v

réveil

bouffe

travail

méditation 2514

encore 2514

jeux

cuire bicsuits
pour AE 2514

dodo

rêves sur 2514

programmation

une journée typique...

tic-tac-toe

1

2 3

4 5

7

9

10

11

6

8

9.76Digraphes

Tri topologique

Le résultat du tri topologique
peut ne pas être unique

A

B C

D

A B C D

A C B D
ou

− À vous de décider

9.77Digraphes

A

B C

D E

Tri topologique

Les étiquettes augmentent le long d’un che-
min orienté.

Un digraphe a un tri topologique si et seule-
ment si il est acyclique (donc, un GOA)

1

2 3

4 5

9.78Digraphes

A

B C

D E

Algorithme pour tri
topologique

method TopologicalSort
if il y a encore des sommets

soit v une source;
// un sommet sans arcs d’entrée

étiqueter et supprimer v;
 TopologicalSort;

9.79Digraphes

Algorithme (suite)
Simuler la suppression de sources en utilisant
des compteurs de degré d’entrée

1. Calculer indeg(v) pour tous les sommets
2. Foreach sommet v do

if v non étiqueté et indeg(v) = 0
then TopSort(v)

TopSort(Vertex v);
étiqueter v;
foreach arc(v,w)

indeg(w) = indeg(w) − 1;
if indeg(w) = 0

TopSort(w);

9.80Digraphes

Exemple

A

C

E

H

G

D

F

I

B
? 0 ? 0

? 1

? 3

? 1

? 2

? 2

? 1

? 3

9.81Connectivité et biconnectivité

Connectivité et
Biconnectivité

• composantes connexes

• sommets de séparation (cutvertices)

• composantes biconnexes

9.82Connectivité et biconnectivité

Composantes connexes

Graphe connexe: chaque paire
de sommets reliée par un chemin.

connexe non-connexe

Composante connexe:
sous-graphe connexe maximal
d’un graphe

9.83Connectivité et biconnectivité

Relations d’équivalence

Une relation sur un ensemble S est un ensemble
ordonné R composé de paires d’éléments de S et
défini par une propriété quelconque.

Exemple:
• S = {1,2,3,4}

• R= {(i,j) ∈ S × S tel que i < j}
= {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}

Une relation d’équivalence satisfait les
propriétés suivantes:

• (x,x) ∈ R, ∀ x ∈ S (réflexive)

• (x,y) ∈ R ⇒ (y,x) ∈ R (symétrique)

• (x,y), (y,z) ∈ R ⇒ (x,z) ∈ R (transitive)

La relation C sur l’ensemble des sommets d’un
graphe:

• (u,v) ∈ C ⇔ u et v sont dans la même
 composante connexe

est une relation d’équivalence.

9.84Connectivité et biconnectivité

DFS sur un graphe non-connexe
• DFS(v) visite tous les sommets et les arcs

dans la composante connexe de v.

• Pour déterminer les composantes connexes:

k = 0 // compteur composante
foreach (vertex v)

if unvisited(v)
// ajouter à la composante k
// les sommets atteints par v
DFS(v, k++)

a
b

d g

3

65

c

fe

a
b

d g

3

f5

c

e

9.85Connectivité et biconnectivité

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

Sommets de séparation
(Cutvertices)

Sommet de séparation (cutvertex):
son retrait rend le graphe non-connexe

Si l’aéroport de Chicago est fermé, alors il n’y
a aucun moyen d’aller dans les villes de la côte
ouest à partir de Providence (PVD). Même cho-
se pour l’aéroport de Denver.

• Sommets de séparation: ORD. DEN

9.86Connectivité et biconnectivité

Biconnectivité
Graphe biconnexe: n’a pas de sommet
de séparation.

Nouveaux vols:
LGA-ATL et DFW-LAX
rendent le graphe biconnexe.

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

9.87Connectivité et biconnectivité

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

MSN

DEN

Propriétés des graphes
biconnexes

• Il y a deux chemins disjoint entre
n’importe quelle paire de sommets.

• Il y a un cycle au travers de n’importe quelle
paire de sommets.

Par convention, deux nœuds reliés par un arc for-
ment un graphe biconnexe, mais ceci ne satisfait
pas les propriétés mentionnées ci-haut.

ORD

9.88Connectivité et biconnectivité

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

ORD

MSN

DEN

Composantes biconnexes
• Composante biconnexe (bloc):

sous-graphe biconnexe maximal

• Les composantes biconnexes d’un graphe
ne partagent pas d’arc, mais elles partagent
des sommets de séparation.

9.89Connectivité et biconnectivité

Caractérisation des
composantes biconnexes

• Relation d’équivalence R sur les arcs de G:
(e', e") ∈ R si il y a un cycle contenant à la fois
e' et e"

• Preuve de la propriété transitive

• Nous divisons les arcs de G en classes d’équi-
valence par rapport à R.

• Chaque classe d’équivalence correspond à:

• une composante biconnexe de G
• une composante connexe d’un graphe H

dont les sommets sont les arcs de G et
dont les arcs sont les paires dans la
relation R.

e1 e2 e3

9.90Connectivité et biconnectivité

DFS et composantes biconnexes
• Le graphe H a O(m2) arcs dans le pire des cas.

• Au lieu de calculer le graphe H tout entier, nous
utilisons un graphe mandataire (proxy) K, qui
est plus petit.

• Débutons avec un graphe K vide dont les
sommets sont les arcs de G.

• Étant donné une DFS sur G, considérez les
(m − n + 1) cycles de G induits par les arcs.

• Pour chacun de ces cycles C = (e0, e1, ... , ep)
ajoutez les arcs (e0, e1) ... (e0, ep) à K.

• Les composantes connexes de K sont les mê-
mes que celles de H!

c

b d

a
f

e

i

h

g

g

h

i
f

ea

b

c d

9.91Connectivité et biconnectivité

Un algorithme à temps linéaire
• La taille de K est O(mn) dans le pire des cas.

• Nous pouvons encore réduire la taille du gra-
phe mandataire à O(m)

• Traitez les arcs selon une visite pré-ordre de
leur sommet de destination dans l’arbre DFS

• Annotez les arcs de découverte formant les
cycles

• Arrêter d’ajouter des arcs au graphe
mandataire après avoir rencontré le premier arc
annoté

• Le graphe mandataire résultant est une forêt!

• Cet algorithme requiert un temps O(n+m).

9.92Connectivité et biconnectivité

Exemple
• Arcs arrières étiquetés selon la visite pré-ordre

de leur sommet de destination dans l’arbre DFS

• Traitement de e1

• Traitement de e2

c

b

d

a

f

e1

g

h

e2 e3

e4

e6

e5

a b g h

e1

a b g h

e1

c

e2

9.93Connectivité et biconnectivité

Exemple (suite)
• arbre DFS

• graphe manda-
taire final (un ar-
bre puisque le
graphe est bi-
connexe)

c

b

d

a

f

e1

g

h

e2 e3

e4

e6

e5

a b g h

e1

c

e2 e3

f

e4

d

e5

e6

9.94Connectivité et biconnectivité

Pourquoi pré-ordre?
• L’ordre dans lequel les arcs arrières sont traités

est essentiel pour la rectitude de l’algorithme

• L’utilisation d’un ordre différent...

• ... mène à un graphe
qui contient des
informations
incorrectes.

c

b

d

a

g

e1

e2

e3

g d b a

e2

e3

e1

9.95Connectivité et biconnectivité

Essayez l’algorithme sur ce
graphe!

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

MSN

DEN

LAXSAN

SJU STT

ORD

10-1Chaînes de caractères et appariement

CHAÎNES DE CARACTÈRES
ET APPARIEMENT

(STRINGS & PATTERN MATCHING)

• Pattern matching, aussi appelé appariement, filtrage,
ou correspondance de motifs ou de patrons.

• Force brute, Rabin-Karp, Knuth-Morris-Pratt

• Expressions régulières

10-2Chaînes de caractères et appariement

Recherche dans les chaînes de
caractères

• L’objectif de la recherche dans les chaînes de
caractères (string searching) est de localiser un
patron textuel (text pattern) spécifique au sein d’un
texte plus long (phrase, paragraphe, livre, etc).

• Comme pour la plupart des algorithmes, les
préoccupations principales pour la recherche dans
les chaînes sont la vitesse et l’efficacité.

• Il existe plusieurs algorithmes pour la recherche
dans les chaînes, mais les trois que nous étudierons
sont force brute, Rabin-Karp, et Knuth-Morris-Pratt.

10-3Chaînes de caractères et appariement

Force brute
• L’algorithme force brute compare le patron au texte,

un caractère à la fois, jusqu’à ce que des caractères
qui ne correspondent pas l’un à l’autre soient
trouvés:

- Les caractères comparés sont en italique
- Les caractères qui correspondent sont en gras

• On peut demander à l’algorithme d’arrêter à la
première occurrence du patron, ou à la fin du texte.

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
 ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
 ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
 ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
 ROADS

10-4Chaînes de caractères et appariement

Pseudo-code pour force brute
• Voici le pseudo-code

repeat
if (lettre du texte == lettre du patron)

compare prochaine lettre du texte à la prochaine
lettre du patron

else
déplacer le patron à la prochaine lettre

until (patron trouvé ou fin du texte)

cool cat Rolo went over the fence
cat
cool cat Rolo went over the fence
 cat
co ol cat Rolo went over the fence
 cat
coo l cat Rolo went over the fence
 cat
cool _cat Rolo went over the fence
 cat
cool cat Rolo went over the fence
 cat

10-5Chaînes de caractères et appariement

Force brute — Complexité
• Soit un patron d’une longueur de M caractères et un

texte d’une longueur de N caractères...

• Pire des cas: compare le patron à chaque sous-
chaîne de caractères de longueur M. Par exemple,
M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparaisons

....
N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH

 5 comparaisons AAAAH

• Nombre total de comparaisons: M (N-M+1)

• Complexité du pire des cas: O(MN)

10-6Chaînes de caractères et appariement

Force brute — Complexité (suite)
• Soit un patron d’une longueur de M caractères et un

texte d’une longueur de N caractères...

• Meilleur des cas si le patron est trouvé: Trouve le
patron au début du texte. Par exemple, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparaisons

• Nombre total de comparaisons: M

• Complexité du meilleur des cas: O(M)

10-7Chaînes de caractères et appariement

Force brute — Complexité (suite)
• Soit un patron d’une longueur de M caractères et un

texte d’une longueur de N caractères...

• Meilleur des cas si le patron n’est pas trouvé: Le
premier caractère ne correspond jamais. Si M=5:

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparaison

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparaison OOOOH

• Nombre total de comparaisons: N

• Complexité du meilleur des cas: O(N)

10-8Chaînes de caractères et appariement

Rabin-Karp
• L’algorithme de recherche dans les chaînes de

caractères de Rabin-Karp calcule une valeur de
hachage pour le patron et pour chaque sous-
séquence de M caractères du texte à être comparé.

• Si les valeurs de hachage sont différentes,
l’algorithme calculera la valeur de hachage de la
prochaine sous-séquence de M caractères.

• Si les valeurs de hachage sont égales, l’algorithme
fera une comparaison selon l’approche par force
brute entre le patron et la séquence de M caractères.

• De cette façon, il n’y a seulement qu’une
comparaison par sous-séquence, et l’approche par
force brute n’est nécessaire que quand les valeurs de
hachage correspondent.

• Un exemple clarifiera probablement certains
points...

10-9Chaînes de caractères et appariement

Exemple avec Rabin-Karp
La valeur de hachage de “AAAAA” est 37

La valeur de hachage de “AAAAH” est 100

1) AAAAA AAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37≠100 1 comparaison

2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparaison
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH

AAAAH
37≠100 1 comparaison

4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparaison

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
 AAAAH
5 comparaisons 100=100

10-10Chaînes de caractères et appariement

Algorithme de Rabin-Karp
le patron a une longueur de M caractères

hash_p= valeur de hachage du patron
hash_t = valeur de hachage des M premiers

caractères du corps du texte

repeat
if (hash_p == hash_t)

comparaison par force brute entre le patron et la
section de texte sélectionnée

hash_t = valeur de hachage de la prochaine section
 de texte, un caractère plus loin

until (fin du texte or
comparaison par force brute == true)

10-11Chaînes de caractères et appariement

Rabin-Karp
• Questions fréquentes à propos de Rabin-Karp:

“Quelle est la fonction de hachage utilisée
pour calculer les valeurs associées aux
séquences de caractères?”

“L’application de cette fonction à chaque
séquence de M caractères tirée du corps du
texte ne prend-t-elle pas trop de temps?”

“Cette matière sera-t-elle à l’examen final?”

• Afin de répondre à quelques-unes de ces questions,
nous devrons faire un peu de mathématiques.

10-12Chaînes de caractères et appariement

Mathématiques de Rabin-Karp
• Considérez une séquence de M caractères comme un

nombre de M chiffres en base b, où b est le nombre
de lettres dans l’alphabet. La sous-séquence de texte
t[i .. i+M-1] est convertie au nombre suivant:

x(i) = t[i] ⋅bM-1 + t[i+1] ⋅bM-2 +...+ t[i+M-1]

• De plus, étant donné x(i), nous pouvons calculer
x(i+1) pour la sous-séquence suivante t[i+1 .. i+M]
en un temps constant:

x(i+1) = t[i+1] ⋅bM-1 + t[i+2] ⋅bM-2 +...+ t[i+M]

x(i+1) = x(i)⋅b Déplacer à gauche de 1 chiffre...

- t[i] ⋅b M Moins le chiffre le plus à gauche

+ t[i+M] Plus le nouveau chiffre le plus à
droite

• De cette façon, nous n’avons jamais à calculer
explicitement une nouvelle valeur. Nous ajustons
tout simplement la valeur existante lorsque nous
passons au caractère suivant.

10-13Chaînes de caractères et appariement

Exemple mathématique avec
Rabin-Karp

• Supposons que nous ayons un alphabet à 10 lettres.

• Alphabet = a, b, c, d, e, f, g, h, i, j

• Supposons que “a” corresponde à 1, que “b”
corresponde à 2 et ainsi de suite.

La valeur de hachage pour la chaîne “cah” serait:

3*100 + 1*10 + 8*1 = 318

10-14Chaînes de caractères et appariement

Modulo pour Rabin-Karp
• Si M est grand, alors la valeur résultante (~bM) sera

énorme. Pour cette raison, nous hachons cette valeur
en la prenant modulo un nombre premier q.

• La fonction mod (% en Java) est particulièrement
utile dans ce cas grâce à quelques-unes de ses
propriétés inhérentes:
- [(x mod q) + (y mod q)] mod q = (x+y) mod q
- (x mod q) mod q = x mod q

• Pour ces raisons:

h(i) = ((t[i] ⋅ bM-1 mod q) +
(t[i+1] ⋅ bM-2 mod q) + ... +
(t[i+M-1] mod q)) mod q

 h(i+1) =(h(i)⋅ b mod q
Déplacer à gauche de 1 chiffre...

-t[i] ⋅ bM mod q
Moins le chiffre le plus à gauche

+t[i+M] mod q)
Plus le nouveau chiffre le plus à
droite

mod q

10-15Chaînes de caractères et appariement

Rabin-Karp — Complexité
• Si un nombre premier suffisamment grand est utilisé

pour la fonction de hachage, les valeurs de hachage
de deux patrons différents seront habituellement
distinctes.

• Si c’est le cas, la recherche prend un temps O(N), où
N est le nombre de caractères dans le corps de texte
le plus grand.

• Il est toujours possible de concevoir un scénario à la
complexité du pire des cas O(MN). Cependant, cette
situation ne sera portée à survenir que si le nombre
premier utilisé pour le hachage est petit.

10-16Chaînes de caractères et appariement

L’algorithme
Knuth-Morris-Pratt

• L’algorithme de recherche de Knuth-Morris-Pratt
(KMP) diffère de l’approche par force brute en ce
qu’il conserve l’information obtenue lors des
comparaisons précédentes.

• Une fonction d’échec (failure function) (f) est
calculée, et elle indique quelle partie de la compa-
raison précédente peut être réutilisée en cas d’échec.

• En fait, f est définie comme le plus long préfixe du
patron P[0,..,j] qui est aussi un suffixe de P[1,..,j]
- Note: pas un suffixe de P[0,..,j]

• Exemple — valeurs de la fonction d’échec KMP:

• Ceci indique quelle partie du début de la chaîne
correspond jusqu’à la portion située juste avant une
comparaison infructueuse.
- Si la comparaison échoue à (4), nous savons que a

et b aux positions 2 et 3 sont identiques aux
positions 0 et 1.

j 0 1 2 3 4 5

P[j] a b a b a c

f(j) 0 0 1 2 3 0

10-17Chaînes de caractères et appariement

L’algorithme KMP (suite)
• Pseudo-Code de l’algorithme d’appariement

Algorithme KMPMatch(T,P)
Entrée: Chaînes T (texte) à n caractères et P

(patron) à m caractères.
Sortie: Index de départ de la première sous-chaîne de

T qui correspond à P, ou une indication que P n’est
pas une sous-chaîne de T.

f ← KMPFailureFunction(P) {construit la f. d’échec}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

return i - m - 1 {correspondent}
i ← i + 1
j ← j + 1

else if j > 0 then {nous avons avancé...}
j ← f(j-1) {considère le préfixe apparié dans P}

else
i ← i + 1

return “Pas de sous-chaîne P dans T”

10-18Chaînes de caractères et appariement

L’algorithme KMP (suite)
• Pseudo-Code de la fonction d’échec KMP

Algorithme KMPFailureFunction(P);
Entrée: Chaînes P (patron) à m caractères.
Sortie: La fonction d’échec f pour P, qui ajuste j selon

la longueur du plus long préfixe de P qui est aussi
suffixe de P[1,..,j].

i ← 1
j ← 0
while i ≤ m-1 do

if P[j] = P[i] then
{nous avons apparié j + 1 caractères}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{ j considère le préfixe apparié dans P}
j ← f(j-1)

else
{il n’y a pas de correspondance}
f(i) ← 0
i ← i + 1

10-19Chaînes de caractères et appariement

L’algorithme KMP (suite)
• Une représentation graphique de l’algorithme de

recherche dans les chaînes KMP

baaa b c

aaaaaaaa bbbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

aucune
comparaison
nécessaire ici

10-20Chaînes de caractères et appariement

L’algorithme KMP (suite)
• Analyse de la complexité temporelle

• définissons k = i - j

• À chaque itération de la boucle while, l’une des trois
choses suivantes surviendra:.
- 1) si T[i] = P[j], alors i est incrémenté de 1, tout

comme j. k reste inchangé.
- 2) si T[i] != P[j] et j > 0, alors i reste inchangé et k

est incrémenté d’au moins 1, puisque k
change de i - j à i - f(j-1)

- 3) si T[i] != P[j] et j = 0, alors i est incrémenté de 1
et k est incrémenté de 1 puisque j reste
inchangé.

• Ainsi, à chaque itération, i ou k est incrémenté d’au
moins 1, alors le nombre maximal d’itérations est 2n

• Ceci présuppose bien sûr que f ait été calculé
auparavant.

• Cependant, f est calculé sensiblement de la même
façon que KMPMatch, alors sa complexité est
semblable. KMPFailureFunction prend O(m)

• Complexité temporelle totale: O(n + m)

10-21Chaînes de caractères et appariement

Expressions régulières
• Notation pour décrire un ensemble de chaînes de

caractères, possiblement de taille infinie.

• ε dénote la chaîne vide

• ab + c dénote l’ensemble {ab, c}

• a* dénote l’ensemble {ε, a, aa, aaa, ...}

• Exemples
- (a+b)* toutes les chaînes avec l’alphabet {a,b}
- b*(ab*a)*b* chaînes avec un nombre pair de “a”
- (a+b)*sun(a+b)* chaînes contenant le motif “sun”
- (a+b)(a+b)(a+b)a chaîne de quatre lettres se

terminant par “a”

11-1Plus courts chemins

PLUS COURTS CHEMINS
(Shortest Paths)

• Graphes pondérés

• Plus courts chemins

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187

11-2Plus courts chemins

Graphes pondérés
• Les poids sur les arcs d’un graphe représentent des

distances, des coûts, etc.

• Un exemple d’un graphe pondéré non-orienté:

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187

11-3Plus courts chemins

Plus court chemin
• BFS trouve le(s) chemin(s) au nombre d’arcs

minimal à partir du sommet de départ

• Ainsi, BFS trouve le plus court chemin en supposant
que chaque arc a le même poids

• Dans plusieurs domaines, par exemple les réseaux
routiers, les arcs d’un graphe ont des poids différents

• Comment trouver les chemins au poids total
minimal?

• Exemple - Boston à Los Angeles:

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187

11-4Plus courts chemins

Algorithme de Dijkstra
• L’Algorithme de Dijkstra trouve les plus courts

chemins d’un sommet de départ v vers tous les
autres sommets d’un graphe avec:
- des arcs non-orientés
- des arc au poids non-négatif

• L’algorithme calcule, pour chaque sommet u, la
distance de u à partir du sommet v, et donc le poids
d’un plus court chemin entre v et u.

• L’algorithme conserve l’ensemble des sommets pour
lesquels la distance a été calculée, appelé nuage
(cloud) C

• Chaque sommet a une étiquette D. Pour tout sommet
u, nous appellerons son étiquette D[u]. D[u] contient
une approximation de la distance entre v et u.
L’algorithme met à jour une valeur D[u] quand il
trouve un chemin plus court de v à u.

• Lorsqu’un sommet u est ajouté au nuage, son
étiquette D[u] est égale à la distance actuelle (finale)
entre le sommet de départ v et le sommet u.

• Initialement, nous choisissons:
- D[v] = 0 ...la distance de v à lui-même est 0...
- D[u] = ∞ pour u ≠ v ...ceci va changer...

11-5Plus courts chemins

L’algorithme: Expansion du nuage
• Répétez jusqu’à ce que tous les sommets soient dans

le nuage:
- soit u un sommet hors du nuage qui a la plus petite

étiquette D[u]. (À la première itération, il est
évident que le sommet de départ sera choisi)

- ajoutez u au nuage C
- mettez à jour les étiquettes des sommets adjacents

à u de la façon suivante:
for chaque sommet z adjacent à u do

if z est hors du nuage C then
if D[u] + weight(u,z) < D[z] then

D[z] = D[u] + weight(u,z)

• cette étape est appelée une relaxation de l’arc (u,z)

u

v

z
3060

0

u
580

90

85

v est mis dans le nuage en premier. Puis ce u. Et ce u.

11-6Plus courts chemins

Pseudo-code
• Nous utilisons une file à priorité Q pour

emmagasiner les sommets hors du nuage, où D[v]
est la clé d’un sommet v dans Q

Algorithme ShortestPath(G, v):
Entrée: Un graphe pondéré G et un sommet v de G.
Sortie: Une étiquette D[u], pour chaque sommet u de

G, où D[u] est la longueur d’un plus court
chemin de v à u dans G.

initialisez D[v] ← 0 et D[u] ← +∞ pour chaque
sommet v ≠ u

soit Q une file à priorité contenant tous les sommets
de G utilisant les étiquettes D comme clés.

while Q ≠ ∅ do
{mettre u dans le nuage C}
u ← Q.removeMinElement()
for chaque sommet z adjacent à u où z est dans Q do

{faire l’opération de relaxation sur l’arc (u, z)}
if D[u] + w((u, z)) < D[z] then

D[z] ←D[u] + w((u, z))
changez la valeur de la clé de z dans Q à D[z]

return l’étiquette D[u] de chaque sommet u.

11-7Plus courts chemins

Exemple: plus courts chemins à partir de BWI

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
∞
184
∞
946
621
∞
∞

∞

BWI

BWI

11-8Plus courts chemins

• JFK (New-York) est le plus près...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1575
184
∞
621
328
∞

BWI

JFK

JFK

JFK

BWI 946

11-9Plus courts chemins

• suivi de PVD (Providence)...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1575
184
∞
621
328
∞

BWI

JFK

JFK

JFK

BWI 946

11-10Plus courts chemins

• BOS (Boston) est juste un peu plus loin.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1575
184
∞
621
328
3075

BWI

JFK

JFK

JFK

BWI 946

BOS

11-11Plus courts chemins

• ORD (Chicago) les suit.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1423
184
∞
621
328
2467

BWI

JFK

JFK

ORD

BWI 946

ORD

notez que la
distance D

a été ajustée
à cette étape

même chose
pour SFO

 pour DWF

11-12Plus courts chemins

• Puis MIA (Miami).

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1423
184
3288

621
328
2467

BWI

JFK

JFK

JFK

BWI 946

BOS

MIA

11-13Plus courts chemins

• Au tour de DFW...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1423
184
2658

621
328
2467

BWI

JFK

JFK

JFK

BWI 946

BOS

DFW

Distance D
pour LAX est
mise à jour

11-14Plus courts chemins

• Et de SFO...

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1423
184
2658

621
328
2467

BWI

JFK

JFK

ORD

BWI 946

BOS

MIA

11-15Plus courts chemins

• Et enfin de LAX.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
371

1423
184
2658

621
328
2467

BWI

JFK

JFK

ORD

BWI 946

BOS

MIA

11-16Plus courts chemins

Temps d’exécution
• Supposons une représentation de G avec une liste

d’adjacence. Nous pouvons alors parcourir tous les
sommets adjacents à u en un temps proportionnel à
leur nombre (donc O(j) où j est le nombre de
sommets adjacents à u)

• La file à priorité Q — choix à faire:
- Un tas: réaliser Q avec un tas permet une

extraction efficace des sommets à la plus petite
étiquette D (O(log N)). Si Q est réalisé avec des
repéreurs (locators), la mise à jour des clés peut se
faire en un temps O(logN). Le temps d’exécution
total est O((n+m) log n) où n est le nombre de
sommets dans G et m est le nombre d’arcs. En
terme de n, le pire des cas est O(n2 log n).

- Une séquence non-triée: O(n) pour l’extraction
des éléments minimaux, mais rapide mise à jour
des clés (O(1)). Il n’y a seulement que n-1
extractions et m relaxations. Le temps d’exécution
est O(n2+m)

• En ce qui concerne le pire des cas, le tas est bon
pour de petits ensembles de données, et la séquence
pour de plus grands ensembles.

11-17Plus courts chemins

Temps d’exécution (suite)
• Le cas moyen est une toute autre histoire.

Considérez ceci:
- Si la file à priorité Q est réalisée avec un tas, le

goulot d’étranglement de trouve à être la mise à
jour de la clé d’un sommet dans Q. Dans le pire
des cas, nous aurions besoin d’une mise à jour
pour chaque arc dans le graphe.

- Cependant, pour la plupart des graphes, ceci
n’arrivera pas. En supposant un ordre aléatoire de
voisinage, nous observons que pour chaque
sommet, ses sommets voisins seront placés dans le
nuage dans un ordre quelconque. Ainsi il n’y a que
O(log n) mises à jour de la clé d’un sommet.

- Avec cette même supposition, le temps
d’exécution de la réalisation par tas est
O(n log n + m), qui est toujours O(n2).

La réalisation par tas est donc préférable pour
tous les cas sauf ceux qui sont dégénérés.

11-18Plus courts chemins

Algorithme de Dijkstra,
quelques trucs auxquels penser...

• Dans notre exemple, le poids est la distance
géographique. Cependant, le poids aurait pu tout
aussi bien représenter le coût ou le temps de vol.

• Nous pouvons aisément modifier l’algorithme de
Dijkstra selon les besoins, par exemple:
- Si nous ne désirons que le plus court chemin de v à

un sommet particulier u, nous pouvons arrêter
l’algorithme aussitôt que u est mis dans le nuage.

- Nous pourrions aussi faire que l’algorithme
retourne un arbre T enraciné à v où le chemin dans
T de v à u est le plus court chemin de v à u.

• Comment conserver poids et distances? Les arcs
et sommets ne “connaissent” pas leur poids/distance.
Prenez avantage du fait que D[u] est la clé pour le
sommet u dans la file à priorité, et ainsi D[u] peut
être retracé en connaissant le repéreur de u dans Q.

• Nous avons besoin d’un façon de:
- associer des repéreurs PQ aux sommets
- emmagasiner et récupérer le poids des arcs
- retourner les distances finales

11-19Arbre recouvrant minimal

ARBRE RECOUVRANT
MINIMAL

• Algorithme de Prim-Jarnik

• Algorithme de Kruskal

C’est un bien joli chapeau.

Ce n’est pas un chapeau!
C’est ma tête!
Je suis une tête d’arbre!

11-20Arbre recouvrant minimal

MIA

SFO

PVD

LAXLAX

DFW

LGA

STL
1500

1500

800

400

1500

1000
200

1000

400

800

1800

Graphes pondérés

(poids d’un sous-graphe G') =
(somme des poids des arcs de G')

poids(G') = Σ poids(e)
 (e ∈ G')

 poids(G') = 800 + 400 + 1200
 = 2400

G'

1200

SEA MSN

11-21Arbre recouvrant minimal

Arbre recouvrant minimal (MST)
• arbre recouvrant de poids total minimal

• par exemple, pour connecter tous les ordinateurs
d’un édifice avec une quantité minimale de câble

• exemple

• pas unique en général

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

11-22Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

Propriété des arbres
recouvrants minimaux

V' V"

Soit e = (v', v"), un arc de poids
minimal traversant la partition,
c’est-à-dire v' ∈ V' et v" ∈ V".
Il y a un arbre recouvrant minimal
(MST) contenant l’arc e.

Soit (V',V"), une partition des
sommets de G.

11-23Arbre recouvrant minimal

Preuve de la propriété

Si le MST ne contient pas un arc de
poids minimal e, alors nous pouvons
trouver un MST meilleur ou égal en
échangeant e pour un autre arc.

MIA

SEA

SFO

PVD

LAXLAX

DFW

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

1000

400

800

1800

e

11-24Arbre recouvrant minimal

Algorithme de Prim-Jarnik pour
trouver un MST

• agrandit le MST T d’un sommet à la fois

• le nuage couvre la portion de T déjà calculée

• étiquettes D[u] et E[u] associées à chaque sommet u
- E[u] est le meilleur arc (poids le plus bas)

connectant u à T
- D[u] (distance au nuage) est le poids de E[u]

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

946
1235

1464

11-25Arbre recouvrant minimal

Différences entre les
algorithmes de Prim et Dijkstra

• Pour tout sommet u, D[u] représente (à date) le
poids du meilleur arc qui joint u au reste de
l’arbre (contrairement à la somme totale des poids
d’arcs sur un chemin du sommet de départ à u).

• Prim utilise une file à priorité Q dont les clés sont les
étiquettes D, et dont les éléments sont des paires
sommet-arc.

• Tout sommet v peut être le sommet de départ.

• Nous initialisons toujours toutes les valeurs de D[u]
à “infini”, mais nous initialisons aussi E[u] (les
arcs associés à u) à “aucun”.

• Retourne l’arbre recouvrant minimal T.

Nous pouvons réutiliser le code
produit par Dijkstra, et ne

changer que quelques parties.
Observons le pseudo-code....

11-26Arbre recouvrant minimal

Pseudo-code

Algorithme PrimJarnik(G):
Entrée: un graphe connexe pondéré G.
Sortie: un arbre recouvrant minimal T pour G.

choisir n’importe quel v de G
{agrandir l’arbre débutant avec le sommet v}
T ← {v}

D[v] ← 0
E[v] ← ∅

for chaque sommet u ≠ v do
D[u] ← +∞

soit Q une file à priorité qui contient des sommets
et qui utilise les étiquettes D comme clés

while Q ≠ ∅ do
{placer u dans le nuage C}
u← Q.removeMinElement()
ajouter le sommet u et l’arc E[u] à T
for chaque sommet z adjacent à u do

 if z est dans Q
{faire l’opération de relaxation sur l’arc (u, z)}
if poids(u, z) < D[z] then

D[z] ← poids(u, z)
E[z] ← (u, z)
changer la clé de z dans Q pour D[z]

return l’arbre T

11-27Arbre recouvrant minimal

Parcourons son exécution...

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

STL

STL
STL
STL

 800

1200
1800
 400

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

voisin D[u]

1000DFW

11-28Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

STL

STL

DFW

 800

1200
1500

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

voisin D[u]

1000DFW

DFW 1000

11-29Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

MSN
DFW

1000
1500

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

voisin D[u]

1000DFW

DFW 1000

MSN 1500

11-30Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

1500

800

400

1500

1000
200

1200

400

800

1800

DFW

1500

SFO
SEA
PVD
MSN
MIA
LGA
LAX
DFW

STL

voisin D[u]

1000DFW

DFW 1000

MSN 1500
LGA 200

11-31Arbre recouvrant minimal

Temps d’exécution

T ← {v}
D[v] ← 0
E[v] ← ∅

for chaque sommet u ≠ v do
D[u] ← +∞

soit Q une file à priorité qui contient des sommets
et qui utilise les étiquettes D comme clés

while Q ≠ ∅ do
u ← Q.removeMinElement()
ajouter le sommet u et l’arc E[u] à T
for chaque sommet z adjacent à u do

if z est dans Q
if poids(u, z) < D[z] then
 D[z] ← poids(u, z)
 E[z] ← (u, z)

 changer la clé de z dans Q pour D[z]
return l’arbre T

O((n+m) log n)
où n = nombre de sommets, m = nombre d’arcs,
et Q est réalisé avec un tas.

11-32Arbre recouvrant minimal

Algorithme de Kruskal
• ajoutez les arcs un à la fois, en ordre croissant de

poids.

• acceptez un arc si il ne crée pas de cycle.

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

11-33Arbre recouvrant minimal

Structures de données pour
l’algorithme de Kruskal

• l’algorithme maintient une forêt d’arbres

• un arc est accepté si il relie des sommets d’arbres
distincts

• nous avons besoin d’une structure de données qui
maintient une partition, c’est-à-dire une collection
d’ensembles disjoints, avec les opérations suivantes
- find(u): retourne l’ensemble contenant u
- union(u,v): remplace les ensembles contenant u et

v par leur union

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

11-34Arbre recouvrant minimal

Représentation d’une partition
• chaque ensemble est emmagasiné dans une séquence

• chaque élément a une référence vers son ensemble

• l’opération find(u) requiert O(n) et retourne
l’ensemble dont u est un membre

• dans l’opération union(u,v), nous déplaçons les
éléments du plus petit ensemble vers la séquence du
plus grand, tout en mettant à jours leurs références

• Le temps associé à l’opération union(u,v) est
min(nu,nv), où nu et nv sont les tailles respectives des
ensembles contenant u et v

• lorsqu’un élément est traité, il se retrouve dans un
ensemble de taille au moins du double

• ainsi, chaque élément est traité au plus log n fois

A

9 3 6 2

11-35Arbre recouvrant minimal

Pseudo-code

Algorithme Kruskal(G):
Entrée: Un graphe connexe pondéré G.
Sortie: un arbre recouvrant minimal T pour G.

soit P une partition des sommets de G où chaque
sommet forme un ensemble séparé

soit Q une file à priorité emmagasinant les arcs de G,
triés selon leur poids

T ← ∅
while Q ≠ ∅ do

(u,v) ← Q.removeMinElement()
if P.find(u) ≠ P.find(v) then

ajouter l’arc (u,v) à T
P.union(u,v)

return T

Temps d’exécution: O((n+m) log n)

11-36Arbre recouvrant minimal

Parcourons son exécution...

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

11-37Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

11-38Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

11-39Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

11-40Arbre recouvrant minimal

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

MIA

SEA

SFO

PVD

LAX

MSN

LGA

STL
1500

800

400

1500

1000
200

400

800

1800

1000DFW

Examine LGA-MIA, mais ne l’ajoute pas à T
parce que LGA&MIA sont dans le même ens.

Examine ici LAX-STL, mais ne l’ajoute pas à
T parce que LAX et STL sont dans le même
ensemble. Et c’est fini!

11-41Flot maximal

FLOT MAXIMAL

• Comment le faire...

• Pourquoi le désirer...

• Où le trouver...

• Ford-Fulkerson

• Edmonds-Karp

• Coupe minimale

Le Tao du Flot (Flow):
“Let your body go with the flow.”

-Madonna, Vogue

“Go with the flow, Joe.”
-Paul Simon, 50 ways to leave your lover

“Use the flow, Luke!”
-Obi-Wan Kenobi, Star Wars

“Connaissez le flot, ou coulez le cours...”
-Fernando Gomes, CSI 2514

11-42Flot maximal

Réseaux de flots
• Réseau de flots:

- digraphe
- poids, appelés capacités sur les arcs
- deux sommets distinctifs:

- Source, “s”:
Sommet sans aucun arc en entrée

- Puits, “t”:
Sommet sans aucun arc en sortie.

Source

Puits

3

12 2

1 2

2 4
2

2 1

2 s

t

11-43Flot maximal

Capacité et flot
• Capacités d’arc:

Poids non négatif sur les arcs de réseau

• Flot:
- Fonction sur les arcs de réseau:

0 ≤ flot ≤ capacité
flot entrant dans un sommet = flot sortant
valeur: flots combinés dans le puits

Source

Puits

3

12 2

1 2
2 4

2
2 1

2 s

t

1

2

2
1

01

0 1

1

2

1

0

11-44Flot maximal

La logique du flot
• Flot:

flot(u,v) ∀ arc(u,v)
-Règle de la capacité: ∀ arc (u,v)

0 ≤ flot(u,v) ≤ capacité(u,v)

-Règle de la conservation: ∀ sommet v ≠ s, t

Σ flot(u,v) = Σ flot(v,w)
u∈in(v) w∈out(v)

-Valeur du flot:

| f | = Σ flot(s,w) = Σ flot(u,t)
 w∈out(s) u∈in(t)

• Note:
- ∀ signifie “pour tout”
- in(v) est l’ensemble des sommets u où il y a un arc

de u à v
- out(v) est l’ensemble des sommets w où il y a un

arc de v à w

11-45Flot maximal

Problème du flot maximal
• “Étant donné un réseau N, trouvez un flot f de valeur

maximale.”

• Applications:
- Circulation
- Systèmes hydrauliques
- Circuits électriques
- Configurations

Exemple de flot maximal

Source

Puits

3

12 2

1 2
2 4

2
2 1

2 s

t

2 2
1

1 1
1 1

1 2

12

0

11-46Flot maximal

Flot augmentant

• Voila! nous avons augmenté la valeur de flot à 4!
Main un instant! Qu’est-ce qu’un chemin
augmentant?!?

s

t

2 1

1

1 2

2 2

1

2 2

s

t

2

0

2

2

1

2

s

t

2 2

0

2 2

2 2

1

2 2

Un réseau avec flot de
valeur 3

Chemin
augmentant

11-47Flot maximal

Chemin augmentant
• Arcs avant (forward edges)

flot(u,v) < capacité(u,v)
le flot peut être augmenté!

• Arcs arrières (backward edges)
flot(u,v) > 0
le flot peut être diminué!

u

v

u

v

11-48Flot maximal

Théorème du flot maximal

Un flot a une valeur maximale
si et seulement si

il n’a pas de chemin augmentant.

Preuve:

Flot est maximal ⇒ Pas de chemin augmentant

 (La partie seulement si est simple à prouver.)

Pas de chemin augmentant ⇒ Flot est maximal

 (Prouver la partie si s’avère plus difficile.)

11-49Flot maximal

Algorithme de Ford et Fulkerson

initialiser le réseau avec des flots nuls;
Méthode FindFlow

si un chemin augmentant existe alors
trouver un chemin augmentant;
accroître le flot;
appeler récursivement FindFlow;

• Et maintenant, place à un peu d’animation
algorithmique...

11-50Flot maximal

Trouver le flot maximal
s

t

0 0

0

0 0

2 2

1

2 2

s

t

2 0

1

1 1

2 2

1

2 2

s

t

1 0

1

0 1

2 2

1

2 2

Initialiser le réseau avec
des flots nuls. Notez
les capacités au des-
sus des arcs, et les
flots sous les arcs.

Envoyez une autre unité
de flot dans le réseau.

Envoyer une unité de flot
dans le réseau. Notez
le chemin de l’unité de
flot en rouge. Les va-
leurs de flot augmen-
tées sont en bleu.

11-51Flot maximal

Trouver le flot maximal
s

t

2 1

1

1 2

2 2

1

2 2

s

t

2 2

0

2 2

2 2

1

2 2

s

t

2 2

0

2 2

2 2

1

2 2

Envoyez une autre unité
de flot dans le réseau.
Notez qu’il existe en-
core un chemin aug-
mentant, qui peut aller
vers l’arrière, contre
l’arc central.

Avec l’aide de Ford & Ful-
kerson, nous avons at-
teint le flot maximal
de ce réseau.

Ça c’est de la puissance!!!

Envoyez une unité de flot
dans le chemin aug-
mentant. Notez qu’il
n’y a plus de chemin
augmentant. Ce qui
signifie...

11-52Flot maximal

Réseau résiduel
• Réseau résiduel Nf = (V, Ef, cf, s, t)

• Dans le réseau résiduel Nf, tous les arcs (w,z) avec
capacité cf(w,z) = 0 sont supprimés.

NfN

u

v

u

vf(u,v)

c(u,v)

cf(u,v)=c(u,v)−f(u,v)

cf(v,u)=f(u,v)

s

t

2 1

1

1 2

2 2

1

2 2

s
12

1

1
1 2

Chemin augmentant
dans le réseau N

Chemin orienté dans
le réseau résiduel Nf

Les chemins augmentants peuvent être trouvés
avec une recherche en profondeur (DFS) sur Nf

t1

11-53Flot maximal

L’algorithme de flot maximal de
Ford-Fulkerson

Algorithme : MaxFlow(N)
Entrée: réseau N
Sortie: réseau Nf au flot maximal

Partie I: Mise en place
Débutez avec un flot nul:

f(u,v) ← 0 ∀ (u,v) ∈ E;
Initialisez le réseau résiduel:

Nf ← N;

Partie II: Boucle
repeat

recherchez un chemin orienté p dans Nf de s à t
if (chemin p trouvé)

Df ← min {cf(u,v), f(u,v) ∈ p};
for (chaque (u,v) ∈ p) do

if (avant (u,v))
f(u,v) ← f(u,v) + Df;

if (arrière (u,v))
f(u,v) ← f(u,v) - Df;

mettre à jour Nf;
until (pas de chemin augmentant);

11-54Flot maximal

Flot maximal:
complexité temporelle

• Et maintenant, le moment tant attendu: la
complexité temporelle de l’algorithme de flot
maximal de Ford et Fulkerson (roulements de
tambour!!!) [Pause pour effet dramatique]

 O(F (n + m))

où F est la valeur du flot maximal, n est le nombre
de sommets, et m est le nombre d’arcs

• Le problème avec cet algorithme, cependant, est
qu’il dépend fortement de la valeur du flot maximal
F. Par exemple, si F=2n l’algorithme pourrait
prendre un temps exponentiel.

• Alors, arrivent enfin Edmonds et Karp...

11-55Flot maximal

Edmonds-Karp
• Variation sur l’algorithme de Ford et Fulkerson

• Utilise BFS pour choisir le chemin augmentant

• Trouver un plus court chemin de s à t. Y envoyer le
plus grand flot possible.

• Répéter.

• C’est terminé.

s

t

2 0

0

2 0

2 2

1

2 2

s

t

2 2

0

2 2

2 2

1

2 2

11-56Flot maximal

Pseudo-code

Algorithme : Edmonds-Karp MaxFlow(N)
Entrée: réseau N
Sortie: réseau Nf au flot maximal

Partie I: Mise en place
Débutez avec un flot nul:

f(u,v) ← 0 ∀ (u,v) ∈ E;
Initialisez le réseau résiduel:

Nf ← N;

Partie II: Boucle
repeat

p ← BFS-Shortest-Path(s,t,Nf)
if (chemin p trouvé)

ef ← (u0,v0) , cf(u0,v0) = min{cf(u,v), (u,v) ∈ p}
Df ← cf(ef)

for (chaque (u,v) ∈ p)
f(u,v) ← f(u,v) + Df
cf(u,v) ← cf(u,v) - Df

Nf.remove(ef)
until (pas de chemin augmentant)

11-57Flot maximal

Flot maximal: amélioration
• Théorème: [Edmonds & Karp, 1972]

En utilisant BFS (recherche en profondeur), un flot
maximal peut être calculé en un temps...

 O((n + m) n m) = O(n3)

• n est le nombre de sommets et m le nombre d’arcs

• Note:
- L’algorithme d’Edmonds et Karp s’exécute en un

temps O(n3) peu importe la valeur du flot maximal
- Le pire des cas ne survient habituellement pas en

pratique.

11-58Flot maximal

Qu’est-ce qu’une coupe?
• Une partition des sommets X=(Vs,Vt), avec

s ∈ Vs et t ∈ Vt

• Capacité X = (Vs,Vt):
- c(X) = Σ capacité(v,w) = (1+2+1+3) = 7

• La partition coupée (X dans notre cas) doit passer au
travers du réseau entier, et ne peut pas passer au
travers d’un sommet.

Source

Puits

3

6
4 2

1 6
2 4

1
8 7

2 s

t

X

Vs

Vt

v∈Vs

w∈Vt

11-59Flot maximal

Flot maximal et
coupe minimale

(valeur du flot maximal)

=

(capacité de la coupe minimale)

• Valeur du flot maximal: 7 unités de flot

• Capacité de la coupe minimale: 7 unités de flot

Source

Puits

3

2
4 0

1 6
2 4

1
8 7

2 s

t

X

Vs

Vt

2 3

1
6

2

3
02

1

3
1

3

11-60Flot maximal

Pseudo-code

Algorithme : MinCut(N) basé sur Edmonds-Karp
Entrée: réseau N
Sortie: Séquence s d’arcs dans la coupe minimale de N

Partie I: Mise en place de Edmonds-Karp (page 56)

Partie II: Boucle
repeat

Les sommets de Nf ne sont pas marqués
p ← Marking-BFS(s,t,Nf)
 // une modification de BFS qui marque tout
// sommet lorsqu’il est visité
if (chemin p trouvé)

y envoyer le plus grand flot possible
until (pas de chemin augmentant)

Partie III: Calcul de la séquence MinCut
s ← new Sequence()
foreach sommet u ∈ Sommets Marqués

foreach sommet v ∈ Sommets Non-Marqués
if (N a un arc e de u à v)

s.add(e)

11-61Flot maximal

Pourquoi est-ce une coupe
minimale?

• Soit f un flot de valeur |f| et X une coupe de capacité
|X|. Alors, |f|<=|X|.

• Ainsi, si nous trouvons un flot f* de valeur |f* | et
une coupe X* de capacité |X*|=|f* |, alors f* doit être
le flot maximal et X* la coupe minimale.

• Nous avons vu que, à partir du flot obtenu via
l’algorithme de Ford et Fulkerson, nous pouvons
construire une coupe à capacité égale à la valeur du
flot. Donc,
- nous avons donné une preuve alternative que

l’algorithme de Ford et Fulkerson génère un flot
maximal

- nous avons montré comment construire une coupe
minimale

s t
X

