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The Secrecy Capacity of the Wiretap Channel With
Additive Noise and Rate-Limited Help
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Abstract— The wiretap channel with additive (possibly non-
Gaussian) noise and rate-limited help, available at the legitimate
receiver (Rx) or/and transmitter (Tx), is studied under various
channel configurations (degraded, reversely degraded and non-
degraded) and power/amplitude constraints. For all channel
configurations, the rate-limited Rx help results in a (weak or
strong) secrecy capacity boost equal to the help rate. This holds
irrespective of whether the help is secure or not, or whether
the helper is aware of the message being transmitted or not;
the secrecy of help or helper’s knowledge of the message does
not provide any extra capacity boost. The secrecy capacity is
positive for the reversely-degraded channel (where the no-help
secrecy capacity is zero) and no wiretap coding is needed to
achieve it under weak secrecy. The same capacity boost also
holds if non-secure help is available to the transmitter (encoder),
in addition to or instead of the same Rx help, so that, in the case
of the joint Tx/Rx help, one help link can be omitted without
affecting the capacity. If Rx/Tx help links are independent of
each other, the capacity boost is the sum of help rates and no
link can be omitted without loss in the capacity. Non-singular
correlation of the receiver and eavesdropper noises does not affect
the secrecy capacity and non-causal help does not bring in any
capacity increase over the causal one. The choice of the secrecy
criterion (weak/strong) affects the complexity of implementation
but not the secrecy capacity. Stronger noise at the legitimate
receiver can sometimes result in higher secrecy capacity.

Index Terms— Wiretap channel, secrecy capacity, rate-limited
help.

I. INTRODUCTION

PHYSICAL-LAYER security has emerged as a valuable
alternative to cryptography-based techniques [1], [2], [3],

especially over wireless channels and networks, and it also
plays an important role in modern industrial standards [4],
[5], [6]. While the original work on information-theoretic
secrecy dates back to Shannon himself [7], Wyner’s wiretap
channel (WTC) model [8] established itself as a very useful
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tool for many different settings and configurations. It includes
one legitimate transmitter-receiver pair and one wiretapper
(or eavesdropper) to be kept ignorant of the transmitted
message; see [9] for a simplified analysis of this model. Its
key performance metric is the secrecy capacity, i.e. the largest
achievable rate subject to (weak or strong) secrecy in addition
to a reliability constraint, possibly under a power constraint.
The original degraded WTC model has been extended and
developed in many respects, of which we mention here only
a few. Csiszar and Korner [10] extended it to broadcast
channels with confidential messages, including non-degraded
WTC as a special case and established its secrecy capacity,
which became a starting point for many further extensions and
developments, see e.g. [1], [2], [3], and [4] and references
therein. The discrete memoryless model was extended to
single-antenna (SISO) Gaussian settings in [11] and further
to multi-antenna (MIMO) settings in [12], [13], and [14]; the
respective secrecy capacities and optimal signalling strategies
were also established [11], [12], [13], [14], [15] and were
further extended to interference-constrained channels [16],
[17]. The SISO Gaussian WTC with interference known to the
transmitter was studied in [18] and its achievable secrecy rates
were obtained. Encoding individual (deterministic) source
sequences for the degraded memoryless WTC was studied
in [19]; a necessary condition for secure and reliable trans-
mission of such sequences was obtained and an achievability
scheme was also given. More refined performance metrics
(beyond secrecy capacity), including secrecy exponents, finite
blocklength and second-order coding rates, have also been
studied, see [20] and [21] and references therein. More general
information-unstable wiretap channels have been considered in
[22] using information-spectrum techniques.

WTCs under various cost (power/amplitude) constraints
have also been studied [22], [23], [24], [25], [26]. While
adding a cost constraint to the standard WTC setup amounts,
in most cases, to using the same capacity formula (e.g. the
maximized difference of mutual information terms) but with
the input optimization being limited to meet the constraint,
there are some exceptions where this is not the case and the
capacity formula itself needs to be modified (two auxiliary
random variables are needed instead of one) [25].

While the above models assume the availability of complete
knowledge of the channel, such knowledge may be incomplete
or inaccurate in many practical settings and a compound
channel model emerges. Finite-state compound WTCs have
been studied in [27] and [28] and their secrecy capacities
were established under certain degradedness assumptions.

0018-9448 © 2023 Crown Copyright

Authorized licensed use limited to: University of Ottawa. Downloaded on January 22,2024 at 19:14:16 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6405-5524
https://orcid.org/0000-0002-9547-3243


190 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

The secrecy capacity of a class of compound Gaussian wiretap
MIMO channels with normed uncertainty (not necessarily
degraded or finite state) and an optimal signalling strategy
were established in [29].

The original WTC model can also be extended in other
respects, including the addition of side information and
feedback, which are often available in modern systems and
networks. While feedback does not increase the ordinary (no
secrecy) capacity of memoryless channels, it is often able to
boost the secrecy capacity, even in the memoryless settings,
see e.g. [30] and references therein. The memoryless Gaussian
WTC with noiseless (and hence rate-unlimited) feedback was
considered in [31], whereby the transmitter (Tx) has access to
the signal of the legitimate receiver (Rx) in a causal manner
while the eavesdropper (Ev) has access to a noisy version of
the feedback. Its secrecy capacity Csnf was shown to be equal
to the ordinary (no Ev, no feedback) AWGN channel capacity
C0,

Csnf = C0 (1)

i.e. secrecy comes for free with the noiseless feedback and
the secrecy capacity with feedback exceeds the no-feedback
one, even though the channel is memoryless and, possi-
bly, not degraded. The capacity-achieving strategy is the
Schalkwijk-Kailath scheme [32] (which is also optimal for the
no-Ev/no-secrecy case) and no wiretap coding is needed. This
result was further extended to a colored (ARMA) Gaussian
noise channel with noiseless (rate-unlimited) feedback in [30]
and a generalized Schalkwijk-Kailath scheme was shown to be
optimal. Note, however, that, in this setting, the Tx has access
to the noiseless feedback while the Ev observes only its noisy
version, i.e. the Ev is at a significant disadvantage and the
feedback is at least partially secure (hidden by the noise in the
Ev feedback link). The situation changes dramatically if the
Ev has access to the same noiseless (and, hence, non-secure)
feedback as well or if the Rx-to-Tx feedback link is also noisy
or rate-limited (the Schalkwijk-Kailath scheme does not work
in this case). The degraded memoryless Gaussian WTC with a
secure rate-limited feedback of rate Rf < ∞ was considered
in [33] and its secrecy capacity Csf was established:

Csf = min{C0, Cs0 + Rf} (2)

where Cs0 is the secrecy capacity without feedback.1 An
optimal Tx strategy is fundamentally different from [30] and
[31] in this setting: it is a combination of the standard wiretap
coding as in [8] with a secure key generated by the Rx and
sent to the Tx via the secure rate-limited feedback link (it is
this second part that is responsible for the +Rf boost in the
secrecy capacity as it protects a part of the message which
was dummy in [8]). Note, however, that this strategy requires
a secure feedback link, so that the feedback is (completely)
unknown to the Ev, and it does not apply otherwise.

In modern communication systems/networks, various forms
of side information, beyond feedback, are often available to

1It follows that Csf = Csnf = C0 if the feedback rate is sufficiently large,
Rf ≥ C0−Cs0, i.e. the increase in Csf with Rf saturates at Csf = C0 and
further increase in Rf does not bring in any capacity increase so that the rate-
unlimited feedback, as in [31], is not necessary to achieve Csf = C0.

the encoder or/and decoder (e.g. in a cloud radio access
network with a centralized processing unit or in a cooper-
ative communication system). This can be used to facilitate
reliable communications and often results in a boost to the
capacity [34]. One particular configuration was recently stud-
ied in [35], [36], [37], and [38], where a rate-limited (and
error-free) help is available to the decoder or/and encoder.
In particular, a helper observes the noise sequence (which
can be a signal intended for other users in a multi-user
environment) and communicates his observation to the receiver
(decoder) or transmitter (encoder) via an error-free but rate-
limited data pipe. This model is, in our opinion, important
from a practical perspective since it considers a rate-limited
help, unlike some noiseless feedback models that essentially
require rate-unlimited and error-free feedback links, which are
hardly possible in practice. This rate-limited help was shown
in [35], [36], [37], and [38] to provide a channel capacity
boost equal to the help rate Rh so that the resulting channel
capacity is C0+Rh; flash signalling (i.e. using high-resolution
help infrequently) was shown to be an optimal help strategy,
in combination with two-phase time sharing. These results
were further extended to other capacity definitions in [39].
Error exponents of Gaussian and modulo-additive channels
with rate-limited Tx help were established in [40], where it
was also shown that the channel with Tx help is equivalent,
in this respect, to the regular (no-help) channel and an addi-
tional parallel error-free bit-pipe of rate Rh.

In the present paper, we extend the help setting in [35], [36],
[37], and [38] to the memoryless wiretap channel with addi-
tive (not necessarily Gaussian) noise under power/amplitude
constrains. In the case of Rx help, we show that the same
capacity boost as in [36] also holds for the wiretap channel
in terms of its weak or strong secrecy capacity Cs: a receiver
help of rate Rh results in the capacity boost of Rh,

Cs = Cs0 + Rh, (3)

where Cs0 is the no-help secrecy capacity. This holds for
all possible configurations of the SISO Gaussian WTC, i.e.
degraded, reversely degraded and non-degraded.2 Under non-
Gaussian noise, this holds for degraded and reversely-degraded
configurations and Cs ≥ Cs0 + Rh for non-degraded one, i.e.
Cs0 + Rh is an achievable rate. Some surprising properties
are observed. In particular, the secrecy capacity is the same
irrespective of whether the help is secure (i.e. unknown to the
eavesdropper) or not, so that the secrecy of help does not bring
in any increase in the secrecy capacity; this also applies to
the case of partially-secure help. For the reversely-degraded
channel (where the secrecy capacity is zero without help),
we show that the secrecy capacity with Rx help is positive and
equal to the help rate, and, under weak secrecy, no wiretap
coding is needed to achieve it - burst signaling (along with
regular channel coding) is optimal; however, wiretap codes are
needed under strong secrecy. Unlike the no-help case, stronger
noise at the legitimate receiver can sometimes result in higher
secrecy capacity. Surprisingly, the secrecy capacity with Rx

2While the standard (no help) SISO non-degraded Gaussian WTC is
equivalent to either degraded or reversely-degraded one, this is not the case
anymore when Rx/Tx help is also available to the Ev.
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TABLE I
SUMMARY OF THE RESULTS

help, secure or non-secure, is not increased even if the helper
is aware of the message being transmitted.

An optimal Tx strategy to achieve Cs in (3) is fundamentally
different from those in [30], [31], and [33]: it is a two-phase
time sharing whereby no help is used in Phase 1 but just
regular (no help) wiretap coding; much shorter Phase 2 makes
use of high-resolution help and, under weak secrecy, regular
(no Ev) channel coding but no wiretap coding. For the
reversely-degraded WTC, Phase 1 is not needed and, therefore,
no wiretap coding is needed at all under weak secrecy; burst
signaling alone (with regular channel coding) is sufficient.
However, wiretap coding is needed in Phase 2 under strong
secrecy for all channel configurations but the secrecy capacity
itself remains the same as under weak secrecy. Therefore,
the choice of the secrecy criterion (weak/strong) affects the
complexity of implementation but not the secrecy capacity.

Comparing (3) to (2) with Rh = Rf , note that Cs > Csf

if the help/feedback rate is sufficiently high, Rh = Rf >
C0 − Cs0, i.e. the helper setting provides larger secrecy
capacity compared to the rate-limited but secure feedback
setting, even though the help is not required to be secure.
The same applies to (1), where the feedback is rate-unlimited
and at least partially-secure. Note also that, unlike Csf in (2),
the increase in Cs in (3) with Rh does not saturate.

We further show that, in the case of the degraded or
reversely-degraded Gaussian WTC, the same secrecy capacity
boost, and hence (3), holds when non-secure help is available
to the transmitter, in addition to or instead of the same Rx
help, and an optimal signalling is still two-phase time sharing.
Thus, if the Tx and Rx help links are identical (carry the same
information), then any one can be omitted without affecting
the capacity. This is not the case anymore if the help links
are independent: in this case, the secrecy capacity boost is the
sum of help rates, an optimal signalling is a three-phase time
sharing and no help link can be omitted without capacity loss.
The main results are summarized in Table I.

While causality is immaterial for Rx help (since the receiver
starts decoding after the whole block of symbols is received),
it becomes important for the Tx help since the transmitter per-
forms sequential symbol-by-symbol transmission. Therefore,
we distinguish between causal and non-causal Tx help. In the
latter case, the help is based on the whole noise sequence and
is available to the Tx in advance. In the former case, the Tx
help at time i is based on the noise sequence up to time i only.

Interestingly, the causality of Tx help, unlike that of feedback,
has no impact on the secrecy capacity (this property is similar
to that of the no-secrecy channel capacity with Tx help in
[37]).

Unlike the studies of Gaussian WTCs with noiseless (and
hence rate-unlimited) feedback in [30] and [31], our help links
are rate-limited, as in [36], [37], and [38], and we also allow
here the Ev to have access to the same help as the legitimate
Rx or/and Tx (in the case of non-secure help). In our rate-
limited setting, causality of help has no impact on the secrecy
capacity and, in the case of Rx help, the secrecy capacity is the
same for perfectly secure and completely non-secure help (i.e.
when exactly the same help is also available to the Ev). Unlike
the study in [33], our help link is not required to be secure or
causal and the channel is not required to be degraded.

In a related line of work, secure communication with a
helper acting as a cooperating jammer was studied in [41]
and [42] (this setting is partialy equivalent to an interference
channel). However, no secrecy capacity was established but
only the generalized degrees of freedom (GDoF), which char-
acterize the high-SNR scaling of the secrecy capacity and are
essentially the multiplexing gain in terms of secrecy rates.
Unlike [41], [42], the present paper considers no jamming at
all; rather, the help comes in a form of rate-limited error-free
information about the noise sequence affecting the legitimate
Rx, which is available to the Rx and/or Tx.

The rest of the paper is organized as follows. Various con-
figurations (degraded, reversely-degraded and non-degraded)
of the WTC with additive (possibly non-Gaussian) noise and
Rx help are considered in Sections II to IV and their secrecy
capacities are established in Theorems 1 - 3 and Propositions
1-3. The case of Tx help, instead of or in addition to the Rx
help, is studied in Sections V - VIII and the respective secrecy
capacities are established/characterized in Theorems 4 - 7 and
Proposition 4, including the same and independent Tx/Rx help
links, and the case of correlated Rx and Ev noises.

Notations: we follow the standard notations as much as
possible, where random variables and their realizations are
denoted by capital and lower case letters, respectively, and
their alphabets follow from the respective channel models; Xn

denotes the sequence (X1, . . . , Xn); H(·), h(·) and h(·|·) are
the entropy, differential and conditional differential entropies,
respectively, and I(·; ·) is the mutual information; E{·} and
Pr{·} are statistical expectation and probability with respect
to relevant random variables; X − Y − Z denotes a Markov
chain of random variables X , Y , and Z.

II. DEGRADED WIRETAP CHANNEL WITH RX HELP

We begin with the real-valued degraded (discrete-time)
wiretap channel with additive noise:

Yi = Xi + Wi, Zi = Yi + Vi, i = 1, . . . , n (4)

where Xi is the real-valued transmitted symbol at time i,
Wi, Vi are Rx and Ev noises, which are zero-mean, possibly
non-Gaussian, independent of each other, with variances σ2

W

and σ2
V , respectively, see Fig. 1. The channel is stationary

and memoryless, so that Wn and V n are i.i.d. sequences.

Authorized licensed use limited to: University of Ottawa. Downloaded on January 22,2024 at 19:14:16 UTC from IEEE Xplore.  Restrictions apply. 



192 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

We further assume that the differential entropies of Wi and Vi

are finite and that 0 < σ2
W , σ2

V < ∞ (unless stated otherwise).
In the case of Gaussian noise V , the finiteness of its differential
entropy, |h(V )| < ∞, is equivalent to 0 < σV < ∞. In the
case of non-Gaussian noise W , we assume that it satisfies the
following conditions:

E{|W |2+δ} < ∞ for some δ > 0

αW =
∫ ∞

−∞
pW (w)1/3dw < ∞ (5)

where pW (w) is the probability density function of W . This
will guarantee the existence of a high-resolution quantizer with
sufficiently small quantization error, see Theorem 3 in [37].
In the case of Gaussian noise, these conditions are satisfied.

The helper model is as in [36], [37], and [38] but extended
to the WTC setting, whereby discrete help T = T (Wn) of
rate n−1H(T ) ≤ Rh < ∞ is available to the Rx and Ev
(no further constraints on the helper function T (Wn) are
assumed, beyond its rate, unless stated otherwise), which we
term “non-secure Rx help”, so that the Rx and the Ev can
estimate transmitted message M using T and their respective
received signals Y n and Zn. This falls into the framework
of cooperative communications or communications with side
information [34] and models practical links, which are always
rate-limited (albeit the rate can be high, as in e.g. optical fiber
links). If no help is available to the Ev, we call it “secure
Rx help”. For Rx help, the difference between causal and
non-causal help is immaterial, since the Rx waits until the
whole block of length n is received before decoding it.

We use the standard definition of the secrecy capacity as
the supremum of all achievable secrecy rates, subject to the
reliability, secrecy and power constraints, see e.g. [1], [2], [3],
[4], [8], [9], and [10]. In particular, the (secret) message M is
selected randomly and uniformly from {1, . . . , 2nRs}, where
Rs is a secrecy rate and n is the blocklength. The Tx encoder
maps it into Xn and the Rx decoder maps Y n and the available
help T into a message estimate M̂ . The constraints are as
follows:

Reliability Constraint: the error probability Pe ≜ Pr{M ̸=
M̂} ≤ ε for any ε > 0 and sufficiently large n.

Weak Secrecy Constraint: information leakage rate (to the
Ev) Rl satisfies

Rl ≜ n−1I(M ; ZnT ) ≤ δ (6)

for any δ > 0 and sufficiently large n; T is omitted in the case
of secure help. Strong secrecy criterion will also be considered,
see (44).

Power constraint: under the average power constraint,

1
n

n∑
i=1

E{X2
i } ≤ P (7)

We further assume that 0 < P < ∞ (if P = 0, the capacity
is, of course, zero). Our results will also hold under the
peak power constraint, E{X2

i } ≤ P for each i, as well as
the amplitude constraint |Xi| ≤

√
P . More general power

constraints can also be considered,3 as in [35].
3The ideas to consider non-Gaussian noise and various power/amplitude

constraints were suggested by anonymous reviewers.

Fig. 1. Degraded wiretap channel with additive noises and a rate-limited
help T at the Rx and Ev (if the help is not secure). W n and V n are i.i.d.
noise sequences independent of each other and of M, Xn; Xn = Xn(M),
T = T (W n), H(T ) ≤ nRh.

The secrecy capacity of this channel with Rx help is
established below.

Theorem 1: Consider the degraded memoryless WTC with
additive, possibly non-Gaussian noises and with secure or
non-secure Rx help of rate Rh, under any of the above
power/amplitude constraints. Let 0 < σ2

V , P < ∞ and, in the
case of non-Gaussian noises, h(V ) > −∞ and (5) to hold. Its
(weak) secrecy capacity Cs is

Cs = Cs0 + Rh (8)

where Cs0 is the secrecy capacity without help.
Proof: Converse: For the converse, we consider the case

of secure Rx help T (not available to the Ev); the case of
non-secure help will follow since the availability of help to
the Ev cannot increase secrecy rate. The converse is based on
the following chain of inequalities, incorporating the secrecy
and reliability constraints as well as functional relationships
between various random variables in the channel model:

nRs = H(M)
= H(M |Zn) + I(M ; Zn) (9)
≤ H(M |Zn) + nϵ (10)
= H(M |Zn)−H(M |Y nT ) + H(M |Y nT ) + nϵ (11)
≤ H(M |Zn)−H(M |Y nT ) + 2nϵ (12)
≤ H(M |Zn)−H(M |Y nZnT ) + 2nϵ (13)
= I(M ; Y nT |Zn) + 2nϵ (14)
≤ I(Xn; Y nT |Zn) + 2nϵ (15)
= I(Xn; Y n|Zn) + I(Xn; T |Y nZn) + 2nϵ (16)
≤ I(Xn; Y n|Zn) + H(T ) + 2nϵ (17)
≤ nI0(X; Y |Z) + nRh + 2nϵ (18)
= n(I0(X; Y )− I0(X; Z) + Rh + 2ϵ) (19)
≤ n(Cs0 + Rh + 2ϵ) (20)

where (10) follows from the secrecy constraint I(M ; Zn) ≤
nϵ; (12) follows from Fano inequality (due to the reli-
ability constraint) H(M |Y nT ) ≤ nϵ; (15) follows from
Markov chain M − Xn − Y nT − Zn; (17) follows from
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I(Xn; T |Y nZn) ≤ H(T ); (18) follows from

I(Xn; Y n|Zn) ≤
n∑

i=1

I(Xi; Yi|Zi) ≤ nI0(X; Y |Z) (21)

where the first inequality holds since the channel is memory-
less and the second one is due to the concavity of the mutual
information in the input distribution [8], [9]; I0 is the mutual
information induced by input X with the distribution p0(x) =
n−1

∑
i pxi

(x), where pxi
(x) is the distribution of Xi; (19)

follows from Markov chain X−Y −Z and (20) follows from
[29, Theorem 3] (applied to a single-state channel). Thus,

Rs ≤ Cs0 + Rh + 2ϵ (22)

Since this holds for any ϵ > 0, it follows that Rs ≤ Cs0 +Rh.
This establishes the converse with secure Rx help. Since the
presence of help at Ev cannot increase secrecy rate, the same
upper bound applies with non-secure Rx help. Note that no
assumption of Gaussian noise is made in the above proof.

Achievability. To prove achievability, we combine the regu-
lar (no help) wiretap coding with the no-Ev flash signaling in
[36]. We consider first the case of non-secure Rx help (when
the same help is available at the Rx and Ev), from which
achievability with secure Rx help follows. To this end, recall
that the ordinary (no Ev) flash signaling with Rx help consists
of two phases of time-sharing [35], [36]:
• Phase 1: no help is used at all for a fraction (1−τ) of the

time, which achieves, with regular channel coding, a rate
arbitrary close to the ordinary channel capacity C for a
sufficiently large blocklength.

• Phase 2: Rx help is used at rate Rh/τ for a (very
small) fraction τ of the time. In this phase, in addi-
tion to regular channel coding, a high-resolution scalar
quantization (with ⌊2Rh/τ⌋ levels) of each noise sample
is provided to the Rx, so that the help is T = Ŵn,
where Ŵi = Q(Wi) and Q(·) is a scalar quantizer.
The Rx subtracts Ŵi from its received signal Yi and,
after receiving the whole block, decodes it using nearest-
neighbour decoding; for sufficiently large blocklength,
this achieves a rate arbitrarily close to

h(X)− 1
2

log(2πeσ2
W ) +

Rh

τ
=

Rh

τ
(1 + o(1)) (23)

where o(1) → 0 as τ → 0, see [36, eq. (20)], and
h(X) > −∞ for some i.i.d. input X satisfying the
power/amplitude constraints. We silently assume here
that τ is sufficiently small so that the rate in (23) is
positive, which is consistent with τ → 0 in the next
step. An alternative Phase 2 strategy, which maximizes
error exponents using a simple lattice code with a uniform
scalar quantizer (no need for i.i.d.-generated codebooks),
can be found in [40].

Overall, as τ → 0, the rate achieved after two-phase time-
sharing is arbitrarily close to

(1− τ)C + τRh/τ(1 + o(1)) → C + Rh (24)

which is the channel capacity with Rx help. This also implies
that providing high-resolution help infrequently (“flash sig-
nalling”) is optimal.

To accommodate the Ev and the secrecy constraint, we mod-
ify this strategy as follows:
• Phase 1: use the regular WTC coding with no help [1],

[2], [3], [4], [8], [9], [11] for the fraction (1− τ) of the
time; this achieves a secrecy rate Rs arbitrarily close to
the regular WTC secrecy capacity Cs0: Rs = Cs0− ϵ for
any ϵ > 0 and sufficiently large blocklength.

• Phase 2: for the small fraction τ of the time, use no
WTC coding but ordinary channel coding under the flash
signaling as above.

While it is clear that secrecy is guaranteed during Phase 1 (via
wiretap coding), it is also clear that secrecy is not guaranteed
during Phase 2 (since no wiretap coding is used) so it is
not clear whether secrecy is guaranteed overall (after time
sharing). To demonstrate that this is indeed the case, we show
that, during Phase 2, the information leakage rate Rl2 to the
Ev is uniformly bounded,

Rl2 ≤ R0 < ∞ (25)

for any τ and some R0, where R0 is independent of τ (but
where Rl2 may depend on τ ), so that the overall leakage rate
Rl (after the time sharing) is

Rl = (1− τ)Rl1 + τRl2 ≤ (1− τ)δ + τR0 → δ (26)

as τ → 0, for any δ > 0 (or, equivalently, Rl ≤ 2δ for
sufficiently small τ , τ ≤ δ/R0), where Rl1 ≤ δ is the
information leakage rate during Phase 1.

To see that indeed Rl2 ≤ R0 < ∞ uniformly in τ , note the
following:

Rl2 = n−1I(M2; ZnŴn|C) (27)

≤ n−1I(M2; ZnŴnWn|C) (28)

= n−1I(M2; Zn|WnC) (29)

≤ n−1I(Xn; Zn|WnC) (30)

= n−1I(Xn; Xn + Wn + V n|WnC) (31)

= n−1I(Xn; Xn + V n|C) (32)

≤ n−1(h(Xn + V n)− h(V n)) (33)
= h(X + V )− h(V ) (34)

≤ 1
2

log
(
2πe(P + σ2

V )
)
− h(V ) = R0 < ∞ (35)

where M2 is a message sent in Phase 2, Xn is a codeword
(which depends on M2, see Fig. 1), and the conditioning is on
an i.i.d. randomly-generated codebook C (the codebook gener-
ation, encoding and decoding are as in [36]); (29) follows from
independence of M2 and Wn, Ŵn and from Ŵi = Q(Wi);
(30) follows from the Markov chain M2−Xn−ZnWn; (32)
follows from independence of Wn and Xn, V n; (34) follows
since Xn and V n are i.i.d. sequences; the first inequality in
(35) follows from the fact that Gaussian distribution maxi-
mizes differential entropy under the constrained variance and
the last inequality is due to h(V ) > −∞ and P, σ2

V < ∞.
Hence, arbitrary low information leakage rate is guaranteed

after time sharing with τ → 0, which satisfies the secrecy
constraint. At the same time, the overall secrecy rate (after
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time sharing) is

(1− τ)(Cs0 − ϵ) + τRh/τ(1 + o(1))
→ Cs0 + Rh − ϵ (36)

for any ϵ > 0, as τ → 0, so that the secrecy capacity is
Cs0 + Rh, as required.

In the above secrecy analysis, we assume that the help is
not secure, i.e. it is available to the Ev. Clearly, the secrecy
constraint is also satisfied if the help is secure, i.e. not available
to the Ev (since the lack of Ev help cannot increase leakage
rate), and an achievable secrecy rate remains the same. Since
the converse also holds for the secure Rx help, the secrecy
capacity also remains the same, regardless whether help is
secure or not, i.e. the secrecy of help does not increase the
secrecy capacity.

Also note that both the converse and achievability hold
under the same power constraint as the no-help secrecy
capacity Cs0 (this is ensured by enforcing the power constraint
in each phase and, therefore, after the time sharing as well).
In particular, they hold under the average/peak power or/and
amplitude constraint(s), or any combination of the above
(with Cs0 being the no-help secrecy capacity under the same
constraints). □

It is worthwhile to note that flash signaling with Rx help
provides here the same boost in the secrecy capacity as in the
regular (no Ev) channel capacity in [36], i.e. the +Rh boost
comes with secrecy for free in the degraded WTC. This holds
even if noises are not Gaussian and also under various power
constraints.

Note from (8) that

Cs ≈ Rh if Cs0 ≪ Rh (37)

and, from the achievability proof, this is achievable with Phase
2 alone (no Phase 1), i.e. burst signaling over very short
time. Under weak secrecy, no wiretap code is needed in this
case (just a regular channel code), i.e. it is a remarkably
simple strategy whereby secrecy is ensured by sending a
secret message over a very short interval of time without any
further protection against eavesdropping. This strategy may
be attractive for low-complexity devices (e.g. IoT). The next
Section will demonstrate that it is optimal for the reversely-
degraded WTC.

Since Cs in Theorem 1 is the same for secure and non-
secure help, i.e. the secrecy of help does not bring in any
capacity advantage, it also applies to the case of partially-
secure help, i.e. when the Ev has access to a part of T .

Surprisingly, even if the helper H is aware of the message
M being transmitted, i.e. T = T (Wn, M) as in Fig. 2, the
secrecy capacity is not affected and Theorem 1 still holds.

Proposition 1: Consider the degraded WTC with Rx help
as in Theorem 1 and let the helper H be aware of the message
being transmitted, i.e. T = T (Wn, M) as in Fig. 2. Then,
Theorem 1 still holds.

Proof: It is sufficient to show that the same converse
still holds (for achievability, the helper can always ignore the
message). To this end, note that (10) - (14) still hold since the

Fig. 2. The degraded WTC of Fig. 1 when the helper H is aware of the
message M being sent, T = T (W n, M).

independence of T and M plays no role there so that

nRs ≤ I(M ; Y nT |Zn) + 2nϵ

≤ I(XnM ; Y nT |Zn) + 2nϵ (38)
= I(XnM ; Y n|Zn) + I(XnM ; T |Y nZn) + 2nϵ (39)
≤ I(XnM ; Y n|Zn) + H(T ) + 2nϵ (40)
= I(Xn; Y n|Zn) + H(T ) + 2nϵ (41)
≤ n(Cs0 + Rh + 2ϵ) (42)

where (41) is due to I(M ; Y n|XnZn) = 0, i.e., the indepen-
dence of M and Y n given Xn and Zn; (42) follows from
(18)-(20). □

For the degraded Gaussian WTC with non-secure Rx help,
the secrecy capacity is zero if σ2

V = 0, since the Ev has access
to the same information as the Rx in this case, so no secrecy is
possible. This implies that Cs(σ2

V ) is a discontinuous function
at σ2

V = 0 for non-secure help with any Rh > 0:

lim
σ2

V →0+
Cs(σ2

V ) = Rh > 0, (43)

while Cs(0) = 0 (the help becomes useless in this case). This
is in stark contrast to the no-help case where Cs0(σ2

V ) is a
continuous function for every σ2

V , including σ2
V = 0, so that

the help becomes especially important when σ2
V approaches 0,

i.e., when the Tx-Ev link SNR approaches that of the Tx-Rx
link.

A. From Weak to Strong Secrecy

While Theorem 1 and Proposition 1 were established under
the weak secrecy criterion in (6) (which may be considered
as too weak for certain applications), the same results also
hold under the strong secrecy criterion,4 whereby information
leakage (not rate) to the Ev satisfies

I(M ; ZnT ) ≤ δ (44)

for any δ > 0 and sufficiently large n, where T is omitted in
the case of secure help.

4The idea to extend the weak secrecy results to strong secrecy was
suggested by the Associate Editor (M. Bloch).
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Proposition 2: The (weak) secrecy capacity in Theorem 1
and Proposition 1 also hold under the strong secrecy criterion
in (44).

Proof: First, note that the converse established in The-
orem 1 and Proposition 1 also holds under strong secrecy
(where Cs0 is the no-help strong secrecy capacity). To estab-
lish achievability, note that Phase 1 needs no modification,
since it involves no help and the standard strong secrecy capac-
ity result applies. However, Phase 2 does need a modification
since the simple (no wiretap code) strategy cannot guarantee
strong secrecy, even after τ → 0. To this end, we use the same
signaling as in Phase 2 of Theorem 1 but combined with a
wiretap code. To determine an achievable strong secrecy rate
for this phase, consider an equivalent channel, whereby the
legitimate Tx-Rx link is X − (Y, Ŵ ) and, under non-secure
help, the Ev link is X − (Z, Ŵ ). The strong secrecy capacity
Cse of this equivalent channel is lower bounded, from [29,
Theorem 3] applied to a single-state channel, as follows:

Cse ≥ sup
X

[I(X; Y Ŵ )− I(X; ZŴ )]

≥ I(X; Y Ŵ )− I(X; ZŴ ) (45)

so that an achievable strong secrecy rate Rs2 is

Rs2 = I(X; Y Ŵ )− I(X; ZŴ )− ϵ (46)

for arbitrary-small ϵ > 0, where negative value is interpreted
as zero rate and first term is just the rate of the legitimate link,
which is lower-bounded as in (23),

I(X; Y Ŵ ) ≥ Rh

τ
(1 + o(1)) (47)

Second term can be upper bounded as follows:

I(X; ZŴ ) ≤ I(X; ZW ) = I(X; Z|W ) = I(X; X + V )
= h(X + V )− h(V ) ≤ R0 < ∞ (48)

where R0 is as in (35). Combining (46)-(48), we obtain an
achievable strong secrecy rate of Phase 2:

Rs2 ≥
Rh

τ
(1 + o(1))−R0 − ϵ =

Rh

τ
(1 + o(1)) (49)

and using it in the time-sharing strategy in (36), the desired
result follows. □

Thus, while imposing the strong secrecy criterion instead
of the weak one does not alter the secrecy capacity, it does
increase the complexity of Phase 2 (due to the use of wiretap
codes).

III. REVERSELY-DEGRADED WTC WITH RX HELP

Let us now consider the reversely-degraded case of the
wiretap channel as in Fig. 3:

Zi = Xi + Vi, Yi = Zi + ∆Wi (50)

where ∆Wi is an extra Rx noise, independent of the Ev
noise Vi, so that the sequences V n and ∆Wn are i.i.d and
independent of each other. Note that the total Rx noise is
Wi = Vi + ∆Wi and its variance is

σ2
W = σ2

V + σ2
∆W ≥ σ2

V > 0 (51)

Fig. 3. Reversely-degraded wiretap channel with additive noises (not
necessarily Gaussian) and a rate-limited Rx help T . ∆W n and V n are i.i.d.
noise sequences independent of each other and of M, Xn; Xn = Xn(M),
T = T (W n), H(T ) ≤ nRh.

We exclude the trivial case σ2
V = 0, for which the secrecy

capacity is zero, and further assume that both noises have
finite differential entropies, |h(Vi)|, |h(∆Wi)| < ∞, and that
σ2

W < ∞. In the case of non-Gaussian noise W , we also
assume that the conditions in (5) are satisfied. It is well-known
that, without help, the secrecy capacity of this channel is zero,
Cs0 = 0. However, the availability of Rx help, whether or not
securely, changes the situation dramatically.

Theorem 2: Consider the reversely-degraded WTC with
additive (not necessarily Gaussian) noise, as introduced above,
with secure or non-secure Rx help of rate Rh. Its weak or
strong secrecy capacity is

Cs = Rh (52)

If σ2
∆W = 0, then Cs = Rh if the help is secure and Cs =

0 otherwise.
Proof: Converse: to prove the converse, we consider the

case of secure Rx help (i.e. no Ev help) and weak secrecy. The
case of non-secure help or strong secrecy will follow, since the
availability of help to the Ev cannot increase the secrecy rate
and since the strong secrecy capacity cannot exceed the weak
one. The proof follows the steps similar to those in Theorem
1. In particular, we observe that (10)-(17) still hold for the
reversely-degraded channel (since channel degradedness plays
no role there), so that

nRs ≤ I(Xn; Y n|Zn) + H(T ) + 2nϵ (53)
≤ n(Rh + 2ϵ), (54)

where the last inequality is due to I(Xn; Y n|Zn) = 0, which
in turn follows from Markov chain Xn − Zn − Y n. Thus,
Rs ≤ Rh+ϵ for any ϵ > 0 and therefore Rs ≤ Rh, as required.

Achievability: to prove achievability under weak secrecy,
we consider the case of non-secure Rx help (when the same
help is also available to the Ev); the case of secure help will
follow since the absence of help to the Ev cannot increase
leakage rate and hence cannot decrease secrecy rate.

To this end, we use the same two-phase flash signaling as in
Theorem 1 except that nothing is transmitted in Phase 1 and
the whole message is transmitted in Phase 2 (without wiretap
coding). To show that this provides an arbitrary-low leakage
rate after time-sharing (which is equivalent to burst signaling
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of duration τ in this case), we show that the Phase 2 leakage
rate Rl2 is uniformly bounded in τ (as before). To this end,
observe that

Rl2 = n−1I(M2; ZnŴn|C) (55)

≤ n−1I(M2; ZnŴnWn|C) (56)

= n−1I(M2; Zn|WnC) (57)

≤ n−1I(Xn; Zn|WnC) (58)

= n−1I(Xn; Xn + V n|V n + ∆Wn, C) (59)

= n−1(h(Xn + V n|V n + ∆Wn, C) (60)
− h(V n|Xn, V n + ∆Wn, C))

≤ n−1(h(Xn + V n)− h(V n|V n + ∆Wn) (61)
= h(X + V )− h(V )− h(∆W ) + h(V + ∆W ) (62)

≤ 1
2

log(2πe(P + σ2
V )) +

1
2

log(2πeσ2
W ) (63)

− h(V )− h(∆W )
= R0 < ∞ (64)

where we assumed that σ2
∆W > 0; (55)-(58) hold due to the

same reasons as in the proof of Theorem 1; (61) holds since
(i) conditioning cannot increase the entropy and (ii) V n, ∆Wn

are independent of Xn, C; (62) holds since

h(V n|V n + ∆Wn)
= h(V n, V n + ∆Wn)− h(V n + ∆Wn) (65)
= h(V n) + h(∆Wn)− h(V n + ∆Wn) (66)
= n(h(V ) + h(∆W )− h(V + ∆W )) (67)

where (66) is due to the independence of ∆Wn and V n;
(63) holds since Gaussian distribution maximizes differential
entropy under bounded variance; the inequality in (64) holds
since all terms in (63) are bounded. Thus, the total leakage
rate (after time-sharing) is

Rl = (1− τ)0 + τRl2 (68)
≤ τR0 → 0 (69)

when τ → 0, as required (notice that the condition σ2
∆W > 0 is

essential here, as σ2
∆W = 0 results in zero secrecy capacity for

non-secure help). The overall secrecy rate (after time-sharing)
is

Rs = (1− τ)0 + τRh/τ(1 + o(1)) → Rh (70)

when τ → 0.
Let us now consider the case of σ2

∆W = 0, which implies
Y n = Zn. If the help is not secure, the same information is
available to the Ev and Rx and hence no positive secrecy rate
is achievable, Cs = 0. However, if the help is secure, then the
Rx has an extra information not available to the Ev. It is not
difficult to see that the above converse still holds if σ2

∆W = 0.
To prove achievability, we use the same signaling as above
and show that the leakage rate Rl2 of Phase 2 is uniformly

bounded:

Rl2 = n−1I(M2; Zn|C) (71)

≤ n−1I(Xn; Zn|C) (72)

≤ n−1(h(Zn)− h(V n)) (73)
= h(X + V )− h(V ) (74)

≤ 1
2

log(2πe(P + σ2
V ))− h(V ) = R0 < ∞ (75)

Thus, secrecy is guaranteed after time-sharing with τ → 0 and
the achieved secrecy rate is as in (70).

One can further show, using the same arguments as in
Proposition 2 but without Phase 1 (since Cs0 = 0 in this case),
that the rate in (70) is also achievable under strong secrecy if
wiretap codes are used in Phase 2. In particular, (46) - (47)
do hold under the present configuration and (48) is replaced
by

I(X; ZŴ ) ≤ I(X; ZW ) = I(X; Z|W )
= I(X; X + V |V + ∆W )
≤ h(X + V )− h(V |V + ∆W )
≤ R0 < ∞ (76)

where R0 is as in (64) so that (49) does hold under strong
secrecy and, hence, the desired result follows. □

It may feel counter-intuitive that Cs = Rh > 0 for the
reversely-degraded WTC, even if the help is not secure, i.e.
also available to the Ev, since, in this case, the Ev is getting
more information than the Rx. However, one should also note
that, even though the Ev has the right (public) “key” T = Ŵn,
it does not have the right “lock” Wn to which this key applies
and hence it cannot “unlock” it (i.e., cancel its own noise),
unlike the legitimate Rx.

A related surprising observation follows from Theorem 2: in
the case of non-secure help, Cs = 0 if σ2

W = σ2
V (i.e. σ2

∆W =
0) but Cs = Rh > 0 if σ2

W > σ2
V , so that more noise at the

legitimate Rx is actually better for secrecy in this case. This
is due to the fact that the extra Rx noise ∆Wi ̸= 0 makes it
impossible for the Ev to cancel its own noise using non-secure
help Ŵn in the same way the Rx does (since Vi ̸= Wi in
this case). However, if ∆Wi = 0, then the Ev can do noise
cancellation in the same way the Rx does, which results in
Cs = 0 and renders the help useless. This also implies that
Cs(σ2

W ) is a discontinuous function at σ2
W = σ2

V .
To summarize, the weak or strong secrecy capacity Cs of

the degraded or reversely degraded wiretap channel with Rx
help of rate Rh (secure or not) is given by

Cs = Cs0 + Rh (77)

if either σ2
W ̸= σ2

V or else the help is secure, where, of course,
Cs0 = 0 for the reversely-degraded case. Thus, not only the
secrecy capacity is boosted by Rh for the degraded case, but
also the secrecy capacity is positive for the reversely-degraded
case, where it is zero without help, and, under weak secrecy,
this capacity is achievable by burst signalling without any
wiretap coding at all. Therefore, the choice of the secrecy
criterion (weak/strong) does not affect the capacity but only the
complexity of implementation: while weak secrecy does not
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require wiretap coding, strong secrecy does require a strong
enough wiretap code for Phase 2 (the only active phase for
the reversely-degraded WTC).

Similarly to the degraded WTC, Theorem 2 still holds even
if the helper H is aware of the message M being transmitted,
T = T (Wn, M), so that there is no boost in the secrecy
capacity due to the message being available to the helper.

Proposition 3: Consider the reversely-degraded WTC with
Rx help as in Theorem 2 and let the helper H be aware of
the message being transmitted, i.e. T = T (Wn, M). Then,
Theorem 2 still holds.

Proof: The converse follows since (53), (54) still hold
for T = T (Wn, M). The achievability holds since the helper
can always ignore the message. □

IV. NON-DEGRADED WTC WITH RX HELP

Let us now consider the case where the channel is neither
degraded nor reversely-degraded, as in Fig. 4:

Zi = Xi + Vi, Yi = Xi + Wi (78)

where the noise sequences V n and Wn are i.i.d but possibly
non-Gaussian and correlated with each other; the covariance
matrix of (Wi, Vi) is

RWV = E(Wi, Vi)(Wi, Vi)′

=
[

σ2
W rσW σV

rσW σV σ2
V

]
(79)

where r is the normalized correlation coefficient, |r| ≤ 1, and
(·)′ means transposition. This correlation may be due to e.g.
an external user’s signal acting as the noise affecting the Rx
and Ev. We further assume that its covariance matrix is not
singular, i.e. the determinant |RWV | ≠ 0, which is equivalent
to |r| < 1. If r = 0 and noises are Gaussian, then V n and
Wn are independent of each other.

For Gaussian noise, it is well-known that, without help,
this non-degraded WTC can be equivalently reduced to either
degraded or reversely-degraded one, since the Rx and Ev
performance depends on the marginal distributions of Wn

and V n, respectively, not on their joint distribution [1]. While
this is still true for secure Rx help (no Ev help), it is no
longer true for non-secure help since Ev performance now
depends on both V n and Wn. Thus, the secrecy capacity of
this channel can potentially be affected by correlation and does
not follow from that of the degraded or reversely-degraded
one. Yet, we show below that it is still Cs0 + Rh, irrespective
of r (as long as |r| < 1). For non-Gaussian noise, this becomes
a lower bound (since we are not able to establish the converse
in this case).

Theorem 3: Consider the non-degraded WTC as in Fig. 4
with i.i.d. (not necessarily Gaussian) noise sequences corre-
lated with each other as in (79) and with secure or non-secure
Rx help of rate Rh; let 0 < σ2

W , σ2
V , P < ∞ and h(W, V ) >

−∞. Its weak or strong secrecy capacity Cs is lower-bounded
as

Cs ≥ Cs0 + Rh (80)

and this holds with equality if noises are Gaussian and |r| < 1.

Fig. 4. Non-degraded wiretap channel with additive noises and a rate-limited
Rx help T ; noise sequences W n and V n are i.i.d. (but possibly correlated
with each other and non-Gaussian) and independent of M, Xn; σ2

W , σ2
V > 0;

h(W, V ) > −∞; Xn = Xn(M), T = T (W n), H(T ) ≤ nRh.

Proof: Converse: to establish the converse, we assume
that the noises are Gaussian and consider first the case of
secure Rx help (no Ev help). Note that, in this case, Ev’s
performance depends on V n only, not on Wn; likewise, Rx’s
performance depends on Wn only, not on V n. Hence, this
channel can now be equivalently reduced to degraded or
reversely-degraded case, for which the converse have been
established in Theorem 1 or 2, respectively, so that Rs ≤
Cs0 +Rh under both strong and weak secrecy. This argument
does not apply for non-secure Rx help. However, since the
availability of help to Ev cannot increase the secrecy rate, the
same upper bound still holds. This establishes the converse for
non-secure Rx help as well.

Achievability: To prove achievability under weak secrecy,
we do not assume that noises are Gaussian and use the same
two-phase signaling as in Theorem 1; if Cs0 = 0, no Phase
1 is needed. Since Phase 1 makes no use of help, its maximum
achievable secrecy rate is Cs0. On the other hand, Phase 2 rate
in (23) is not affected by noise correlation since it depends
on Wn only (not on V n) so that, after time sharing, the
weak secrecy rate is as in (36). To show that weak secrecy
is guaranteed after the two-phase time sharing, we show that
the leakage rate Rl2 of Phase 2 is uniformly bounded for any
τ :

Rl2 = n−1I(M2; ZnŴn|C) (81)

≤ n−1I(M2; ZnWn|C) (82)

≤ n−1I(Xn; ZnWn) (83)
≤ I0(X; ZW ) (84)
= h(X + V,W )− h(V,W ) (85)
≤ h(X + V ) + h(W )− h(V,W ) (86)

≤ 1
2

log
(
2πe(P + σ2

V )
)

+
1
2

log
(
2πeσ2

W

)
− h(V,W )

(87)
= R0 < ∞ (88)

where (83) follows from Markov chain (C, M2) − Xn −
(Zn, Wn); (84) holds since the channel is memoryless;
(87) holds since Gaussian distribution maximizes differential
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entropy and (88) holds since all terms in (87) are finite. In the
case of Gaussian noise, h(V,W ) > −∞ is equivalent to
|r| < 1, since

h(W, V ) =
1
2

log
(
(2πe)2|RWV |

)
=

1
2

log
(
(2πe)2σ2

W σ2
V (1− r2)

)
(89)

Thus, the overall leakage rate after two-phase time sharing is
arbitrarily low, as in (26), and the weak secrecy rate in (36)
is indeed achievable, as required.

To show that the same secrecy rate is achievable under the
strong secrecy criterion, one can follow the same steps as in the
proof of Proposition 2 by considering an equivalent channel
with wiretap coding for Phase 2, where the Ev link rate is
upper bounded as in (84)-(88) so that the rates in (49) and,
after time sharing, in (36) are achievable under strong secrecy.

□
Note that, if σ2

W ≥ σ2
V and both noises are Gaussian, then

Cs0 = 0 and Cs = Rh, i.e. if the Tx-Rx channel is weaker
than the Tx-Ev channel, the secrecy capacity with Rx help is
still positive (if Rh > 0) and independent of r (as long as
|r| < 1), even if the help is not secure. This also holds if
σ2

W = σ2
V , unlike the case of the reversely-degraded channel,

where Cs = 0 if σ2
W = σ2

V and the help is not secure. This
is due to Wn ̸= V n in the non-degraded channel (with non-
singular correlation) which makes the public “key” T = Ŵn

useful to the Rx only, but not to the Ev.
Similarly to the degraded and reversely-degraded WTCs, the

same secrecy capacity results even if the helper is aware of
the message being transmitted, T = T (Wn, M), under weak
or strong secrecy criterion.

V. THE DEGRADED WTC WITH TX HELP

Let us now consider the setting of Fig. 5 and extend
Theorem 1 to the scenario where rate-limited help is available
to the Tx, in addition to or instead of the Rx help. Unlike
the Rx help case where the causality of help is immaterial
(since the Rx starts decoding after the whole block of length
n is received), it becomes important for the Tx help setting.
Thus, we distinguish between causal Tx help, whereby at time
i the Tx help is based on the Rx noise sequence up to time i,
and non-causal Tx help, whereby the Tx help at time i = 1
(the very beginning of the transmission) is based on the whole
noise sequence Wn. Interestingly, the causality of Tx help has
no impact on the secrecy capacity (this mimics the respective
property of the no-Ev/no-secrecy channel capacity with Tx
help in [37]).

Theorem 4: Consider the degraded WTC as in in Fig. 5
with additive, possibly non-Gaussian noises, and causal or
non-causal Tx help of rate Rh, secure or non-secure, in addi-
tion to or instead of the same Rx help. Let 0 < σ2

V , P < ∞
and, in the case of non-Gaussian noises, h(V ) > −∞ and (5)
to hold. Its weak or strong secrecy capacity Cs satisfies

Cs ≥ Cs0 + Rh (90)

where Cs0 is the secrecy capacity without help. This holds
with equality if the help is not secure and noises are Gaussian.

Fig. 5. Degraded wiretap channel with additive (not necessarily Gaussian)
noise and a rate-limited help T at the Tx, Rx and Ev (T is not available
to the Ev if the help is secure). W n and V n are i.i.d. noise sequences,
σ2

V > 0; V n is independent of W n, Xn, M ; Xn = Xn(M, T ),
T = T (W n), H(T ) ≤ nRh.

Proof: We consider the case of non-secure help, from
which the case of secure help follows (since the availability
of help to the Ev cannot increase the secrecy rate). The
achievability is based on the two-phase flash signaling as in
Theorem 1, with noise pre-cancellation at the Tx (a.k.a. dirty-
paper coding, as in [37]) in Phase 2. The converse is based
on the functional relationship between the involved random
variables as well as the secrecy constraint, in addition to the
reliability and power constraints.

Converse: we assume that noises are Gaussian and prove the
converse under weak secrecy and when the same non-causal
non-secure help T is available to all ends, i.e. the Tx, Rx and
Ev as in Fig. 5. Clearly, the same converse will hold if no
Rx help is available, if the help is causal, or under strong
secrecy. Using the appropriate Markov chain and functional
relationships between the random variables, in addition to the
secrecy and reliability constraints, note the following:

nRs = H(M) (91)
≤ H(M |ZnT ) + nϵ (92)
= I(M ; Y n|ZnT ) + H(M |Y nZnT ) + nϵ (93)
≤ I(M ; Y n|ZnT ) + 2nϵ (94)
≤ I(Xn; Y n|ZnT ) + 2nϵ (95)
= I(Xn; Y n|T )− I(Xn; Zn|T ) + 2nϵ (96)
= h(Y n|T )− h(Y n|XnT ) (97)

− [h(Zn|T )− h(Zn|XnT )] + 2nϵ

= h(Wn + V n|T )− h(Wn|T ) + h(Y n|T ) (98)
− h(Zn|T ) + 2nϵ

≤ n

2
log(2πe(σ2

V + σ2
W )) + I(Wn; T )− h(Wn) (99)

+ h(Y n|T )− h(Zn|T ) + 2nϵ

=
n

2
log

σ2
V + σ2

W

σ2
W

+ H(T ) + h(Y n|T ) (100)

− h(Zn|T ) + 2nϵ

≤ nRh +
n

2
log

σ2
V + σ2

W

σ2
W

σ2
W + P

σ2
W + σ2

V + P
+ 2nϵ (101)
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= nRh +
n

2
log

(
1 +

P

σ2
W

)
− n

2
log

(
1 +

P

σ2
V + σ2

W

)
+ 2nϵ (102)

= n(Rh + Cs0 + 2ϵ) (103)

where (92) follows from the secrecy constraint I(M ; ZnT ) ≤
nϵ; (94) follows from Fano inequality (due to the reliability
constraint) H(M |Y nZnT ) = H(M |Y nT ) ≤ nϵ; (95) and
(96) follow from Markov chain M−Xn−Y n−Zn conditional
on T ; (98) is due to the independence of Xn and (Wn, V n)
conditional on T ; (99) follows since conditioning cannot
increase entropy; (100) is due to I(W ; T ) = H(T ); (101)
follows from Lemma 1 below. Since (103) holds for any ϵ > 0,
it follows that Cs ≤ Cs0 + Rh, as desired. Clearly, the same
inequality holds if T is not available to the Rx.

Lemma 1: The following inequality holds in the considered
setting:

∆h = h(Y n|T )− h(Zn|T ) ≤ n

2
log

σ2
W + P

σ2
W + σ2

V + P
(104)

Proof: It has been proved in [37, eq. (46)] that

h(Y n|T ) ≤ n

2
log(2πe(σ2

W + P )) (105)

(the proof is not trivial since Xn and Wn are not independent,
due to help T = T (Wn)). To bound h(Zn|T ) likewise, note
that

h(Zn|T ) =
∑

t

pT (t)h(Y n + V n|T = t) (106)

where pT (t) is the distribution of T . Using the entropy power
inequality

2
2
n h(Y n+V n|T=t) ≥ 2

2
n h(Y n|T=t) + 2

2
n h(V n|T=t) (107)

it follows that

h(Y n + V n|T = t) ≥ n

2
log(2

2
n h(Y n|T=t) + 2πeσ2

V ) (108)

and hence

h(Zn|T ) ≥ n

2
log

(
2

2
n

∑
t pT (t)h(Y n|T=t) + 2πeσ2

V

)
(109)

=
n

2
log

(
2

2
n h(Y n|T ) + 2πeσ2

V

)
where the inequality is due to the convexity of the log-sum-exp
function [44, p. 72]. Finally,

∆h ≤ h(Y n|T )− n

2
log

(
2

2
n h(Y n|T ) + 2πeσ2

V

)
(110)

≤ n

2
log(2πe(σ2

W + P )) (111)

− n

2
log

(
2log(2πe(σ2

W +P )) + 2πeσ2
V

)
=

n

2
log

σ2
W + P

σ2
W + σ2

V + P
(112)

as required, where the inequality is due to (105) and f(x) =
x − log(2x + c) being an increasing function of x for any
c > 0. □

Achievability: To establish the achievability under weak
secrecy, we do not assume that noises are Gaussian and
consider the case of causal help being available to the Tx

Fig. 6. Phase 2 signalling for the degraded WTC: the causal help T
is a scalar-quantized noise Ŵ n, Ŵi = Q(Wi), pre-subtracted at the Tx;
Xn = Xn(M2) is a codeword from i.i.d.-generated codebook, as in [37].

and Ev but not to the Rx. This will also establish achievability
when the same help is also available to the Rx or/and when Tx
help is non-causal (since adding Rx help or removing causal-
ity constraint cannot decrease achievable rates). Similarly to
Theorem 1, we use a two-phase signalling, where Phase 1 of
duration (1− τ) makes use of no-help regular wiretap coding
and thus achieves the secrecy rate Cs0 − ϵ for any ϵ > 0.
Phase 2 of duration τ is the same as in [37], which makes
use of regular (no-wiretap) coding and pre-substraction of the
scalar-quantized noise (available via the rate-limited help link)
at the Tx, as shown in Fig. 6:

Yi = Xi − Ŵi + Wi

Zi = Yi + Vi (113)

where Xn = Xn(M2) using i.i.d.-generated codebook C, T =
Ŵn is a scalar-quantized noise, Ŵi = Q(Wi), where the quan-
tizer uses L = ⌊2Rh/τ⌋ levels for each sample, which require
the average rate τ log(L) ≤ Rh to be transmitted over the help
link.5 For further use, note that V n ⊥ (Wn, Ŵn, Xn, M2)
and (Wn, Ŵn) ⊥ (V n, Xn, M2), where ⊥ means statistical
independence, so that the following Markov chains hold:

(M2, C)−Xn − Y n − Zn;

(M2, C)−Xn − (Zn, Wn, Ŵn) (114)

Following [37, eq. (24)], this Phase 2 signalling achieves the
rate arbitrary close to

Rh

τ
+

1
2

log
(

2−2Rh/τ +
12P

α3
W

(1− 2−Rh/τ )2[1 + o(1)]
)

=
Rh

τ
[1 + o(1)] (115)

where o(1) → 0 as as τ → 0. Thus, the overall two-phase
signalling rate (after time sharing) is

(1− τ)(Cs0 − ϵ) + τRh/τ(1 + o(1)) → Cs0 + Rh − ϵ
(116)

for any ϵ > 0, as τ → 0.
It remains to show that this rate is indeed weakly secure,

i.e. the information leakage rate to the Ev is arbitrary small.

5An alternative Phase 2 strategy using a simple lattice code with a uniform
scalar quantizer is proposed in [40].
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This is clearly the case in Phase 1 since regular wiretap
coding is used in this phase so that its leakage rate is Rl1 =
n−1I(M1; Zn) ≤ δ for any δ > 0 and sufficiently-large n.
To see that secrecy is guaranteed after two-phase time sharing
(even though no wiretap coding is used in Phase 2), we show
that Phase 2 leakage rate is uniformly bounded for any τ :

Rl2 = n−1I(M2; ZnŴn|C) (117)

≤ n−1I(Xn; ZnŴn|C) (118)

≤ n−1I(Xn; ZnŴn) (119)

≤ n−1I(Xn; ZnWn) (120)
≤ I0(X; ZW ) (121)
= I0(X; X + V ) (122)

≤ 1
2

log
(
P + σ2

V

)
− h(V ) = R0 < ∞ (123)

where (118) is due to Markov chain M2−Xn−ZnŴn; (119)
is due to Markov chain C−Xn−ZnŴn; (120) is due to Ŵn =
Q(Wn); (121) holds since the channel is memoryless; I0 is the
mutual information induced by input X with the distribution
p0(x) = n−1

∑
i pxi

(x); the last inequality in (123) holds
since all terms are finite.

Thus, the overall leakage rate after two-phase time sharing
is

Rl = (1− τ)Rl1 + τRl2 ≤ (1− τ)δ + τR0 → δ (124)

as τ → 0, for any δ > 0, as required.
To establish achievability under strong secrecy, we follow

the strategy of Proposition 2. The Phase 1 rate Cs0 − ϵ
holds under strong secrecy as well (since no help is used).
For Phase 2, noise pre-cancellation at the Tx is combined
with wiretap coding. After the pre-cancellation, the equivalent
channel is as in (113), where Ŵi is also available to the Ev,
so that an achievable strong secrecy rate is

Rs2 = I(X; Y )− I(X; ZŴ )− ϵ (125)

where first term is the rate of the legitimate link and it is
lower-bounded by (115),

I(X; Y ) ≥ Rh

τ
[1 + o(1)] (126)

while second term is the Ev link rate that is upper bounded
as in (121)-(123):

I(X; ZŴ ) ≤ I(X; ZW )

≤ 1
2

log
(
P + σ2

V

)
− h(V ) = R0 < ∞ (127)

so that

Rs2 ≥
Rh

τ
(1 + o(1))−R0 − ϵ =

Rh

τ
(1 + o(1)) (128)

and, after time sharing, (116) holds under strong secrecy as
well.

□
Note that, for Gaussian noises, the availability of the Rx

help, in addition to the Tx help, does not increase the secrecy
capacity (provided the help T is the same in both cases) so that
one help link can be omitted without affecting the capacity.

Fig. 7. Reversely-degraded wiretap channel with a rate-limited help T at the
Tx, Rx and Ev. ∆W n and V n are i.i.d. noise sequences, σ2

V , σ2
∆W > 0;

V n, ∆W n and M are independent of each other; Xn = Xn(M, T ),
T = T (W n), H(T ) ≤ nRh.

Similarly to the Rx help case, if σ2
V = 0 and the Tx (or

joint Tx/Rx) help is not secure, then the secrecy capacity is
zero, since the Ev has access to exactly the same information
as the Rx so that no secrecy is possible, i.e. Cs(σ2

V ) is a
discontinuous function at σ2

V = 0:

lim
σ2

V →0+
Cs(σ2

V ) = Rh > 0 (129)

while Cs(0) = 0.

VI. THE REVERSELY-DEGRADED WTC WITH TX HELP

Let us consider the reversely-degraded (possibly non-
Gaussian) WTC, as in Fig. 7, with Tx help, in addition to
or instead of the Rx help (T is not available to the Ev if help
is secure). While its secrecy capacity is zero without help, this
is not the case when help is present, even if it is not secure,
as the following Theorem shows.

Theorem 5: Consider the reversely-degraded WTC with
additive (not necessarily Gaussian) noises and causal or
non-causal Tx help of rate Rh, secure or not, in addition
to or instead of the same Rx help, as in Fig. 7. Let 0 <
σ2

V , σ2
∆W , P < ∞. In the case of non-Gaussian noise, let

h(V ), h(∆W ) > −∞ and (5) be satisfied. Then, the weak
or strong secrecy capacity Cs satisfies

Cs ≥ Rh (130)

and this holds with equality if the help is not secure.
Proof: It is sufficient to consider the case of non-secure

help since the case of secure one follows from it.
Converse: we prove the converse under weak secrecy and

when the same (non-secure non-causal) help T is available to
all ends, i.e. the Tx, Rx and Ev as in Fig. 7. Clearly, the same
converse will hold if no Rx help is available or if the help
is causal. First, note that (91)-(95) still hold, since channel
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Fig. 8. Phase 2 signalling for the reversely-degraded WTC: the causal help
T = Ŵ n is a scalar-quantized noise, Ŵi = Q(Wi), pre-subtracted at the
Tx; Xn = Xn(M2) is a codeword from i.i.d.-generated codebook.

degradedness plays no role there. Therefore,

nRs = H(M)
≤ I(Xn; Y n|ZnT ) + 2nϵ (131)
= I(Xn; Xn + V n + ∆Wn|Xn + V n, T ) + 2nϵ

(132)
= I(Xn; ∆Wn|Xn + V n, T ) + 2nϵ (133)
= h(∆Wn|Xn + V n, T ) (134)

− h(∆Wn|Xn, V n, T ) + 2nϵ

≤ h(∆Wn|T )− h(∆Wn|V n, T ) + 2nϵ (135)
≤ h(∆Wn|T )− h(∆Wn) + H(T ) + 2nϵ (136)
≤ H(T ) + 2nϵ (137)

where (135) follows from Markov chain Xn−T−(V n, ∆Wn)
(i.e., conditional independence of Xn and (V n, ∆Wn) given
T ) and since conditioning cannot increase the entropy; (136)
is due to

h(∆Wn|V n, T ) ≥ h(∆Wn)−H(T ) (138)

which in turn follows from

I(∆Wn; T |V n) = h(∆Wn|V n)− h(∆Wn|V n, T ) (139)
= h(∆Wn)− h(∆Wn|V n, T ) (140)
≤ H(T ) (141)

where (140) is due to the independence of ∆Wn and V n.
Since (137) holds for any ϵ > 0, it follows that Rs ≤
n−1H(T ) = Rh, as required.

Achievability: We start with weak secrecy and consider the
case where causal help T = Ŵn is a scalar-quantized noise,
Ŵi = Q(Wi), available to the Tx and Ev but not to the
Rx. Two-phase transmission is used again, where nothing is
transmitted in Phase 1 and regular (no wiretap coding) flash
signalling is used in Phase 2, where the latter achieves the
rate as in (115) so that, after time sharing, the achieved rate
is arbitrary close to

Rs = τ
Rh

τ
(1 + o(1)) → Rh (142)

as τ → 0. To see that this rate is indeed weakly-secure after
the time-sharing (i.e., the information leakage rate is arbitrary-
low), we show that the Phase 2 leakage rate is uniformly
bounded:

Rl2 = n−1I(M2; ZnŴn|C) (143)

≤ n−1I(Xn; ZnŴn|C) (144)

≤ n−1I(Xn; ZnŴn) (145)

= n−1I(Xn; Ŵn) + n−1I(Xn; Zn|Ŵn) (146)

= n−1I(Xn; Xn − Ŵn + V n|Ŵn) (147)

= n−1h(Xn + V n|Ŵn)− n−1h(V n|Ŵn, Xn) (148)

≤ n−1h(Xn + V n)− n−1h(V n|Ŵn) (149)

≤ 1
2

log
(
2πe(P + σ2

V )
)
− h(V ) +

1
2

log(2πeσ2
W )

− h(∆W ) = R0 < ∞ (150)

where (144) is due to Markov chain M2−Xn−ZnŴn; (145)
is due to Markov chain C−Xn−ZnŴn; (147) and (149) are
due to the independence of Xn and (V n, Ŵn); (150) follows
from

h(Xn + V n) ≤ n

2
log(2πe(P + σ2

V )), (151)

h(V n|Ŵn) ≥ h(V n|Wn) (152)
= h(V n)− h(Wn) + h(∆Wn) (153)

≥ nh(V )− n

2
log(2πeσ2

W ) + nh(∆W ) (154)

Thus, after time-sharing, which is equivalent here to Phase
2 only signaling, the leakage rate is

Rl = τRl2 ≤ τR0 → 0 (155)

when τ → 0, as required.
For strong secrecy, wiretap coding has to be added to noise

pre-cancellation and the equivalent channel is

Yi = Xi − Ŵi + Wi

Zi = Xi − Ŵi + Vi (156)

Following the strategy of Proposition 2, its achievable strong
secrecy rate is

Rs2 = I(X; Y )− I(X; ZŴ )− ϵ (157)

where

I(X; Y ) ≥ Rh

τ
[1 + o(1)] (158)

and, using (145)-(150), second term can be upper bounded as
follows

I(X; ZŴ ) ≤ R0 < ∞ (159)

where R0 is as in (150), so that

Rs2 ≥
Rh

τ
[1 + o(1)] (160)

and therefore the rate in (142) is achievable under strong
secrecy as well. □

We remark that, as in the reversely-degraded WTC with Rx
help, no wiretap coding is needed here to achieve its weak
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Fig. 9. Non-degraded wiretap channel with a rate-limited help T at the Tx,
Rx and Ev. W n and V n are i.i.d. noise sequences (possibly non-Gaussian
and correlated with each other) independent of M ; 0 < σ2

W , σ2
V , P < ∞;

h(W, V ) > −∞; Xn = Xn(M, T ), T = T (W n), H(T ) ≤ nRh;
conditional on T , Xn is independent of W n, V n.

secrecy capacity if the help is not secure. Burst signalling
alone (with regular coding) is sufficient and arbitrarily low
leakage rate can be achieved by reducing signaling interval
τ . The presence of help T at the Rx, in addition to the Tx,
does not increase the capacity. Even though the help is not
secure, it still boosts significantly the secrecy capacity, which
is zero without help. This is so since the help T serves here
as a public key: even though this key is available to the Ev,
it cannot make use of it since it does not have the right “lock”.

Similarly to the reversely-degraded WTC with Rx help,
Cs = 0 if σ2

∆W = 0 and help is not secure (since the Ev
receives the same information as the Rx so that no secrecy is
possible) and therefore Cs(σ2

∆W ) is discontinuous at σ2
∆W =

0:

Cs(σ2
∆W ) = Rh > 0 ∀ σ2

∆W > 0 (161)

while Cs(0) = 0, for any Rh > 0, i.e. more noise at the Rx
(σ2

∆W > 0) is better for the secrecy capacity of this channel.

VII. THE NON-DEGRADED WTC WITH TX HELP

Let us now consider the non-degraded wiretap channel
where Wn and V n are i.i.d. noise sequences, possibly
non-Gaussian and correlated with each other as in (79), see
Fig. 9 (if help is secure, T is not available to the Ev).
Similarly to the case of Rx help, this channel cannot be
equivalently reduced to degraded or reversely-degraded case
when help is present (even if it is secure). Its secrecy capacity
is characterized below.

Proposition 4: Consider the non-degraded WTC channel
with additive possibly non-Gaussian noises and secure or
non-secure Tx help of rate Rh, causal or non-causal, in addi-
tion to or instead of the same Rx help, as in Fig. 9, where the
noise sequences Wn and V n are i.i.d. but possibly correlated
with each other as in (79) and 0 < σ2

W , σ2
V , P < ∞. For

non-Gaussian noise, let h(W, V ) > −∞. Its weak or strong
secrecy capacity is lower bounded as follows:

Cs ≥ Cs0 + Rh (162)

Proof: To show the achievability of Cs0+Rh under weak
secrecy, we use the same two-phase signalling as in Theorem
4, where Phase 1 makes use of the standard wiretap codes
and no help and thus achieves the secrecy rate arbitrary close
to Cs0 (no Phase 1 is needed if Cs0 = 0). Likewise, Phase
2 makes use of standard (not wiretap) codes and pre-subtracts
quantized noise at the Tx, as in Fig. 6, and achieves the rate
as in (115) (regardless of the correlation), so that, after the
time sharing, the rate is as in (116). To show that this rate is
indeed secure, we show that Phase 2 leakage rate is uniformly
bounded for any τ . To this end, note that (118)-(121) still hold
since channel degradedness or noise correlation play no role
there so that

Rl2 ≤ I0(X; ZW ) (163)
= I0(X; X + V,W ) (164)
≤ h(X + V ) + h(W )− h(V,W ) (165)

≤ 1
2

log
(
2πe(P + σ2

V )
)

+
1
2

log
(
2πeσ2

W

)
− h(V,W )

(166)
= R0 < ∞ (167)

where (166) holds since Gaussian distribution maximizes
differential entropy and (167) holds since all terms in (166) are
finite. Therefore, the overall leakage rate after the two-phase
time sharing is arbitrary small as in (124), as required, and
the achieved rate in (116) is indeed secure.

Under strong secrecy, Phase 1 remains the same but
Phase 2 makes use of wiretap codes, in addition to noise
pre-cancellation, as for the previously-considered WTC con-
figurations. Using the equivalent channel as in Theorems 4
and 5, one can show that Phase 2 strong secrecy rate

Rs2 = I(X; Y )− I(X; ZŴ )− ϵ

≥ Rh

τ
[1 + o(1)]−R0 − ϵ

=
Rh

τ
[1 + o(1)] (168)

is achievable, where R0 is as in (167), so that, after time
sharing, the rate in (116) is achievable under strong secrecy
as well.

□
Thus, the Tx help of rate Rh, secure or non-secure, causal

or non-causal, brings in the secrecy capacity boost of at least
Rh in this configuration, regardless of the correlation (as long
as h(W, V ) > −∞ or, for Gaussian noises, |r| < 1). It is an
open question whether Cs = Cs0 + Rh.

VIII. INDEPENDENT TX/RX HELP LINKS

In the preceding sections, we have considered the scenarios
where the same help was available at the Tx and Rx and have
shown that the presence of Tx help in addition to the same
Rx help (or vice versa) has no impact on the secrecy capacity
and therefore one link can be removed without affecting the
capacity.

One may wonder whether this still holds if help links are
not identical. Therefore, we consider the scenario whereby
independent help links are available to the Tx and Rx of rate
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Fig. 10. Phase 2 signalling for the non-degraded WTC: Ŵ n = Q(W n)
is scalar-quantized noise, pre-subtracted at the Tx; Xn = Xn(M2) is a
codeword from i.i.d.-generated codebook.

Fig. 11. Degraded wiretap channel with independent help links to the Tx and
Rx of rate Rh1 and Rh2, respectively; the total help T = (T1, T2) is available
to the Ev (if help is not secure). W n and V n are i.i.d. noise sequences;
P, σ2

V > 0; V n is independent of W n, Xn, M ; Xn = Xn(M, T1),
T = T (W n), H(Tk) ≤ nRhk .

Rh1 and Rh2, respectively. The total help T is composite:
T = (T1, T2), where T1 is available to the Tx and T2 - to the
Rx while the whole help T is available to the Ev (in the case
of non-secure help); T1, T2 are independent of each other (e.g.
based on different parts of the i.i.d. noise sequence Wn) and
H(Tk) ≤ nRhk, k = 1, 2, so that

H(T ) = H(T1) + H(T2) ≤ Rh1 + Rh2 = Rh (169)

We consider first the degraded WTC as in Fig. 11.
Theorem 6: Consider the degraded WTC with causal or

non-causal Tx help of rate Rh1 and Rx help of rate Rh2

independent of each other (secure or not) as in Fig. 11, and
let 0 < σ2

V , P < ∞ and, in the case of non-Gaussian noises,
h(V ) > −∞ and (5) to hold. Its weak or strong secrecy
capacity Cs satisfies

Cs ≥ Cs0 + Rh1 + Rh2 (170)

where Cs0 is the secrecy capacity without help. This holds
with equality if help is not secure and noises are Gaussian.

Proof: To prove achievability, we use three-phase sig-
nalling combining Rx and Tx help in independent phases:

1) Phase 1 of duration (1− τ1 − τ2): the standard wiretap
coding is used without any help, as in Theorems 1, 4.

Fig. 12. Reversely-degraded wiretap channel with independent help links to
the Tx and Rx of rate Rh1 and Rh2, respectively; the total help T = (T1, T2)
is available to the Ev (if help is not secure). ∆W n and V n are i.i.d. noise
sequences independent of each other; σ2

∆W , σ2
V , P > 0; Xn = Xn(M, T1),

T = T (W n), H(Tk) ≤ nRhk .

2) Phase 2 of duration τ1: the same as for the Tx help in
Theorem 4 (flash signalling with noise pre-cancellation
using Tx help); no Rx help is used in this phase.

3) Phase 3 of duration τ2: the same as for the Rx help in
Theorem 1 (flash signalling with Rx help); no Tx help
is used in this phase.

Clearly, a secrecy rate arbitrary close to Cs0 is achievable
in Phase 1, as before. Likewise, based on Theorems 1 and
4, secrecy rates arbitrary close to Rh1/τ1(1 + o(1)) and
Rh2/τ2(1+ o(1)) are achievable in Phases 2 and 3, and, after
three-phase time sharing, a secrecy rate arbitrary close to

(1− τ1 − τ2)Cs0 + (Rh1 + Rh2)(1 + o(1))
→ Cs0 + Rh1 + Rh2 (171)

is achievable as τ1, τ2 → 0.
Converse: a key observation here is that the converse of

Theorem 4 still holds with T = (T1, T2). Indeed, (91) - (103)
do hold, where (94) holds since

H(M |Y nZnT ) ≤ H(M |Y nT2) ≤ nϵ (172)

(101) holds since Lemma 1 still holds, due to

h(Y n|T ) ≤ h(Y n|T1) ≤
n

2
log(2πe(σ2

W + P )) (173)

where the last inequality is due to (105), and since (106) -
(112) do hold with T = (T1, T2). □

Note that if Tx/Rx help links are independent of each other,
the secrecy capacity boost is their combined rate Rh1 + Rh2,
unlike the case of identical Tx/Rx help where the boost is just
an individual help rate, as in Theorem 4, and one of the two
help links can be removed without any effect on the capacity.

Next, we consider the reversely-degraded channel with
independent help links as in Fig. 12, where T1 and T2 are
independent of each other.

Theorem 7: Consider the reversely-degraded WTC with
independent causal or non-causal help links as in Fig. 12,
where 0 < σ2

W , P < ∞ and, in the case of non-Gaussian
noises, h(V ) > −∞ and (5) holds. Its weak or strong secrecy
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capacity Cs satisfies

Cs ≥ Rh1 + Rh2 (174)

This holds with equality if the help is not secure and noises
are Gaussian.

Proof: The achievability makes use of the three-phase
signaling as in Theorem 6 where nothing is transmitted in
Phase 1. The converse is established by observing that (131)-
(141) still hold with T = (T1, T2). □

For the non-degraded channel with independent Tx/Rx help
links, it can be shown, in a similar way, that Proposition 4
still holds with Rh = Rh1 + Rh2.

Thus, in all considered configurations, the independent
Tx/Rx help links provide additive boost Rh1 +Rh2 in secrecy
rates, unlike the same help links whereby one link can be
omitted without affecting the capacity. This mimics the
respective property of the no-Ev channel with independent
help links in [38].

Finally, one may envision the case of composite help T =
(T1, T2) where T1, T2 are not independent of each other but
are not identical either (which may be due to e.g. certain
limitations in the system architecture). In this case, if the help
is not secure and noises are Gaussian, it is not difficult to see
that Theorems 6 and 7 still hold with

Cs0 + max{Rh1, Rh2} ≤ Cs ≤ Cs0 + Rh (175)

where Cs0 = 0 for the latter, and H(T ) ≤ nRh, so that
the boost in the secrecy capacity is at least max{Rh1, Rh2}
(and this lower bound is achievable with one help link
only). It remains to be seen whether the upper bound is
achieved with equality, i.e. whether the boost is actually
Rh > max{Rh1, Rh2}.

IX. CONCLUSION

The SISO wiretap channel with additive (not necessarily
Gaussian) noise and with rate-limited help at the receiver
(decoder) or/and the transmitter (encoder) was studied and
its weak/strong secrecy capacity has been established under
various channel configurations (degraded, reversely degraded
and non-degraded) with secure or non-secure help. In all
considered WTC and helper configurations, Cs0 +Rh is either
the (weak or strong) secrecy capacity or an achievable rate.
In most cases, it is the former, i.e. the rate-limited help results
in the secrecy capacity boost (compared to the standard “no
help” case) equal to the help rate, so that positive secrecy
rate is achievable even for reversely-degraded channel, where
the secrecy capacity is zero without help. In fact, the weak
secrecy rate Rh is achievable for any WTC configuration
without any wiretap codes at all and this strategy is optimal
for the reversely-degraded WTC. This may be attractive for
many applications which do not require excessive security.

Surprisingly, secure Rx help does not result in higher
capacity compared to non-secure one and stronger noise
at the legitimate receiver can sometimes be beneficial for
secrecy capacity. When Tx and Rx help links are identical
(carry the same help), any one can be removed without
affecting the capacity. However, when the help links are

independent, the boost in secrecy capacity equals to the sum
of help rates and no one link can be omitted without loss in
the capacity. Non-singular Rx and Ev noise correlation has
no impact on the secrecy capacity. In the case of Rx help,
secure or non-secure, the secrecy capacity is not increased
even if the helper is aware of the message being transmitted.
The choice of the secrecy criterion (weak/strong) affects the
complexity of implementation but not the secrecy capacity.
In the case of non-secure Tx help, non-causal help does not
bring in any increase in the secrecy capacity over the causal
one. Comparing the above results to those for the no-Ev
channel with help in [36], [37], and [38], we conclude that the
boost in capacity equal to the help rate comes with secrecy
“for free”. It remains to be seen whether the secrecy of Tx help
or helper’s knowledge of the message brings in any increase
in the secrecy capacity.
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