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Abstract—The impact of random errors in element locations
and beamforming phases on the performance of massive multiple-

input multiple-output (MIMO) systems and their ability to
cancel inter-user interference (IUI) are studied. For an arbitrary
array geometry, user orthogonality, also known as ”favorable
propagation” (FP), is shown to hold asymptotically for the
perturbed array as long as it holds for the unperturbed one,
for independent (possibly non-Gaussian) errors. This means that
small errors do not have catastrophic impact on the FP, even
for a large number of antennas, and IUI can be reduced to
any desired level. The negative impact of random errors is to
slow down the convergence to the asymptotic value so that more
antennas are needed under random errors to achieve the same
low IUI as without errors. Practical design guidelines are given as
to what implementation accuracy is needed to make the impact
of random errors negligible and a closed-form estimate of IUI
under random errors is presented. The analytical results are
validated via numerical simulations and are in agreement with
measurement-based studies.

I. INTRODUCTION

Since the seminal work by Marzetta [1], massive MIMO

(mMIMO) has being attracting significant and increasing at-

tention, both in academia [2][3] and industry, especially for

5/6G applications [4][5]. Its main advantage is a significant

increase in spectral and energy efficiency as well as simplified

processing in multi-user environments [2]-[6]. This is due to a

phenomenon known as ”favorable propagation” (FP), whereby

different users’ channels become orthogonal (or nearly so) to

each other when the number of base station antennas increases,

thereby substantially reducing inter-user interference (IUI),

even with simple linear processing [6], to any desired value

provided the number of antennas is large enough.

The FP property, which ensures that low IUI is achievable,

has been studied both theoretically [6]-[8] and experimen-

tally [9]-[11]; antenna array geometry and wireless channel

properties were identified as key factors affecting the FP. In

particular, it was shown, using the law of large numbers,

that the FP holds in i.i.d. fading channels [2][6]. However,

the i.i.d. fading assumption neglects the impact of antenna

array geometry and is justified provided that (i) multipath is

rich enough (without a single dominant component) and (ii)

antenna spacing is large enough. If either of these conditions

is violated, e.g. if there is a dominant line-of-sight (LOS)

component, then the i.i.d. assumption does not hold anymore.

In fact, the LOS environment is extreme opposite of i.i.d.

fading and is considered to be ”particularly difficult” for users’

orthogonality and mMIMO system performance [9]; the law

of large numbers is not applicable in this case. Real-world

channels are expected to be somewhere in-between of these

2 extremes [6][7]. mMIMO in LOS environment was studied
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in [6]-[8] and the FP was shown to hold for various array

geometries under fairly broad conditions.

However, the above studies assume perfect channel knowl-

edge/estimation, perfect element location or array calibration,

no inaccuracies in beamforming weights etc. In practice, such

perfect setting is hardly possible as implementation inaccura-

cies and tolerances always exist. It is not clear whether the FP

property will still hold under such inaccuracies, when the num-

ber of antennas increases without bound. The robustness prop-

erty, whereby small perturbations/errors in element locations,

beamforming weights etc. do not have a catastrophic impact

on the performance, is desirable from a practical perspective,

especially for mmWave and THz systems, where the impact

of implementation inaccuracies becomes more pronounced; in

addition, the presence of phase noise also becomes a major

issue affecting the system performance.

The impact of implementation inaccuracies/errors on the tra-

ditional antenna arrays has been studied and robust beamform-

ing strategies have been proposed, including the well-known

diagonal loading technique and its modifications [12][13]. A

general conclusion is that, under proper design, small errors

do not have a catastrophic impact on the performance. Similar

results were established for uncertain MIMO channels as

well [14]. However, the above results apply to the traditional

settings (not mMIMO) and it remains unclear whether they

still holds in the mMIMO setting and apply to the FP/user or-

thogonality as well (especially because increasing the number

of antennas to very large values has a potential to ”amplify”

small per-element errors and generate a large aggregate effect

thereby destroying the FP/user orthogonality).

This paper studies the robustness of the FP/user orthogo-

nality and low IUI in mMIMO to random errors in element

locations and beamforming phases. Both Gaussian and non-

Gaussian error distributions are allowed. We show that, for an

arbitrary array geometry, the FP/user orthogonality holds for

the perturbed array under random independent errors as long

as it holds for the nominal array (i.e. the one without errors),

see Theorem 1. Based on this, a closed-form estimate of IUI

power is proposed and conditions for errors to be negligible

are given. We further show that while random errors do not

affect the FP asymptotically, they have a profound negative

impact on the convergence speed to the asymptotic value as

the number N of antennas increases: while the IUI power

scales as N−2 for the nominal array (no errors), it scales only

as N−1 for the perturbed array, which is a similar scaling as

in the i.i.d Rayleigh fading channel [7], so that more antennas

are needed to achieve the same low IUI under random errors.

II. SYSTEM MODEL

Let us begin with the standard basedband model [6]

whereby a base station (BS) equipped with an N -elements

2023 IEEE Information Theory Workshop (ITW)

979-8-3503-0149-6/23/$31.00 ©2023 Crown 440

20
23

 IE
EE

 In
fo

rm
at

io
n 

Th
eo

ry
 W

or
ks

ho
p 

(I
TW

) |
 9

79
-8

-3
50

3-
01

49
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IT
W

55
54

3.
20

23
.1

01
60

24
5

Authorized licensed use limited to: University of Ottawa. Downloaded on February 03,2024 at 00:34:40 UTC from IEEE Xplore.  Restrictions apply. 



antenna array serves M single-antenna users simultaneously:

y(t) = h1x1(t) +

M
∑

i=2

hixi(t) + ξ(t) (1)

where y(t) is the vector signal received by the BS at time

t, ξ(t) is a zero-mean white Gaussian circularly-symmetric

noise vector of variance σ2
0 per dimention; hi and xi(t) are

the channel vector and transmitted signal of user i, i = 1...M ,

respectively; |h|, h′ and h+ denote Euclidean norm (length),

transposition and Hermitian conjugation, respectively.

To detect user 1 (the main user) signal x1(t), a linear

beamforming is used (which is attractive due to its simplicity,

robustness and suitability for parallel/distributed implimenta-

tion) [6], and the other users’ contribution
∑M

i=2 hixi(t) is

treated as interference. The main user SINR can be expressed

as follows:

SINR =
|w+

1 h1|2σ2
x1

∑M
i=2 |w

+
1 hi|2σ2

xi
+ |w1|2σ2

0

(2)

=
|α11,N |2γ1

∑M
i=2 |α1i,N |2γi + 1

≤ γ1 (3)

where σ2
xi and γi = |hi|2σ2

xi/σ
2
0 are the transmitted signal

power and the received SNR of user i, respectively; w1 is the

beamforming vector for detecting user 1 and

α1i,N =
w+

1 hi

|w1||hi|
(4)

where |α11,N |2 ≤ 1 represents the normalized channel power

gain of the main user; |α1i,N |2 ≤ 1, i = 2...M , is the IUI

power ”leakage” factor of user i to the main user. The channel
is normalized so that |hi|2 = N and the propagation path loss

is absorbed into the single-user SNR γi.
In the case of no perturbations/errors, the channel is known

precisely and the beamforming weights are also set precisely

(as is usually assumed in the literature [6]-[8]). In this case

and for the matched filter beamforming (also known as

maximum ratio combining, which maximizes the single-user

SNR), w1 = h1, where h1 is the user 1 channel, so that

α11,N = 1. Under this condition, the upper bound in (3)

is attained with equality and thus the SINR is maximized

achieving its single-user value, if the total IUI power ”leakage”

vanishes,
∑M

i=2 |α1i,N |2 = 0. This favorable condition can be
approached, in certain scenarios, by increasing the number

of antennas, which is known as (asymptotically) favorable

propagation [6]-[8]. For a finite number of users and for

uniformly-bounded per-user SNRs, the FP holds if

lim
N→∞

M
∑

i=2

|α1i,N |2 = 0 or lim
N→∞

|α1i,N |2 = 0 ∀i > 1 (5)

so that IUI becomes negligible and the SINR approaches its

maximum, SINR = γ1 (single-user value), as N increases.

Note that, when the FP holds, users become orthogonal to each

other and the performance of matched filtering, zero-forcing

and MMSE receivers are the same.

In the case of random errors, (5) cannot be used anymore

since α1i,N becomes a random sequence and thus the limits

in (5) do not exist (in the deterministic sense). Hence, an

extension of the FP/user orthogonality condition in (5) is

needed to accommodate random errors. This is done in the

next section.

III. THE IMPACT OF LOCATION AND PHASE ERRORS

Let us consider an N -element antenna array of arbitrary

geometry where element locations as well as beamforming

phases are subject to random errors (perturbations). In par-

ticular, the actual location vector pn of n-th antenna array

element is

pn = p0
n +∆pn, n = 1...N (6)

where p0
n is the nominal location vector and∆pn is its random

offset, all measured in wavelengths. Following [6]-[8], we

consider the LOS environment since there are many important

LOS application scenarios and because it presents an extreme

opposite of iid Rayleigh fading and is particularly difficult for

the FP (practical channels are somewhere in-between). In this

case, the normalized channel vector entries for user i can be

expressed as [6][12]

hin = exp(j2πu+
i pn), i = 1..M, n = 1...N, (7)

where i and n are user and element indexes, ui is the unit

direction vector for user i.
When matched filtering is used to detect user 1 signal, the

beamforming weights w1 = [w1, ..., wN ]′ are matched to user
1 nominal (rather than actual) channel vector h0

1, whose entries

are h01n = exp(j2πu+
1 p

0
n) and are perturbed in phase as

well, typically due to imperfect phase shifters and quantization

errors, so that

wn = exp(j2πu+
1 p

0
n + j∆φn) (8)

where ∆φn are beamforming phase errors; following the

widely-accepted approach [12], they are modeled as zero-mean

i.i.d. random variables. Likewise, ∆pn are also modeled as

zero-mean i.i.d. random vectors. Unlike the existing studies,

we do not assume here that they are Gaussian, so non-Gaussian

distributions are allowed as well.

Using (7) and (8), α1i,N can be expressed as

α1i,N =
1

N

N
∑

n=1

ejΨin , Ψin = Ψ0
in +∆Ψin (9)

Ψ0
in = 2π(ui − u1)

+p0
n (10)

∆Ψin = ∆ψin −∆φn (11)

where Ψ0
in represents phase differences of i-th and 1st users’

signals for the nominal array; ∆ψin = 2πu+
i ∆pn represents

extra phase shifts due to element location errors. The corre-

sponding IUI leakage factor of the nominal array is

α◦
1i,N =

1

N

N
∑

n=1

ejΨ
◦

in (12)

Since, under random errors above, |α1i,N |2 is a random se-

quence (indexed byN ), (5) cannot be used since the respective

limits do not exist in the deterministic sense. Therefore, one

has to use a notion of stochastic convergence. The following

definition gives 3 such notions, which are widely used in many

areas of stochastic analysis and applications; this is a slight

extension of the definition in [15, p. 306].
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Definition 1. A sequence z1, z2, ... of random variables con-

verges to a deterministic sequence a1, a2, ... in the mean

square sense (mse), zN
mse
−−→ aN , if

lim
N→∞

E{|zN − aN |2} = 0 (13)

zN converges in probability to aN , zN
Pr
−→ aN , if, for any

ǫ > 0,

lim
N→∞

Pr{|zN − aN | > ǫ} = 0 (14)

zN converges to aN almost surely (a.s.) or with probability

one, zN
a.s.
−−→ aN , if

Pr
{

lim
N→∞

(zN − aN ) = 0
}

= 1 (15)

where the probability applies to the set of all events where the

limit exists and equals to 0.

We will further use → (without a superscript) to denote

stochastic convergence in all 3 senses above as well as the

regular (deterministic) convergence when all related sequences

are deterministic. Note that (13) and (15) imply (14) but the

converse is not true in general [15].

A few remarks are in order as to why these 3 different

modes of convergence are needed here. First, mean square

error is a time-tested tool in many areas of communications,

signal processing and stochastic control, including robust

beamforming [12][13], so its use is appropriate here. It ensures

that random IUI zN converges to its mean value aN in the

MSE sense. Second, Pr{|zN−aN | > ǫ} is the probability that
the deviation of random IUI from its mean is not small. This is

akin to outage probability widely used in may areas of wireless

communications. In fact, it becomes the outage probability if

one designs a system based on the mean IUI and the actual

random IUI deviates significantly from this design. Lastly, (15)

is needed since, even if (14) holds, it does not guarantee that

|zN −aN | cannot become arbitrary large (i.e., large deviation)
for infinitely-many N [16, p. 237]. Such a guarantee, that

|zN−aN | becomes and stays small as N increases, is provided

by (15) (the set of all events where this does not hold has a

combined probability measure of zero, i.e. extremely unlikely

to be encountered in the real world). It comes the closest to the

deterministic convergence and guarantees that once a mMIMO

design is acceptable for a given (large) numberN0 of antennas,

it will also remain acceptable for any N > N0. In fact, the

results we establish below hold for all 3 modes of convergence,

which also ensures that they are not an artifact of a particular

definition used.

Next, we replace the deterministic limits in the FP definition

in (5) by the stochastic convergence modes in Definition 1.

Upon this replacement, the FP holds under random perturba-

tions if, as N → ∞,

|α1i,N |2 → 0 ∀i > 1 (16)

The following Theorem establishes the FP property (16) for

a perturbed array of arbitrary geometry for all 3 convergence

modes above.

Theorem 1. Under i.i.d. Gaussian perturbations, the FP holds

for a perturbed array defined above if and only if (iff) it holds

for a nominal (unperturbed) one,

|α1i,N |2 → 0 iff lim
N→∞

|α◦
1i,N |2 = 0 (17)

If perturbations are non-Gaussian, (17) holds if ci =
E{ej∆Ψin} 6= 0. Otherwise, if ci = 0, the FP always holds for

the perturbed array, even if it does not hold for the nominal

one. The following convergence holds in all considered cases:

|α1i,N |2 → E{|α1i,N |2} (18)

= |ci|
2|α◦

1i,N |2 + (1 − |ci|
2)N−1 (19)

→ |ci|
2|α◦

1i,N |2 (20)

Proof. First, we prove (18) in the MSE sense. To simplify

notations, let αN = α1i,N , α
o
N = α◦

1i,N . Using (13) with

zN = |αN |2, aN = E{|αN |2}, note that it is equivalent to

Var{|αN |2} = E{|αN |4} − (E{|αN |2})2 → 0 (21)

as N → ∞. Finding the variance in (21) is rather involved

since the fourth moment analysis is complicated. Hence, we

present an upper bound and prove that it tends to zero as

N → ∞. To this end, let us show that E{|αN |4} can be

”sandwiched” via |E{αN}|4.

Lemma 1. E{|αN |4} can be bounded as follows:

|E{αN}|4 ≤ E{|αN |4} ≤ |E{αN}|4 + 12N−1 (22)

Proof. First, we prove the upper bound. Using (9), one obtains

E{|αN |4} =
1

N4

∑

n1..n4

E{ej(Ψin1
−Ψin2

+Ψin3
−Ψin4

)} (23)

where 1 ≤ nk ≤ N . Since ejΨin
k are independent for different

nk, we divide the total set St = {{n1, n2, n3, n4}, 1 ≤
nk ≤ N} into the set of distinct indices Sd =
{{n1, n2, n3, n4}, ni 6= nj , ∀i 6= j} and its complementary

set Sc
d = St − Sd. To simplify the derivations, define

βi,n1..n4
=

4
∏

k=1

E{zink
}, β′

i,n1..n4
= E{

4
∏

k=1

zink
} (24)

where zink
= ej(−1)k+1Ψin

k . Using (23),

E{|αN |4} =
1

N4

∑

n1..n4

β′
i,n1..n4

(25)

=
1

N4
{
∑

n1..n4

βi,n1..n4
+
∑

Sc

d

(β′
i,n1..n4

− βi,n1..n4
)} (26)

≤ |E{αN}|4 +N−4
∑

Sc

d

|β′
i,n1..n4

− βi,n1..n4
| (27)

≤ |E{αN}|4 + 12N−1 (28)

where (27) is due to the triangle inequality.

Next, a lower bound on E{|αN |2} follows from Jensen’s

inequality since | · |2 is convex [15, p. 229]:

E{|αN |2} ≥ |E{αN}|2 (29)

Using the equality in (21) in combination with (22) and (29),

Var{|αN |2} ≤ 12N−1 → 0 (30)

Finally, using (30) and (13) with zN = |αN |2, aN =
E{|αN |2}, one obtains |αN |2

mse
−−→ E{|αN |2}, which also

implies |αN |2
Pr
−→ E{|αN |2}.

The almost sure convergence, |αN |2
a.s.
−−→ E{|αN |2}, fol-

lows, after some manipulations, from an extension of [17, The-

orem 1] to two-dimensional sequences with non-zero means.
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This establishes (18) for all 3 convergence modes. Let us now

evaluate E{|αN |2} to establish (19):

E{|αN |2} = N−1 + |E{αN}|2 −N−2
∑

n

|E{ejΨin}|2 (31)

since Ψin are independent for different n, and

E{ejΨin} = cie
jΨ0

in , ci = E{ej∆Ψin} (32)

where |ci| ≤ 1 and ci is independent of n since the distribution
of∆Ψin is independent of n (due to i.i.d. perturbations). Next,
using (32) and (9), one obtains:

E{αN} = N−1
N
∑

n=1

E{ejΨin} = ciα
◦
N (33)

where (33) follows from (12). Using (31)-(33), (19) follows:

E{|αN |2} = N−1 + |ci|
2|α◦

N |2 −N−1|ci|
2 (34)

This implies limN→∞ E{|αN |2} = |ci|2 limN→∞ |α◦
N |2.

Therefore, if ci 6= 0,

lim
N→∞

E{|αN |2} = 0 iff lim
N→∞

|α◦
N |2 = 0 (35)

and, since |αN |2 → E{|αN |2} as proved above, (17) follows.

For Gaussian perturbations, from (43), ci = E{ej∆Ψin} =
e−δ2/2 6= 0. For non-Gaussian perturbations, ci = 0 is

possible, in which case |αN |2 → E{|αN |2} → 0, even if

limN→∞ |α◦
N |2 6= 0, as follows from (34). This completes the

proof.

IV. THE DISTRIBUTION AND A BOUND FOR |αN |2

Eq. (18) implies that, for large N , E{|αN |2} can be used

as an estimate of actual IUI |αN |2 = |α1i,N |2. However, as
Fig. 2 below shows, random fluctuations of |αN |2 do exists

for finite N and, hence, should be taken into account for a

more reliable design. A simple way to accomplish this is via

the following upper bound, which holds with high probability

for large N and sufficiently-large m,

|αN |2 / |αup
N |2 = E{|αN |2}+mσ|αN |2 (36)

where σ2
|αN |2 = Var{|αN |2} is the variance, m = 1..3

controls the outage probability (i.e. the probability that |αN |2

exceeds the bound |αup
N |2) and the design is based on |αup

N |2.
As Fig. 2 below shows, using m = 0 is not sufficient and

m = 1..3 provides more reliable design, with larger m
corresponding to smaller outage probability.

To estimate σ|αN |2 for large N , note, from the central limit

theorem [15, p. 406], that the real αN1 and imaginary αN2

parts of αN = αN1 + jαN2 are asymptotically Gaussian and

hence can be approximated, for large N , as

αNk ∼ N (E{αNk}, σ
2
Nk), k = 1, 2 (37)

where σ2
Nk = Var{αNk} and, using (33), E{αN} = ciα

0
N .

After some manipulations,

σ2
Nk =

1

2
σ2
N −

(−1)k

2N
Re{(c′i − c2i )β

o
N} ≈

1

2
σ2
N (38)

σ2
N = Var{αN} = N−1(1 − |ci|

2), c′i = E{ej2∆Ψin} (39)

where βo
N = N−1

∑N
n=1 e

j2Ψ0
n is the nominal IUI leakage

factor at double the frequency. One can further show that

10
1

10
2

10
3

N

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

V
a

r{
|

N
|2

}

p
=  = 0.01, MC

p
=  = 0.01, eq. (41)

p
=  = 0.1, MC

p
=  = 0.1, eq. (41)

0.1

0.01

Fig. 1. Monte-Carlo (MC) simulated Var{|αN |2} and its approximation in
(41) in the presence of zero-mean i.i.d. Gaussian errors of variances σ2

p and

σ2

φ
, for the ULA with d = 0.5, the user angles-of-arrival are θ1 = 0, θi =

π/8 (with respect to the array broadside). The MC variance was evaluated
over 100 trials generated independently for each N .

αN1 and αN2 are asymptotically uncorrelated and hence

independent so that, for large N , the IUI is distributed as

|αN |2 = α2
N1 + α2

N2 ∼ 0.5σ2
Nχ

2
2(λ) (40)

where χ2
2(λ) is the non-central chi-squared random variable

with 2 degrees of freedom and the noncentrality parameter

λ = 2σ−2
N |E{αN}|2. Using the variance of χ2

2(λ) in [18, p.

447], Var{|αN |2} can be approximated as

σ2
|αN |2 = Var{|αN |2} ≈ σ4

N + 2|ci|
2|α0

N |2σ2
N (41)

which can be used in (36) to evaluate |αup
N |2. The accuracy of

these approximations is examined in the next section.

V. EXAMPLES AND DISCUSSION

To validate and illustrate the above results, consider a

uniform linear array (ULA) with the nominal element spacing

d = 1/2 measured in wavelengths. The perturbed array has

location and phase errors, which are zero-mean i.i.d Gaussian

of variances σ2
p and σ

2
φ. It follows that ∆Ψin is also zero mean

Gaussian of variance

δ2 = 4π2σ2
p + σ2

φ (42)

and therefore (see e.g. [12, p. 68])

ci = E{ej∆Ψin} = e−δ2/2 ≤ 1 (43)

To validate the approximation in (41), Fig. 1 compares it to

Monte-Carlo (MC) simulated Var{|αN |2}. Note that the two
agree well with each other over the whole range of N . The

qualitatively-different behaviour of Var{|αN |2} for smaller

and larger σp,φ can be explained using (41) as follows. In

the large error regime σp,φ = 0.1, σ2
N is larger and hence the

first term σ4
N in (41) dominates, Var{|αN |2} ≈ σ4

N , which

decreases monotonically with N , as in (39). In the small error

regime σp,φ = 0.01, the 2nd term 2|ci|2|α0
N |2σ2

N in (41)

dominates until about N = 100 and hence Var{|αN |2} ≈
2|ci|2|α0

N |2σ2
N , which exhibits an oscillatory decrease with N

due to |α0
N |.

Next, Fig. 2 illustrates the behaviour of the IUI factors

as N increases. Clearly, the random IUI |αN |2 (generated

according to (9)-(11)), its mean E{|αN |2} and nominal |α◦
N |2

values decrease with N , in agreement with Theorem 1. Note

that |αN |2 one exhibits statistical fluctuations due to random
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location and phase errors generated independently for each N ,

and |α◦
N |2 shows the fastest decrease. Also note significant

difference between the random IUI |αN |2 and its mean value

E{|αN |2}, so that the latter can hardly serve as a reliable

estimate of the former for finite N (even though both converge

to 0 as N → ∞). The more conservative upper bound in (36)

accounts for random fluctuations and allows for more reliable

design (with small outage probability); even m = 1 may not

be sufficient, especially for N > 100, and m = 3 provides a

more reliable design.

Fig. 3 illustrates the IUI factors for σp = σφ = 0.01, i.e. in a
small perturbation regime. Note that here, in a stark contrast to

Fig. 2, all three, the random IUI, its mean and nominal values

behave similarly until about N = 100, making the impact

of random errors almost negligible. This can be explained via

(18) and (19), whereby 1st term of (19) dominates in the small

perturbation regime, for which |ci| ≈ 1 and therefore

(1− |ci|
2)N−1 ≪ |ci|

2|α◦
N |2 (44)

so that, from (18), |αN |2 ≈ E{|αN |2} ≈ |α◦
1i,N |2, i.e. the

random and nominal IUI leakage factors are almost the same,

making the impact of random perturbations negligible. Using

(43) for Gaussian perturbations, (44) is equivalent to

δ2 ≪ ln(1 +N |α◦
N |2) (45)

which quantifies the notion of small perturbation regime,

where the impact of location and phase errors is negligible,

i.e. all 3 IUI leakage factors are approximately the same. We

caution the reader not to interpret (45) as that large errors

are tolerable for larger N (and especially that arbitrarily-

large errors are allowed as N → ∞). The reason is that

α◦
N also depends on N and, in many cases, |α◦

N |2 ∼ N−2

so that the overall scaling of the upper bound in (45) is as

ln(1 + N−1) ∼ N−1, i.e. just the opposite of what naive

interpretation would suggest.

It follows from Theorem 1 that, if the FP holds for

the nominal array, then |αN |2, E{|αN |2}, |α◦
N |2 → 0 as

N → ∞. Note, however, that while their convergence point

is the same, the convergence speed is significantly different:

while for the nominal array in many cases (e.g. an ULA with

fixed element spacing, distinct AoAs and no grating lobes)

|α◦
N |2 ∼ N−2, i.e. 20 dB per decade, for the perturbed one

|αN |2, E{|αN |2} ∼ N−1, i.e. 10 dB per decade, so that the

impact of random errors, even if the FP holds, is to slow down

the convergence from N−2 to N−1 and, hence, more antennas

are needed to achieve the same low IUI leakage under random

errors. As a further confirmation of this result, the N = 100
point in Fig. 2, where the IUI is about -20 dB under random

errors, agrees well with the respective experimental results in

[10, Fig. 11].
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