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Structural Design of Non-Uniform Linear Arrays for
Favorable Propagation in Massive MIMO
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Abstract— Favorable propagation (FP) for massive
multiple-input multiple-output (MIMO) systems with uniform
and non-uniform linear arrays is considered. A gap in the
existing FP studies of uniform linear arrays is identified, which
is related to the existence of grating lobes in the array pattern
and which results in the FP condition being violated, even
under distinct angles of arrival. A novel analysis and design
of non-uniform linear arrays are proposed to cancel grating
lobes and to restore favorable propagation for all distinct angles
of arrival. This design is consistent with the popular hybrid
beamforming paradigm and extends to multipath channels and
arrays of directional elements.

Index Terms— Massive MIMO, favorable propagation, non-
uniform linear array, grating lobe.

I. INTRODUCTION

MASSIVE MIMO is widely accepted as one of the key
technologies for 5G and beyond. It provides significant

improvements in spectral and energy efficiencies as well as
simplified processing in multi-user environments, due to a
phenomenon known as “favorable propagation”, whereby the
channel vectors of different users become orthogonal to each
other as the number of antennas increases [1], [2], [3], [4].
While they are not exactly orthogonal to each other in practice,
it has been shown theoretically and experimentally that the FP
holds approximately in many scenarios of practical interest so
that the benefits of massive MIMO can be exploited [1], [2],
[3], [4], [5], [6], [7], [8].

Favorable propagation for uniform linear arrays (ULA) was
studied analytically in [1], [2], [3], and [4] and experimentally
in [5], [6], [7], and [8]. Antenna array geometry and propaga-
tion environment along with users’ locations were identified as
the key factors determining the existence or non-existence of
the FP. It was concluded that, for a fixed antenna element
spacing and line-of-sight (LOS) propagation, the FP holds
asymptotically (as the number of antenna elements increases
without bound) as long as users have distinct angles of arrival
(AoA). In this Letter, we show that this conclusion is based on
the implicit assumption (not mentioned in the above studies)
that there are no grating lobes (GL) in the array pattern and
that it fails to hold if GLs are present and some users align
with their directions.

Larger element spacing under fixed number of elements
(i.e. fixed complexity/cost) is desirable to increase the array
spatial resolution (or, equivalently, to decrease its beamwidth),
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i.e. its ability to resolve nearby users and hence to can-
cel inter-user interference (IUI). However, this has a major
drawback as grating lobes appear in the array pattern for
larger spacing [9], [10] so that different users appearing at
the main beam and GLs directions cannot be resolved, which
creates significant IUI at those directions. This has a profound
negative impact on favorable propagation, even under distinct
AoAs. The larger the antenna spacing, the more grating lobes
appear so that more user directions should be banned to
maintain the FP.

An experimental observation of the grating lobe’s impact
on IUI and favorable propagation was reported in [8], but,
to the best of our knowledge, no comprehensive analysis is
available in the literature, so that the existing FP analysis for
ULAs is incomplete in this respect. No design to eliminate
the impact of GLs on favorable propagation was proposed
either. A number of designs of traditional antenna arrays
(not massive MIMO) have been proposed to suppress grating
lobes [15]. However, these designs do not target FP explicitly
and it is far from clear whether the FP condition is satisfied
for these designs (note that the absence of GLs does not
guarantee the FP).

To address these issues, we present a rigorous analysis of
grating lobes’ impact on favorable propagation and propose a
novel non-uniform linear array (NULA) design that effectively
cancels grating lobes and also ensures that the FP holds for any
element spacing and any distinct AoAs. The proposed NULA
design is block-partitioned, whereby each block (subarray) is
an ULA but the overall array is not uniform. In order to cancel
GLs, we show that the number of subarrays (blocks) and their
spacing have to be carefully selected so that, asymptotically,
GLs are cancelled by nulls in the block array factor and thus
the FP is restored for any distinct AoAs. A rigorous analysis
is presented to find proper number of subarrays and their
spacing; it includes some tools from number theory, which,
to the best of our knowledge, have not been used before
in the antenna array or massive MIMO literature. While the
actual number of grating lobes and their directions do depend
on the main beam direction (i.e. beam steering) [9], [10],
the subarray-based design proposed here is independent of it,
so it can accommodate beam steering as well since grating
lobes are canceled for any direction of the main beam. This
design is also consistent with the popular hybrid beamforming
paradigm [11]. It allows one to increase the spatial resolution
(and hence to accommodate more users) under a fixed array
complexity/cost by increasing element spacing and, at the
same time, to avoid an increase in IUI and to restore the FP by
cancelling GLs (which appear due to a larger element spacing).

The main contributions of this Letter are in Propositions 1
and 2 (the IUI leakage factor for block-partitioned NULA) and
Theorem 1 (the NULA design to eliminate grating lobes and
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restore favorable propagation, for any element spacing, beam
steering and distinct AoAs). An extension of these results to
multipath/blocked-LOS channels and to arrays of directional
elements is discussed in Sec. V.

II. CHANNEL MODEL AND FAVORABLE PROPAGATION

Let us consider a frequency-flat Gaussian MIMO channel,
where M independent single-antenna users transmit simulta-
neously to a base station (BS) equiped with an N -element
antenna array:

y = h1x1 +
M∑
i=2

hixi + ξ (1)

where hi, xi are the channel vector and the transmitted signal
of user i, i = 1, . . . ,M ; y, ξ are the received BS signal
and noise vectors, respectively; |h|,h′ and h+ denote Euclid-
ean norm (length), transposition and Hermitian conjugation,
respectively, of vector h. The white noise is Gaussian circu-
larly symmetric, of zero mean and variance σ2

0 per Rx antenna.
Frequency-selective channels can be considered via an OFDM-
type approach, to which our results can be extended as well.

To simplify the decoding process, the BS uses linear
processing with matched filter beamforming1 w = h1/|h1|
to decode user 1, treating other users’ signals as interference.
Hence, its SINR can be expressed as follows:

SINR =
|h1|2σ2

x1

|h1|−2
∑M

i=2 |h+
1 hi|2σ2

xi
+ σ2

0

(2)

= γ1

(
M∑
i=2

|αiN |2γi + 1

)−1

, αiN =
h+

1 hi
N

(3)

where σ2
xi and γi = |hi|2σ2

xi/σ
2
0 are the signal power

and the SNR of user i; the channel is normalized so that
|hi|2 = N (the propagation path loss is absorbed into
the Rx SNR γi). Using this simplified decoding method, the
SINR cannot exceed the single-user SNR γ1,

SINR ≤ γ1 (4)

and this maximum is attained when the users’ channels
become orthogonal to each other,

SINR → γ1 if αiN → 0 ∀ i > 1 (5)

as the number N of antenna elements increases and all SNRs
stay uniformly bounded, i.e. γi ≤ γmax <∞ for some γmax
independent of N (where γi may depend on N ). This is known
as (asymptotically) favorable propagation condition. When the
number of users is finite, the FP condition can be expressed
in two equivalent ways:

lim
N→∞

α2
N = 0 ⇔ lim

N→∞
|αiN | = 0 ∀i > 1 (6)

where α2
N =

∑M
i=2 |αiN |2 characterizes the total interference

leakage and |αiN |2 represents IUI power ”leakage” from

1Under the FP as in (6), the MF beamformer performance is the same as that
of zero forcing (ZF), minimum mean square error (MMSE) and successive
interference cancellation (SIC) beamformers since users become “orthogonal”
to each other [1]. The significant advantage of the MF beamformer is its
smaller computational complexity and higher robustness (decoding different
users are independent of each other, which also allows for parallel/distributed
implementation).

Fig. 1. An illustration of ULA(N, d) geometry, where user i AoA is θi

while user 1 (main user) is at θ1, all measured from the broadside; −π/2 ≤
θ1, θi ≤ π/2. When user 1 is decoded, user i is a source of interference.

user i to the main user. If all users have the same SNR
(γi = γ1), then the SINR simplifies to:

SINR = (α2
N + γ−1

1 )−1 ≤ γ1 (7)

and, under favorable propagation, the upper bound is attained,
SINR = γ1. While in practice the number N of elements is
always finite and α2

N is never exactly zero, the FP is closely
approached if α2

N � γ−1
1 so that SINR ≈ γ1. This justifies the

asymptotic analysis N → ∞ from the practical perspective,
since, if the asymptotic FP (6) holds, it follows from the limit
definition that there exists a sufficiently large N for which
α2
N � γ−1

1 and thus SINR ≈ γ1. This is no longer the case
if the FP does not hold.

III. FAVORABLE PROPAGATION FOR ULAS

Favorable propagation for uniform linear arrays has been
investigated analytically and experimentally [1], [2], [3], [4],
[5], [6], [7], [8]. It was concluded that FP holds asymptotically
for ULAs of fixed element spacing (Case 1) under LOS propa-
gation conditions and distinct users’ AoAs [1], [2], [3] but does
not hold if the antenna array size is fixed (Case 2) [4], so that
the element spacing decreases when N increases. However,
the Case 1 conclusion is based on the implicit assumption,
not stated in the above studies, that there are no grating lobes
in the array factor and, as we show below, it does not hold if
GLs are present.2 In this letter, we consider only Case 1.

To see why FP does not hold if GLs are present, observe
that [1, eq. (7.17)] holds only if its denominator is not zero
but this condition is violated if GLs are present in the antenna
array pattern, even under distinct users’ AoAs, as (9), (12)
and the examples below show. This observation also applies to
[3, eq. (18)] and [2, eq. (34), (42)], so that Propositions 4 and 5
in [2] hold if there are no GLs and may not hold otherwise.

To analyze the impact of grating lobes on favorable propa-
gation, we follow [1], [2], [3], [4] and consider first LOS-
dominated environment, as in e.g. mmWave/THz systems
where LOS is essential to maintain a proper SNR [12], and
where users have distinct AoAs (otherwise, the FP does
not hold). In the far-field, the normalized channel vector of
i-th user for N -element ULA of omnidirectional elements
(e.g. vertical dipoles for a horizontal array as in Fig. 1) is:

hi = [ejψ0i , · · · , ejψ(N−1)i ]′, i = 1, · · · ,M
ψni = 2πnd sin(θi), n = 0, · · · , N − 1 (8)

2As a side remark, note that there are no GLs in Case 2 considered in [4]
(since element spacing there becomes sufficiently small as N increases under
a fixed array size) yet the FP does not hold either, i.e., the absence of GLs
does not guarantee the FP but their presence does break down the FP.
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where d is the element spacing (measured in wavelengths),
θi is the AoA of user i signal of which there are M ,
−π/2 ≤ θi ≤ π/2; ψni is the phase shift at element n with
respect to 1st element, see Fig. 1. Omnidirectional elements
(e.g. vertical dipoles) are assumed here for simplicity and the
results are straightforward to extend to directional elements as
well, see Sec. V. All users are assumed to be in the front half-
plane, −π/2 ≤ θi ≤ π/2, and there is no backward radiation
(see footnote 3). For further reference, we use ULA(N, d) to
denote a uniform linear array with N omnidirectional elements
and element spacing d. Using the system model in (1), the
inter-user interference leakage from user i to the main user
(i = 1) can be expressed as follows:

αiN = 1
N

∑N−1
n=0 e

jnΔψi = sin(NΔψi/2)
N sin(Δψi/2)

ej(N−1)Δψi/2 (9)

where Δψi = 2πd(sin θi − sin θ1). Notice that limN→∞
αiN = 0, i.e. the FP holds, provided that sin(Δψi/2) 	= 0.
The latter condition may be violated even if θi 	= θ1 (distinct
AoAs), e.g. if d = 1, θ1 = 0, θi = ±90o 	= θ1 so that
Δψi = ±2π, sin(Δψi/2) = 0 and hence |αiN | = 1 for
any N . This represents a grating lobe in the array pattern,
see e.g. [9], [10]. In general, GL directions φk correspond
to zero denominator in (9), i.e. sin(Δψi/2) = 0, and, for a
given θ1, can be found from Δψi = 2πk with θi = φk, which
is equivalent to

sin(φk) = sin(θ1) + k/d (10)

where k is the GL index, k = ±1,±2, . . .. Since | sinφi| ≤ 1,
there exist no grating lobes if

d(1 + | sin θ1|) < 1 (11)

In this case, the results in [1], [2], and [3] do hold for any
distinct θi, but they may fail to hold if (11) is not satisfied.
Indeed, using (9), it follows that, under distinct AoAs θi 	= θ1,

lim
N→∞

|αiN | =

{
1, if d(1 + | sin θ1|) ≥ 1 & θi = φk

0, otherwise.
(12)

Note a dichotomy here: the limit is either zero or one. The
latter case gives the conditions when the FP fails to hold:
d(1 + | sin θ1|) ≥ 1 is the condition for the GL existence, and
θi = φk is the condition for i-th user AoA to coincide with
k-th GL direction.

To determine the number of grating lobes, observe that
| sin(φk)| ≤ 1 and use (10) to obtain the range of k:

k ≥ kmin = −�d(1 + sin(θ1))� ≥ −�2d� (13)

k ≤ kmax = �d(1 − sin(θ1))� ≤ �2d� (14)

where �·� is the floor function, so that Ik = {{kmin, · · · ,
kmax}− {0}} is the GL index set, k = 0 represents the main
beam and hence is excluded; Ik is an empty set if there are
no GLs. Thus, the number K of GLs does not exceed �2d�:
K = kmax − kmin ≤ �2d�, and there are no grating lobes if
d < 1/2, for any θ1.

Examples: To illustrate cases where the FP fails due to
the presence of GLs, let d = 0.6, θ1 = 45o and sin θi =
sin θ1 − 1/d so that θi ≈ −74o 	= θ1, i.e., distinct AoAs,
but Δψi = −2π and the denominators in (9) as well as in
[3, eq. (18)] [2, eq. (34), (42)] are all zero and |αiN | = 1 for
any N , i.e. the FP fails to hold even though the AoAs are

Fig. 2. Array factor of a ULA with N = 100, d = 0.6. While the main
beam is at θ1 = 45o (where the ULA and NULA factors overlap), note
the presence of a GL at θ2 ≈ −74o. The proposed NULA design with
Nb = 25, N = 4, p = 21 partially cancels this GL (see Theorem 1) while
preserving the main beam.

distinct. This can be explained via the array factor shown in
Fig. 2, where the main beam is at θ1 = 45o to follow user 1
while the grating lobe appears at −74o, so that, if another user
is at the latter direction, it cannot be discriminated from the
1st user and hence the FP fails to hold. Note from (12) that
the FP may fail to hold even if d = 1/2 (as in [1, eq. (7.17)]),
e.g. if θ1 = 90o, θi = φ−1 = −90o 	= θ1 so that Δψi = −2π,
sin(Δψi/2) = 0 and |αiN | = 1 for any N (but the FP always
holds if d < 1/2). Even if the main user is at broadside, i.e.
θ1 = 0o, grating lobes appear if d ≥ 1 and the FP fails to
hold, even under distinct AoAs,3 e.g. if d = 1, θ1 = 0o, θi =
±π/2, which also results in zero denominators in [2] and [3].
In general, the larger d, the more grating lobes emerge [9], [10]
and favorable propagation fails to hold if users’ AoAs, being
distinct from each other, coincide with the GL directions.
Eq. (12) below gives a precise condition for this to happen.

IV. NON-UNIFORM LINEAR ARRAY DESIGN FOR FP

Motivated by the above analysis of grating lobes and their
impact on the FP, we present below a structural design of
nonuniform linear arrays that eliminates all GLs and guaran-
tees the FP to hold for any distinct AoAs and any element
spacing d. To this end, let us consider a block-partitioned
non-uniform array as in Fig. 3: the overall NULA consists
of Nb subarrays (blocks), which are ULA(N, d) and which
are arranged in the ULA(Nb, D) block-wise pattern. The
overall NULA pattern is a product of the subarray factor of
ULA(N, d) and the block array factor of ULA(Nb, D) (where
each block is replaced with an omnidirectional element), see
e.g. [9], [10]. Thus, the GLs in the subarray factor can be
cancelled with nulls in the block array factor, as explained
below. Finding proper Nb and the subarray spacing ΔD are
crucial to cancel grating lobes and hence to achieve favorable
propagation for any distinct AoAs and any d.

Due to the block-wise symmetry of the structure, the overall
channel vector hi of the NULA for user i can be expressed

3Since the ULA made of isotropic or omnidirectional elements is not able
to discriminate users’ signals coming from opposite directions, i.e. θ1 and
180o −θ1, the FP also fails to hold under distinct but opposite AoAs, for any
element spacing. However, in practice this is not that important since backward
radiation is usually eliminated due to an element pattern or an array design
including a ground plane. Thus, it is not considered here; instead, we assume
that −π/2 ≤ θ1, θi ≤ π/2.
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Fig. 3. Block-partitioned NULA of Nb subarrays (blocks) ULA(N, d) with
subarray spacing ΔD; D = (N −1)d+ΔD, and (N −1)D is the subarray
length. The AoAs are distinct, θ1 �= θi, and −π/2 ≤ θ1, θi ≤ π/2.

as follow:

hi = hsi ⊗ hbi (15)

where ⊗ denotes Kronecker product; hsi and hbi represents
the channel vector of the subarray ULA(N, d) and of the block
array ULA(Nb, D), respectively, where hsi is as in (8) and
hbi is

hbi = [ejψb,0i , · · · , ejψb,(Nb−1)i ]′, i = 1, · · · ,M
ψb,ni = 2πnD sin(θi), n = 0, · · · , Nb − 1 (16)

For further use, the interference leakage terms of the NULA
are defined as follows:

αiN =
h+

1 hi
NbN

, αsiN =
h+
s1hsi
N

, αbi =
h+
b1hbi
Nb

(17)

where αsiN and αbi represent the respective terms for a single
subarray ULA(N, d) and the block array ULA(Nb, D) while
αiN represents the overall leakage.

The following proposition is instrumental in establishing the
FP for the block-partitioned NULA.

Proposition 1: Let hi have the Kronecker structure as
in (15). Then, αiN can be expressed and bounded as follows:

αiN = αsiNαbi (18)

|αiN | ≤ min{|αsiN |, |αbi|} (19)

Proof: Note the following:

αiN = (NbN)−1h+
1 hi

= (NbN)−1(hs1 ⊗ hb1)+(hsi ⊗ hbi)
= (NbN)−1(h+

s1 ⊗ h+
b1)(hsi ⊗ hbi)

= (N−1h+
s1hsi)(N

−1
b h+

b1hbi) = αsiNαbi (20)

where 3rd and 4th equalities are due to the properties of
Kronecker products [13]. The inequality in (19) follows from
|αsiN |, |αbi| ≤ 1. �

Thus, the impact of subarray and block array factors αsiN ,
αbi on the overall IUI leakage factor αiN is factorized, which
simplifies the analysis considerably. In particular, using (19),
|αiN | → 0 if either |αsiN | → 0 or |αbi| → 0. This can be
exploited to cancel grating lobe’s effect on the FP. To this
end, let us consider the asymptotic (“massive”) regime where
N → ∞ while Nb is fixed (constant), under distinct AoAs.

Proposition 2: If Nb is fixed and θ1 	= θi, then the fol-
lowing asymptotic relationship holds for the block-portioned
NULA:

lim
N→∞

|αiN | =

{
|αbi(φk)|, ∃k ∈ Ik : θi = φk

0, otherwise .
(21)

Proof: Using (19),

lim
N→∞

|αiN | = 0 if θi 	= θ1 & θi 	= φk ∀k ∈ Ik (22)

since, from (12), limN→∞ |αsiN | = 0 in this case. On the
other hand, if θi = φk for some k ∈ Ik , then |αiN | = |αbi(φk)|
since |αsiN | = 1 in this case. Note from (17) that

αbi(φk) =
1
Nb

Nb−1∑
n=0

ej2πnD(sin(φk)−sin(θ1))

=
1
Nb

sin(πNbkΔD/d)
sin(πkΔD/d)

ejπNbkΔD/d (23)

where the last equality is from (10) and D = (N−1)d+ΔD.
Thus, αbi(φk) is independent of N and this proves the 1st
case in (21). �

From (21), the FP is guaranteed under distinct AoAs if
users do not align with grating lobes (or if GLs do not exist),
θi 	= φk ∀ k ∈ Ik . If some users do align, then the following
equivalence holds:

lim
N→∞

αiN = 0 ⇔ αbi(φk) = 0 ∀k ∈ Ik (24)

i.e. grating lobes are canceled and the FP holds under any
distinct AoAs if αbi(φk) = 0 ∀k ∈ Ik . The latter can
be achieved by exploiting the NULA structure and choosing
appropriate values of Nb and ΔD as shown below.

To this end, we need the following concepts from number
theory [14, p. 231]:

• Greatest common divisor of two integer m and n,
gcd(m,n): the largest positive integer that devides m and
n without remainder; e.g. gcd(15, 12) = 3.

• Coprime (relative prime): two numbers n and m are
coprime if gcd(n,m) = 1 (no common divisors); e.g.
gcd(4, 5) = 1, so, 4 and 5 are coprime. If gcd(n,m) = 1
and n > 1, then m/n is not integer.

The following theorem presents the NULA design to cancel
all GLs and to achieve the FP under any distinct AoAs and
beam steering subject to |θ1| ≤ θmax for a given maximum
steering angle θmax ≤ π/2, where θmax = π/2 corresponds
to no constraint on steering.

Theorem 1: In LOS environment, the FP holds asymptoti-
cally for the NULA comprised of Nb subarrays ULA(N, d),
as in Fig. 3, with any fixed element spacing d > 0 and any
distinct users’ AoAs, θ1 	= θi, |θ1| ≤ θmax, if:

(a) Nb > �d(1 + sin θmax)� and (b) ΔD = pd/Nb,

(25)

where p is a positive integer coprime with Nb, i.e.
gcd(p,Nb) = 1, and there is no backward radiation.

Proof: From (21), the FP holds if αbi(φk) = 0 ∀k ∈ Ik.
To ensure this, we use (23) and find a proper ΔD so that

(i) sin(πNbkΔD/d) = 0 & (ii) sin(πkΔD/d) 	= 0 (26)

for all k ∈ Ik . (i) is equivalent to NbΔD/d being an integer:

NbΔD/d = p ⇒ ΔD = pd/Nb, p = 1, 2, · · · (27)

However, one has to ensure (ii) as well with the following
implication:

sin(πkΔD/d) 	= 0 ⇔ kΔD
d

=
pk

Nb
	= n′ ∀k ∈ Ik (28)
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where n′ ∈ {±1,±2, · · · } and the equality follows from (27).
To this end, we show that (25) imply pk/Nb 	= n′ ∀k ∈ Ik.
We need the following technical Lemmas.

Lemma 1: [14, p. 231, fact 5]
If a and b are integers with gcd(a, b) = d, then

gcd(a/d, b/d) = 1.
Lemma 2: If a and b are integers with gcd(a, b) = 1 and c

is a divisor of a, i.e. gcd(a, c) = c, then gcd(a/c, b) = 1
Lemma 3: [14, p. 231, fact 9]

If a, b, and c are integers with gcd(a, b) = gcd(a, c) = 1,
then gcd(a, bc) = 1.

Now, assume that (25) holds and let pk be the greatest
common divisor of Nb and |k|:

gcd(Nb, |k|) = pk (29)

Using (25)(a) and |k| ≤ �d(1+| sin θ1|)�, which follows from
(13) and (14), one obtains

pk ≤ |k| ≤ �d(1 + | sin θ1|)� < Nb (30)

since |θ1| ≤ θmax ≤ π/2, which implies Nb > |k| ∀k ∈ Ik.
Using (29) and Lemma 1, one obtains

gcd(Nb, |k|) = pk ⇒ gcd(Nb/pk, |k|/pk) = 1 (31)

Using gcd(Nb, p) = 1 and Lemma 2,

gcd(Nb, p) = 1 ⇒ gcd(Nb/pk, p) = 1 (32)

where pk is a divisor of Nb. Next, using (31), (32), and
Lemma 3, one obtains:

gcd(Nb/pk, p|k|/pk) = 1 (33)

which means that Nb/pk and p|k|/pk are co-prime numbers
and therefore their ratio is not an integer,

p|k|/pk
Nb/pk

=
p|k|
Nb

	= |n′| (34)

This proves (28) and hence Theorem 1. The no backward
radiation condition is needed to eliminate the opposite AoAs
θ1 and π−θ1 that cannot be discriminated by a NULA made of
isotropic elements. It is always satisfied if −π/2 ≤ θ1, θi ≤
π/2, as assumed here. �

V. DISCUSSION AND EXTENSIONS

Intuitively, the condition in (25)(a) on the number of sub-
arrays Nb is needed to make sure that there are enough nulls
in the block array factor (i.e. the array factor of ULA(Nb, D),
where each subarray is replaced by an isotropic element) to
cancel all GLs. The condition (25)(b) on ΔD is needed to
make sure that those nulls align with GLs and cancel them
(if p is not a coprime of Nb, then some nulls may not exist).

To illustrate Theorem 1, we apply it to the example in Fig. 2
and obtain Nb > �2d� = 1 so that setting Nb = 25, p = 21
(coprime with Nb), ΔD = pd/Nb satisfies the conditions of
Theorem 1 and, as Fig. 2 shows, partially cancels the only
grating lobe even with finite NbN = 100 while preserving the
main beam.

In general, larger d calls for larger number Nb of subarrays,
but the same Nb and p can fit various d; under the latter
condition, ΔD is proportional to d. Notably, while the actual

directions and the number of GLs do depend on θ1, see (10),
(13), (14), the design of Theorem 1 is independent of θ1, i.e.,
it is not affected by beam steering and it cancels all GLs for
any θ1. This provides the needed flexibility as it allows for
beam steering without the need to change the array geometry.
It can also be used to show (using the superposition principle)
that all the above results, including Theorem 1, also hold in
multipath and blocked-LOS channels, provided that different
users have distinct AoAs (where each user is now allowed
to have multiple AoAs to represent multiple paths). Since Nb
and p in (25) are not unique, they can be further optimized to
improve the performance for finite N .

The above results are straightforward to extend to direc-
tional (rather then omnidirectional) array elements, as typical
in practice. For example, assume that the element pattern is
that of a short dipole, Fe(θ) = cos θ (other weakly-directional
elements, e.g. microstrip patches, have similar patterns [10]).
It is straightforward to see that α′

iN = αiN cos θ1 cos θi,
where α′

iN is the inter-user interference leakage term under
directional elements and αiN is that for isotropic elements.
Clearly, α′

iN → 0 if and only if αiN → 0 unless cos θi = 0
(endfire directions only). Hence, while weakly-directional ele-
ments are able to somewhat reduce grating lobes, they are not
able to eliminate them completely and thus have no impact on
the FP (except for the endfire/backplane directions).
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