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Abstract—The Gaussian wiretap channel with rate-limited help
available at the legitimate receiver (decoder) is studied under
various channel configurations (degraded, reversely degraded
and non-degraded). In all considered cases but one, the rate-
limited help results in a secrecy capacity boost equal to the help
rate. This holds irrespective of whether the help is secure or not,
so that secure help does not provide any advantage over non-
secure one. The secrecy capacity is positive for the reversely-
degraded channel (where the no-help secrecy capacity is zero)
and no wiretap coding is needed to achieve it. More noise at
the legitimate receiver can sometimes result in higher secrecy
capacity. The same secrecy capacity boost also holds if non-secure
help is available to the transmitter (encoder), in addition to or
instead of the receiver help.

I. INTRODUCTION

Physical-layer security has attracted significant attention

as a valuable alternative to cryptography-based techniques,

especially over wireless channels [1]-[3]. While the origi-

nal work of information-theoretic secrecy originates back to

Shannon himself [4], Wyner’s wiretap channel model [5]

established itself as a very useful tool for many different

settings and configurations. Its key performance metric is the

secrecy capacity, i.e. the largest achievable rate subject to

reliability, secrecy and possibly power constraints. The original

discrete memoryless model was extended to single-antenna

(SISO) Gaussian settings in [6] and to multi-antenna (MIMO)

settings in [8]-[10] and the respective secrecy capacities were

established. The Gaussian WTC with noiseless feedback was

considered in [11], whereby the transmitter (Tx) has access to

the signal of the legitimate receiver (Rx) in a causal manner

while the eavesdropper (Ev) has access to a noisy version

of the feedback. Its secrecy capacity was shown to be equal

to the regular AWGN channel capacity (no Ev), i.e. secrecy

comes for free with noiseless feedback, even if the main Tx-Rx

channel is not degraded. This result was extended to a colored

(ARMA) Gaussian noise channel with feedback in [12]. Note,

however, that while the Tx has access to noiseless feedback,

the Ev observes only its noisy version, i.e. it is at a significant

disadvantage, and the situation changes dramatically if the Ev

has access to the same noiseless feedback as well.

In modern communication systems/networks, various forms

of side information are often available to encoder or/and

decoder (e.g. in a cloud radio access network). This can be

used to facilitate reliable communications and often results

in a boost to the capacity [13]. One particular configuration
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was recently studied in [14]-[16], where a rate-limited (and

error-free) help is available to the decoder or/and encoder. In

particular, a helper observes the noise sequence (which can

be a signal intended for another user) and communicates his

observation to the receiver (decoder) or transmitter (encoder)

via an error-free rate-limited data pipe. This was shown

to provide a capacity boost equal to the help rate. In our

opinion, this model is useful from a practical perspective

since it considers rate-limited help, unlike noiseless feedback

models which essentially require rate-unlimited and error-free

feedback links, which are impossible in practice.

In the present paper, we extend the receiver help setting in

[14] to the Gaussian wiretap channel and show that the same

capacity boost as in [14] also holds for the wiretap channel in

terms of its secrecy capacity: a receiver help of rate Rh results

in the secrecy capacity boost of Rh (if noises are not Gaussian,

then the rate boost is upper bounded by Rh). This holds for

all possible configurations of the SISO Gaussian WTC, i.e.

degraded, reversely degraded and non-degraded1, with only

one exception. Some surprising properties are observed. In

particular, the secrecy capacity is the same irrespective of

whether the help is secure (i.e. unknown to the eavesdropper)

or not, so that secure help does not provide any advantage

in secrecy rates over non-secure one, and this also applies to

the case of partially-secure help. For the reversely-degraded

channel (where the secrecy capacity is zero without help), we

show that the secrecy capacity with Rx help is positive, that no

wiretap coding is needed to achieve it, and that burst signaling

is optimal. Sometimes, more noise at the legitimate receiver

can result in higher secrecy capacity. We further show that,

in the case of the degraded Gaussian WTC, the same secrecy

rate boost also holds when non-secure help is available to the

transmitter, in addition to or instead of the Rx help. Unlike

the studies in [11][12], we allow here the Ev to have access

to exactly the same help as the legitimate Rx or Tx (in the

case of non-secure help).

In a related line of work, secure communication with a

helper acting as a cooperating jammer was studied in [17][18]

(this setting is partialy equivalent to an interference channel).

However, no secrecy capacity was established but only the

generalized degrees of freedom (GDoF), which characterize

the high-SNR scaling of the secrecy capacity and are essen-

tially the multiplexing gain in terms of secrecy rates. Unlike

[17][18], the present paper considers no jamming at all; rather,

the help comes in a form of rate-limited error-free information

about the noise sequence affecting the legitimate Rx.

1While the standard (no help) SISO non-degraded Gaussian WTC is
equivalent to either degraded or reversely-degraded one, this is not the case
anymore when Rx help is also available to the Ev.
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II. DEGRADED GAUSSIAN WIRETAP CHANNEL

We begin with the degraded (discrete-time) Gaussian wire-

tap channel:

Yi = Xi +Wi, Zi = Yi + Vi (1)

where Xi is the transmitted symbol at time i, Wi, Vi are Rx

and Ev noise, which are zero-mean Gaussian, independent of

each other, of variance σ2
w and σ2

v , respectively, see Fig. 1. The

channel is stationary and memoryless, so that Wn and V n are

i.i.d. sequences. We further assume that σv > 0 and that the

input power constraint is strictly positive, P > 0. A slightly

more general case, where noises are not Gaussian, will also

be considered.

Help T of rate Rh is available to the Rx and Ev, which

we term ”non-secure Rx help”, so that the Rx and the Ev can

estimate transmitted message M using T and their respective

received signals Y n and Zn. If no help is available to the

Ev, we call it ”secure Rx help”. For Rx help, the difference

between causal and non-causal help is immaterial, since the Rx

waits until the whole block of length n is transmitted before

decoding it.

We use the standard definition of the secrecy capacity as

the supremum of all achievable secrecy rates, subject to the

reliability, secrecy and power constraints, see e.g. [1]-[7].

In particular, (secret) message M is selected randomly and

uniformly from {1, ..., 2nRs}, where Rs is a secrecy rate and

n is the blocklength. The Tx encoder maps it into Xn and the

Rx decoder maps Y n and the available help T into message

estimate M̂ . The constraints are as follows:

Reliability constraint: the error probability Pe , Pr{M 6=
M̂} ≤ ε for any ε > 0 and sufficiently large n.

Weak secrecy constraint: information leakage rate (to the

Ev) Rl satisfies

Rl , n−1I(M ;ZnT ) ≤ ǫ (2)

for any ǫ > 0 and sufficiently large n, where I is the mutual

information; T is omitted in the case of secure help.

Average power constraint:

1

n

n
∑

i=1

E|Xi|
2 ≤ P (3)

The secrecy capacity of this channel is established below.

Theorem 1. The secrecy capacity Cs of the degraded mem-

oryless WTC (not necessarily Gaussian) with Rx help of rate

Rh, secure or not, is bounded as follows

Cs ≤ Cs0 +Rh (4)

where Cs0 is the secrecy capacity without help. The upper

bound is attained in the Gaussian case if σV > 0, for which

Cs0 = C1−C2, where C1, C2 are the capacities of the Tx-Rx

and Tx-Ev links (without help).

Proof. Converse: For the converse, we do not assume that the

noises are Gaussian and consider the case of secure Rx help

(not available to the Ev); the case of non-secure help will

follow since the availability of help to the Ev cannot increase

secrecy rate. The converse is based on the following chain

Tx Rx 

Ev 

H 

 

  

 M  

 

 

 

Fig. 1. Degraded wiretap channel with a rate-limited help T at the Rx and
Ev. Wn and V n are i.i.d. noise sequences independent of each other.

argument, incorporating the secrecy and reliability constraints

as well as functional relationship between random variables in

the channel model:

nRs = H(M)

≤ H(M |Zn) + nǫ (5)

≤ H(M |Zn)−H(M |Y nT ) + 2nǫ (6)

≤ H(M |Zn)−H(M |Y nZnT ) + 2nǫ (7)

= I(M ;Y nT |Zn) + 2nǫ (8)

≤ I(Xn;Y nT |Zn) + 2nǫ (9)

= I(Xn;Y n|Zn) + I(Xn;T |Y nZn) + 2nǫ (10)

≤ I(Xn;Y n|Zn) +H(T ) + 2nǫ (11)

≤ nI0(X ;Y |Z) + nRh + 2nǫ (12)

= n(I0(X ;Y )− I0(X ;Z) +Rh + 2ǫ) (13)

≤ n(Cs0 +Rh + 2ǫ) (14)

where (5) follows from the secrecy constraint I(M ;Zn) ≤
nǫ; (6) follows from Fano inequality (due to the reliability

constraint) H(M |Y nT ) ≤ nǫ; (9) follows from Markov chain

M −Xn−Y nT −Zn; (11) follows from I(Xn;T |Y nZn) ≤
H(T ); (12) follows from

I(Xn;Y n|Zn) ≤

n
∑

i=1

I(Xi;Yi|Zi) ≤ nI0(X ;Y |Z) (15)

where the first inequality is due to the assumed memoryless-

ness of the channels and the second one is due to the concavity

of the MI in the input distribution [5][7]; I0 is the MI induced

by input X with the distribution p0(x) = n−1
∑

i pxi(x),
where pxi(x) is the distribution of Xi; (13) follows from

Markov chain X − Y − Z . Thus,

Rs ≤ Cs0 +Rh + 2ǫ (16)

Since this holds for any ǫ > 0, it follows that Rs ≤ Cs0+Rh.

This establishes the converse with secure Rx help. Since the

presence of help at Ev cannot increase secrecy rate, the same

upper bound applies with non-secure Rx help.

Achievability. To prove achievability, we assume that noises

are Gaussian and combine the regular wiretap coding with the

flash signaling as in [14]. We consider first the case of non-

secure Rx help (when the same help is available at the Rx and
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Ev), from which achievality with secure Rx help follows. To

this end, recall that the regular flash signaling (no Ev) with

Rx help consists of 2 phases of time-sharing:

• Phase 1: no help is used at all for (1 − τ) fraction of

time, which achieves a rate arbitrary close to the regular

channel capacity C.

• Phase 2: help is used at rate Rh/τ for τ fraction of time.

In this phase, high-resolution (scalar) quantization (with

2Rh/τ levels) of each noise sample is provided to the

Rx, so that the help T = Ŵn, where Ŵi = Q(Wi)
and Q(·) is a scalar quantizer. The Rx subtracts Ŵn

from its received signal Y n and decodes it using nearest-

neighbour decoding, which achieves the rate arbitrary

close to

Rh/τ(1 + o(1)) (17)

where o(1) → 0 at τ → 0, see [14] for details.

Overall, as τ → 0, the rate achieved after time-sharing is

arbitrary close to

(1− τ)C + τRh/τ(1 + o(1)) → C +Rh (18)

To accommodate the Ev and the secrecy constraint, we

modify this strategy as follows:

• Phase 1: use the regular WTC coding with no help [1]-[7]

for (1 − τ) fraction of time; this achieves a secrecy rate

Rs arbitrary close to the regular WTC secrecy capacity

Cs0: Rs = Cs0 − ǫ for any ǫ > 0.

• Phase 2: use no WTC coding at all, just the regular flash

signaling as above.

While it is clear that secrecy is guaranteed during Phase 1 (via

wiretap coding), it is also clear that secrecy is not guaranteed

during Phase 2 (since no wiretap coding is used at all) so it

is not clear whether secrecy is guaranteed overall (after time

sharing). To demonstrate that this is indeed the case, we show

that, during Phase 2, the information leakage rate to the Ev is

finite, Rl2 < ∞ so that the overall leakage rate Rl (after time

sharing) is

Rl = (1− τ)Rl1 + τRl2 ≤ (1− τ)δ + τRl2 → δ (19)

as τ → 0, for any δ > 0, where Rl1 ≤ δ is the information

leakage rate during Phase 1.

To see that indeed Rl2 < ∞, observe the following:

Rl2 = n−1I(M2;Z
nŴn|C) (20)

≤ n−1I(M2;Z
nŴnWn|C) (21)

= n−1I(M2;Z
n|WnC) (22)

≤ n−1I(Xn;Zn|WnC) (23)

= n−1I(Xn;Xn +Wn + V n|WnC) (24)

= n−1I(Xn;Xn + V n|C) (25)

≤
1

2
log

(

1 +
P

σ2
V

)

= C′

2 < ∞ (26)

where M2 is a message sent in Phase 2, Xn is a codeword

(which depends on M2, see Fig. 1), and the conditioning is on

an i.i.d. randomly-generated codebook C (the codebook gener-

ation, encoding and decoding are as in [14]); (22) follows from

independence of M2 and Wn, Ŵn and from Ŵi = Q(Wi);

(23) follows from the Markov chain M2−Xn−ZnWn; (25)

follows from independence of Wn and Xn, V n.

Hence, arbitrary low information leakage rate is guaranteed

after time sharing with τ → 0, which satisfies the secrecy

constraint. At the same time the overall secrecy rate (after

time sharing) is

(1 − τ)(Cs0 − ǫ) + τRh/τ(1 + o(1))

→ Cs0 +Rh − ǫ (27)

for any ǫ > 0, as τ → 0, so that the secrecy capacity is

Cs0 +Rh, as required.

In the above secrecy analysis, we assume that the help is

not secure, i.e. it is available to the Ev. Clearly, the secrecy

constraint is also satisfied if the help is secure, i.e. not available

to the Ev (since the lack of Ev help cannot increase leakage

rate), and an achievable secrecy rate remains the same. Since

the converse also holds for the secure Rx help, the secrecy

capacity also remains the same, regardless whether help is

secure or not, i.e. the secrecy of help does not increase the

secrecy capacity.

It is worthwhile to note that flash signaling provides here

the same boost in secrecy capacity as in the regular channel

capacity (no Ev) in [14], i.e. the +Rh boost comes with

secrecy for free in the degraded Gaussian WTC. If noises are

not Gaussian, then the rate boost is upper bounded by Rh.

Since Cs in Theorem 1 is the same for secure and non-

secure help, it also applies to the case of partially-secure help,

i.e. when the Ev has access to a part of T .

III. REVERSELY-DEGRADED CHANNEL

Now, we consider the reversely-degraded case of the wiretap

channel as in Fig. 2:

Zi = Xi + Vi, Yi = Zi +∆Wi (28)

where ∆Wi is an extra Rx noise, independent of Ev noise Vi,

so that the sequences V n and ∆Wn are i.i.d and independent

of each other. Note that the total Rx noise is Wi = Vi+∆Wi

and its variance

σ2

W = σ2

V + σ2

∆W ≥ σ2

V > 0 (29)

so it is indeed a reversely-degraded case (we exclude the trivial

case σV = 0, for which the secrecy capacity is zero). It is well-

known that, without help, the secrecy capacity of this channel

is zero, Cs0 = 0. However, the availability of Rx help, either

secure or not, changes the situation dramatically.

Theorem 2. The secrecy capacity Cs of the reversely-

degraded WTC (not necessarily Gaussian) with Rx help of

rate Rh, secure or not, is bounded as follows

Cs ≤ Rh (30)

and the upper bound is attained in the Gaussian case if

σ∆W > 0; if σ∆W = 0, then Cs = Rh if help is secure

and Cs = 0 otherwise.

Proof. Converse: to prove the converse, we do not assume

that the noises are Gaussian and consider the case of secure

Rx help (i.e. no Ev help). The case of non-secure help will
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Fig. 2. Reversely-degraded wiretap channel with a rate-limited Rx help T .
∆W

n and V
n are i.i.d. noise sequences independent of each other.

follow, since the availability of help to the Ev cannot increase

the secrecy rate. The proof follows the steps similar to those in

Theorem 1. In particular, we observe that (5)-(11) still hold for

the reversely-degraded channel (since channel degradedness

plays no role there), so that

nRs ≤ I(Xn;Y n|Zn) +H(T ) + 2nǫ (31)

≤ n(Rh + 2ǫ) (32)

where the last inequality is due to I(Xn;Y n|Zn) = 0, which

in turn follows from Markov chain Xn − Zn − Y n. Thus,

Rs ≤ Rh + ǫ for any ǫ > 0 and therefore Rs ≤ Rh, as

required.

Achievability: to prove achievability, we assume that the

noises are Gaussian and consider the case of non-secure Rx

help (when the same help is also available to the Ev); the

case of secure help will follow since the absence of help to

the Ev cannot increase leakage rate and hence cannot decrease

secrecy rate.

To this end, we use the same two-phase flash signaling as

in Theorem 1 except that nothing is transmitted in phase 1

and the whole message is transmitted in phase 2 (without any

wiretap coding at all). To show that this provides arbitrary-low

leakage rate after time-sharing (which is equivalent to burst

signaling of duration τ in this case), we show that Phase 2

leakage rate Rl2 is finite. To this end, we observe that

Rl2 = n−1I(M2;Z
nŴn|C) (33)

≤ n−1I(M2;Z
nŴnWn|C) (34)

= n−1I(M2;Z
n|WnC) (35)

≤ n−1I(Xn;Zn|WnC) (36)

= n−1I(Xn;Xn + V n|V n +∆Wn, C) (37)

= n−1(H(Xn + V n|V n +∆Wn, C) (38)

−H(V n|Xn, V n +∆Wn, C))

≤ n−1(H(Xn + V n)−H(V n|V n +∆Wn) (39)

≤
1

2
log

(

1 +
P

σ2
V

)

+
1

2
log

(

1 +
σ2
V

σ2
∆W

)

< ∞ (40)

where we assumed that σ∆W > 0; (33)-(36) hold due to the

same reasons as in the proof of Theorem 1; (39) holds since

(i) conditioning cannot increase the entropy and (ii) V n,∆Wn

are independent of Xn, C; (40) holds since (i) the entropy is

maximized by Gaussian distribution and

H(V n|V n +∆Wn)

= H(V n, V n +∆Wn)−H(V n +∆Wn) (41)

= H(V n) +H(∆Wn)−H(V n +∆Wn) (42)

=
n

2
log

σ2
V

σ2
V + σ2

∆W

+
n

2
log(2πeσ2

∆W ) (43)

where (42) is due to the independence of ∆Wn and V n. Thus,

the total leakage rate (after time-sharing) is

Rl = (1 − τ)0 + τRl2 (44)

≤
τ

2
log

(

1 +
P

σ2
V

)

+
τ

2
log

(

1 +
σ2
V

σ2
∆W

)

→ 0 (45)

when τ → 0, as required (notice that the condition σ∆W > 0 is

essential here, as σ∆W = 0 results in zero secrecy capacity for

non-secure help). The overall secrecy rate (after time-sharing)

is

Rs = (1 − τ)0 + τRh/τ(1 + o(1)) → Rh (46)

when τ → 0.

Let us now consider the case of σ∆W = 0, which implies

Y n = Zn. If help is not secure, the same information is

available to the Ev and Rx and hence no positive secrecy rate

is achievable, Cs = 0. However, if the help is secure, then the

Rx has an extra information not available to the Ev. It is not

difficult to see that the above converse still holds if σ∆W = 0.

To prove achievability, we use the same signaling as above

and show that the leakage rate Rl2 of Phase 2 is finite:

Rl2 = n−1I(M2;Z
n|C) (47)

≤ n−1I(Xn;Zn|C) (48)

≤ n−1(H(Zn)−H(V n)) (49)

≤
1

2
log

(

1 +
P

σ2
V

)

< ∞ (50)

Thus, secrecy is guaranteed after time-sharing with τ → 0 and

the achieved secrecy rate is as in (46).

A surprising observation follows from this result: in the case

of non-secure help, Cs = 0 if σW = σV (i.e. σ∆W = 0) but

Cs = Rh > 0 if σW > σV , so that more noise at the legitimate

Rx is actually better for secrecy in this case. This is due to

the fact that the extra Rx noise ∆Wi 6= 0 makes it impossible

for the Ev to cancel its own noise using non-secure help Ŵn

in the same way the Rx does (since Vi 6= Wi in this case).

However, if ∆Wi = 0, then the Ev can do noise cancellation

in the same way the Rx does, which results in Cs = 0.

To summarize, the secrecy capacity Cs of the degraded or

reversely degraded Gaussian wiretap channel with Rx help of

rate Rh (secure or not) is given by

Cs = Cs0 +Rh (51)

if either σW 6= σV or else the help is secure, where, of course,

Cs0 = 0 for the reversely-degraded case. Thus, not only the

secrecy capacity is boosted by Rh for the degraded case, but

also the secrecy capacity is positive for the reversely-degraded

case, where it is zero without help, and this positive capacity

is achievable by burst signalling without wiretap coding at all.
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Fig. 3. Non-degraded Gaussian wiretap channel with a rate-limited Rx help
T ; noise sequences W

n and V
n are i.i.d. Gaussian and independent of each

other.

IV. NON-DEGRADED CHANNEL

Now, we consider the case where the channel is neither

degraded nor reversely-degraded since its Rx and Ev branches

have independent noises, as in Fig. 3:

Zi = Xi + Vi, Yi = Xi +Wi (52)

where the sequences V n and Wn are i.i.d Gaussian and

independent of each other. It is well-known that, without help,

this case can be equivalently reduced to either degraded or

reversely-degraded case, since the Rx and Ev performance

depends on the marginal distributions of Wn and V n, respec-

tively, not on their join distribution [1]. While this is still true

for the secure Rx help (no Ev help), it is no longer true for the

non-secure help (since Ev performance now depends on both

V n and Wn). Thus, the secrecy capacity of this channel does

not follow from that of the degraded or reversely-degraded

one. Yet, we show below that it is still Cs0 +Rh.

Theorem 3. The secrecy capacity Cs of the non-degraded

Gaussian WTC with Rx help of rate Rh, secure or not, is

Cs = Cs0 +Rh (53)

Proof. Converse: we follow the steps of the proof of Theorem

2 and consider first the case of secure Rx help (i.e. no Ev

help). Note that, in this case, Ev’s performance depends on

V n only, not on Wn; likewise, Rx’s performance depends

on Wn only, not on V n. Hence, this channel can now be

equivalently reduced to degraded or reversely-degraded case,

for which the converse have been established in Theorem 1 or

2, respectively, so that R ≤ Cs0+Rh. This argument does not

apply for non-secure Rx help. However, since the availability

of help to Ev cannot increase the secrecy rate, the same upper

bound still holds. This establishes the converse for non-secure

Rx help as well.

Achievability: Likewise, we can argue that, in the case of

secure Rx help, the achievability result of Theorem 1 or 2

apply. However, it is no longer the case for non-secure help.

Furthermore, the achievability under secure help does not

imply the achievability under non-secure help. To establish the

latter, we use the signaling strategy of Theorem 1 if σW < σV

and of Theorem 2 if σW ≥ σV , and show that the leakage rate

Rl2 of Phase 2 is finite in both cases:

Rl2 = n−1I(M2;Z
nŴn|C) (54)

= n−1I(M2;Z
n|ŴnC) (55)

= n−1I(M2;Z
n|C) (56)

≤ n−1I(Xn;Zn|C) (57)

≤
1

2
log

(

1 +
P

σ2
V

)

= C2 < ∞ (58)

where (55) and (56) follow from independence of M2, Z
n and

Ŵn. This ensures secrecy after time sharing with τ → 0, as

in (19).

Note that, if σW ≥ σV , then Cs0 = 0 and Cs = Rh, i.e.

if the Tx-Rx channel is weaker than the Tx-Ev channel, the

secrecy capacity with Rx help is still positive (if Rh > 0), even

if the help is not secure. This also holds for the non-degraded

channel if σW = σV , unlike the case of the reversely-degraded

channel, where Cs = 0 if σW = σV and the help is not secure.

This is due to the independence of Wn and V n in the non-

degraded channel. It can be further shown that Theorem 3

also holds if Vi and Wi are correlated provided that their joint

covariance matrix is not singular.

V. THE DEGRADED WTC WITH TX HELP

Finally, we consider the setting of Fig. 1 and extend

Theorem 1 to the scenario where non-secure rate-limited help

is available to the Tx, in addition to or instead of the Rx help.

Theorem 4. The secrecy capacity Cs of the degraded Gaus-

sian WTC with non-secure Tx help of rate Rh, in addition to

or instead of the same Rx help, is

Cs = Cs0 +Rh (59)

where Cs0 is the secrecy capacity without help.

Proof. The achievability is based on the 2 phases of flash

signaling as in Theorem 1, with noise pre-cancellation at the

Tx (a.k.a. dirty-paper coding, as in [15]) in Phase 2. The

converse is based on a judicious incorporation of the secrecy

constraint into the converse of Theorem 2 in [15]. The details

are omitted due to the page limit.

Note that the availability of the Rx help, in addition to the

Tx help, does not increase the secrecy capacity (provided the

help T is the same in both cases).

VI. CONCLUSION

The SISO Gaussian wiretap channel with rate-limited help

at the receiver (decoder) was studied and its secrecy capacity

has been established under various channel configurations

(degraded, reversely degraded and non-degraded) for secure

and non-secure help. In all considered cases but one, the rate-

limited help results in the secrecy capacity boost (compared

to the standard ”no help” case) equal to the help rate, so that

positive secrecy rate is achievable even for reversely-degraded

channel, where the secrecy capacity is zero without help.

Surprisingly, secure help does not result in higher capacity

compared to non-secure one and more noise at the legitimate

receiver can sometimes be beneficial for secrecy.
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