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On the Capacity of Gaussian MIMO Channels With Memory
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Abstract— The operational capacity of Gaussian MIMO chan-
nels with memory was obtained by Brandenburg and Wyner
(1974) under certain mild assumptions on the channel impulse
response and its noise covariance matrix, which essentuially
require channel memory to be not too strong. This channel was
also considered by Tsybakov (2006) and its information capacity
was obtained in some cases. It was further conjectured, based
on numerical evidence, that these capacities are the same in all
cases. This conjecture is proved here. An explicit closed-form
expression for the optimal input power spectral density matrix
is also given. The obtained result is further extended to the
case of joint constraints, including per-antenna and interference
power constraints as well as energy harvesting constraints. These
results imply the information-theoretic optimality of OFDM-type
transmission systems for such channels with memory.

Index Terms— Channel capacity, MIMO, memory, OFDM.

I. INTRODUCTION

MULTI-ANTENNA (MIMO) systems have attracted
unprecedented attention in both academia and industry

over the last two decades due to their large spectral efficiency
and other capabilities [1]– [3]. They are now extensively used
in modern cellular and WiFi networks. The capacity of AWGN
MIMO channels was established in [4], [5] and was further
extended in several directions, see e.g., [6]– [8] and references
therein.

While AWGN channels are memoryless, many channels in
modern systems do have memory, e.g., wideband or multi-
user channels, either due to the channel impulse response
(in e.g., multipath channels with delay spread) or due to
noise with memory (where noise also represents multi-user
interference). In those cases, the memoryless results in [4]–
[8] do not apply. The Gaussian MIMO channel with memory
was considered by Brandenburg and Wyner in [9] under
certain (mild) assumptions on the channel impulse response
and its noise covariance matrix, which essentially require
the channel memory to be not too strong, see (6) and (7)
below; these assumptions are satisfied by modern 5G channel
models as in e.g., [22]. Its operational capacity1 under the
total (average) power constraint (TPC) was established in a
closed-form in [9] by proving direct and converse coding
theorems. This channel has been also studied by Tsybakov
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1Defined as the maximum achievable transmission rate subject to the relia-

bility criterion, i.e., arbitrary low error probability with increasing blocklength;
this guarantees the existence of codebooks with as low error probability as
desired [11].

in [10] and its information capacity2 under the TPC was
established in a closed-form for some special cases. Based
on numerical evidence, it was further conjectured that these
two capacities are always the same for the considered channel.
In this Letter, we prove that this is indeed the case.

It should be emphasized that the Tsybakov’s conjecture
is not trivial: while the operational and information capaci-
ties are the same for information-stable channels3 [12], they
can be significantly different (the information capacity being
larger than the operational capacity) for information-unstable
channels, see e.g., [13], [15], [17]. Since the channel above
has memory, it is far from clear whether it is information
stable or not: recall that memory can induce non-ergodic
channel behaviour and many channels with memory are not
information-stable; the simplest example is a non-ergodic
fading channel [19].

As a by-product of our proof, a closed-form expression
for the optimal (capacity-achieving) input power spectral den-
sity (PSD) matrix is obtained in the general case for the
considered channel under the TPC.

This result is further extended to the case of joint power con-
straints, which include per-antenna power constraints (PAC)
as in [6], [7], which are due to limited-power per-antenna
amplifiers, interference power constraints (IPC) as in [8],
which limit the interference power induced to other users, and
energy harvesting constraints (EHC) as in [21].

The above results imply the information-theoretic optimality
of popular OFDM-type transmission systems [20], [21] for
the considered channels since such systems essentially “imple-
ment” the frequency-domain channel capacity expressions by
replacing integrals with Riemann sums over subcarriers.

Notations: lower case (x) and capital (R) bold symbols
denote vectors and matrices respectively; R+ is Hermitian
conjugation; |R|, |R|F and trR are determinant, Frobenius
norm and trace of R; (R)+ retains positive eigenmodes of
Hemitian matrix R:

(R)+ =
∑

i:λi(R)>0

λi(R)uiu
+
i (1)

where ui and λi(R) are i-th eigenvector and eigenvalue of
R; R ≥ 0 means that R is positive semi-definite, (x)+ =
max(x, 0).

II. CHANNEL MODEL AND ITS CAPACITIES

We adopt the channel model and notations from [9] with
slight modifications, which are also consistent with [10]. The

2Defined as the maximum mutual information rate subject to the input
power constraint [11]; recall that operational and information capacities are
not necessarily the same.

3Recall that a channel is information stable if its information density
converges to its mutual information under optimal input distribution; this is
somewhat similar to the notion of ergodicity, whereby time average converges
to statistical average.
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discrete-time channel model is as follows:

y(t) =
∑

τ

H(t − τ)x(τ) + ξ(t) (2)

where y(t), x(t) are the output (received) and input (transmit-
ted) n-dimensional vector signals, ξ(t) is correlated zero-mean
Gaussian noise with memory, and H(t) is the channel
(discrete-time) impulse response n × n matrix (collecting
channel impulse responses from each input to each output);
t, τ = 0,±1,±2, . . . are discrete time variables. In this
model, the noise is correlated in time as well as across outputs
(receive antennas), and the channel impulse response H(t)
also introduces memory (due to e.g., multipath propagation
and the related delay spread). The noise is assumed to be
wide-sense stationary and hence can be characterized by its
covariance matrix

Rξ(τ) = E{ξ(t)ξ+(t − τ)} (3)

where E{·} is statistical expectation, while the channel can
be represented by its (discrete) transfer function

H(θ) =
∑

t

H(t)e−jtθ (4)

where −π ≤ θ ≤ π is the normalized frequency. Likewise,
the (stationary) noise can be characterized by its (discrete)
power spectral density matrix:

Rξ(θ) =
∑

t

Rξ(t)e−jtθ (5)

The following assumptions have been made in [9]:
1. The channel is causal: H(t) = 0, t < 0, and satisfies

the following conditions:
∞∑

t=0

|H(t)|F < ∞, |H(t)|F < b/t, ∀ t > 0 (6)

for some b < ∞. In addition, |H(θ)| �= 0, −π ≤ θ ≤ π, i.e.,
the channel is non-singular at any frequency (this condition
can be relaxed later, since “singular” frequencies do not
contribute to the capacity).

2. The noise covariance matrix satisfies the following:
∞∑

t=−∞
|Rξ(t)|F < ∞ (7)

and its PSD is also non-singular, |Rξ(θ)| �= 0.
Note that the above conditions are not too restrictive: they

essentially require the channel memory to be not too strong.
Any channel with finite impulse response and with finite-
memory non-singular noise satisfies them, as in state-of-the
art industrial 5G channel models [22]. Under these conditions,
the operational channel capacity was established in [9] under
the total power constraint as follows:

C =
1
4π

∑
i

∫ π

−π

(
log

μ

λi(θ)

)
+

dθ (8)

where λi(θ) is i-th eigenvalue of H−1(θ)Rξ(θ)(H(θ)+)−1

and μ > 0 is “water level” determined as a unique solution of
the following equation

1
2π

∑
i

∫ π

−π

(μ − λi(θ))+ dθ = P (9)

where P is the total input (transmit) power.
On the other hand, the information capacity of this channel

was established in Theorem 1 of [10] for n = 2 and H(θ) =
I , where I is identity matrix, including explicit expressions for
the optimal input PSD matrix Rx(θ), and some special cases
were considered. In the case of general n, a lower bound to
the information capacity was obtained, and the results were
further extended to H(θ) �= I .

Since the optimal input is Gaussian, the starting point of the
analysis in [10] is the Pinsker’s formula for mutual information
rate under Gaussian input [16]:

I(x, y) =
1
4π

∫ π

−π

log
|Ry(θ)|
|Rξ(θ)|dθ (10)

which is further optimized over all input covariance matri-
ces Rx(θ), subject to the total (average) power constraint,
to obtain the information capacity Cinf :

Cinf =
1
4π

max
Rx(θ)∈S

∫ π

−π

log
|Ry(θ)|
|Rξ(θ)|dθ (11)

where Ry(θ) = Rx(θ) + Rξ(θ), and the constraint set S
represents the TPC,

S =
{

Rx(θ) ≥ 0 :
1
2π

∫ π

−π

trRx(θ)dθ ≤ P

}
(12)

It was further conjectured, based on numerical evidence (see
p. 192 in [10]) that the information and operational capacities
are the same in all cases, C = Cinf .

We prove this conjecture in Theorem 1 below and also
obtain an explicit solution to the optimization problem in (11)
for any n, which gives the optimal input PSD matrix for this
channel and shows that the optimal power allocation is via
water-filling (both across inputs (antennas) and frequencies).

III. OPERATIONAL CAPACITY = INFORMATION CAPACITY

The capacity of the MIMO channel with memory in (2)
under the TPC can be characterized as follows.

Theorem 1: The operational capacity of the channel in
(2) under the conditions in (6) and (7) is the same as its
information capacity, C = Cinf , under the TPC in (12). The
optimal input PSD is as follows:

R∗
x(θ) = (μI − (H+(θ)R−1

ξ (θ)H(θ))−1)+ (13)

where μ > 0 is found from the power constraint in (9).
Proof: First, observe that

log
|Ry(θ)|
|Rξ(θ)| = log |I + R−1

ξ (θ)H(θ)Rx(θ)H+(θ)| (14)

= log |I + W (θ)Rx(θ)| (15)

= log |I + Λw(θ)R̄x(θ)| (16)

≤
∑

i

log(1 + λwi(θ)di(θ)) (17)

where W (θ) = H+(θ)R−1
ξ (θ)H(θ) and W (θ) =

Uw(θ)Λw(θ)U+
w(θ) is its eigenvalue decomposition, Uw(θ)

is the unitary matrix of its eigenvectors and Λw(θ) is a diag-
onal matrix of its eigenvalues, R̄x(θ) = U+

w(θ)Rx(θ)Uw(θ),
λwi(θ) and di(θ) are i-th eigenvalue and diagonal entry of
W (θ) and R̄x(θ) respectively. 1st equality follows from the
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channel model; 2nd and 3rd equalities follows from |I +
AB| = |I + BA|; the inequality follows from Hadamard
inequality. Further notice that

∑
i di(θ) = trR̄x(θ) =

trRx(θ) and hence optimizing over Rx(θ), R̄x(θ) and di(θ)
are all the same (satisfy the same power constraint), so that

max
Rx(θ)∈S

∫ π

−π

log
|Ry(θ)|
|Rξ(θ)|dθ

≤
∑

i

max
di(θ)≥0

∫ π

−π

log(1 + λwi(θ)di(θ))dθ

s.t.
1
2π

∫ π

−π

∑
i

di(θ)dθ ≤ P (18)

Since the upper bound in (18) is the information rate of n
parallel Gaussian channels, its capacity is attained by the
standard water-filling solution (see e.g., Theorem 8.5.1 in [18];
its slight extension applies to the parallel channel setting as
well):

di(θ) = λi(Rx(θ)) = (μ − λ−1
wi (θ))+ (19)

where μ > 0 is found from the total power constraint:

1
2π

∫ π

−π

∑
i

(μ − λ−1
wi (θ))+dθ = P (20)

which maximizes the upper bound in (18) under the input
power constraint. Further note that the equality in (18) is
attained when Rx(θ) and W (θ) have the same eigenvectors
(this can always been done since the power constraint does
not limit the eigenvectors of Rx(θ) but only its eigenvalues).
Hence, the optimal input PSD matrix has the same eigenvec-
tors as those of W (θ) and can be expressed as

R∗
x(θ) = (μI − W−1(θ))+

= (μI − (H+(θ)R−1
ξ (θ)H(θ))−1)+ (21)

Finally, the information capacity is

Cinf =
1
4π

∫ π

−π

log |I + H+(θ)R−1
ξ (θ)H(θ)R∗

x(θ)|dθ

=
1
4π

∑
i

∫ π

−π

log(1 + λwi(θ)(μ − λ−1
wi (θ))+)dθ

=
1
4π

∑
i

∫
θ:μλwi>1

log(μλwi(θ))dθ (22)

which is exactly the same as in (8), since λi(θ) = λ−1
wi (θ).

We remark that this result also proves (indirectly) that
the above channel is information stable (under the stated
assumptions), since the operational and information capacities
coincide only if the channel is information-stable [12], [17].

This result can also be used when H(θ) is singular, i.e.,
|H(θ)| = 0 for some θ, which corresponds to W (θ) being
singular: since (·)+ operator eliminates negative eigenmodes,
zero eigenvalues of W (θ) do not affect R∗

x(θ), which assigns
zero input power at those frequencies (this can be seen via
the standard continuity argument), as it should be. This is also
clear from (22), where the integration is over the region where
λwi(θ) > 0, which corresponds to H(θ) being non-singular
at those frequencies.

With minor modifications, these results can also be extended
to the case of unequal number of inputs and outputs (antennas).
In particular, (21)-(22) apply directly to this case.

In the special case of H(θ) = I (i.e., parallel channels
with memoryless impulse response, but where the noise can
be correlated and with memory), (13) reduces to

R∗
x(θ) = (μI − Rξ(θ))+ (23)

which coincides with Theorem 1 in [10] for n = 2 and further
extends it to any n > 2.

IV. JOINT POWER CONSTRAINTS

While the constraint set in (12) includes only the TPC,
Theorem 1 can be extended to include additional additional
power constraints as well. Among the most important ones
are per-antenna constraints as in [6], [7], interference power
constraints (typical for multi-user systems including cog-
nitive radio) as in [8] as well as energy harvesting con-
straints. While the above constraints were formulated for
frequency-flat AWGN channels, we give below their extension
to frequency-selective channels (or, equivalently, channels with
memory).

Per-antenna power constraints (PAC) limit the average
power radiated by each antenna (due to e.g., limited power
amplifiers):

1
2π

∫ π

−π

rii(θ)dθ ≤ Pi (24)

where rii(θ) ≥ 0 is i-th diagonal entry of Rx(θ), the integral
represents the average power radiated by i-th antenna and Pi

is its maximum value.
The interference power constraints (IPC) take the following

form:
1
2π

∫ π

−π

tr{Hk(θ)Rx(θ)Hk(θ)+}dθ ≤ PI,k (25)

where Hk(θ) represents the channel to k-th user and PI,k is
the maximum interference power induced to that user.

The energy harvesting constraint (EHC) is opposite of the
IPC:

1
2π

∫ π

−π

tr{Hm(θ)Rx(θ)Hm(θ)+}dθ ≥ PE,m (26)

where Hm(θ) represents the channel to m-th energy-
harvesting user and PE,m is the minimum harvested power
(or energy per unit time) of that user.

The overall (joint) constraint set is

So = {Rx(θ) s.t. (12), (24), (25), (26)} (27)

where some constraints can be omitted, if necessary. We will
further assume that this set is not empty, i.e., the constraints
are compatible (otherwise, the capacity is zero). The following
Theorem is an extension of Theorem 1 to the case of the joint
constraints.

Theorem 2: Under the joint constraints in (27), the oper-
ational capacity of the channel in Sec. II is the same as its
information capacity, C = Cinf , where

Cinf � 1
4π

max
Rx(θ)∈So

∫ π

−π

log |I + W (θ)Rx(θ)|dθ (28)
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Proof: To prove the converse, note that it follows from
[14, Theorem 3.5.2 and 3.6.1] that C ≤ Cinf . Alternatively,
one can use the converse in [9, Sec. 3.1] and observe that it
also holds under the joint constraints since its key ingredient,
Fano’s inequality, is not affected by the constraints but only the
maximization of mutual information is. Likewise, to establish
achievability, one can use the codebook construction in [9, eq.
(3) and Sec. 3.2] and amend it with the PAC, IPC and EHC,
in addition to the TPC; all other steps of the proof remain
unaffected (since they do not depend on the constraints).

While the optimal input covariance matrix R∗
x(θ) is in

a closed-form in Theorem 1, a closed-form solution to the
maximization in (28) under the joint constraints is not known
in the general case, even for the memoryless channel.

However, it can be further simplified to a more explicit
form in some special cases. Let us consider the PAC alone,
as in (24), and extend [6] to the case of a MISO channel with
memory, H(θ) = h(θ)+, where the noise is i.i.d., Rξ = σ2

0I,
but the channel has memory via its impulse response h(t)
(e.g., due to multipath propagation). Using the same arguments
as in [6] but applied to the frequency-domain channel h(θ),
it follows that the optimal covariance in (28) is of rank-one,
R∗

x(θ) = w(θ)w(θ)+, where

wi(θ) =
√

rii(θ)ejφi(θ), φi(θ) = arg{hi(θ)} (29)

and the maximization in (28) reduces to the optimal power
allocation in the frequency domain:

C = max
{rii(θ)}

1
4π

∫ π

−π

log
(
1 + σ−2

0

∣∣∑
i

|hi(θ)|
√

rii(θ)
∣∣2)dθ

s.t.
1
2π

∫ π

−π

rii(θ)dθ ≤ Pi, rii(θ) ≥ 0 (30)

To the best of our knowledge, no closed-form solution is
known for this problem (note that the standard water-filling
solution, derived under the TPC, does not apply here due to
the PAC).

From an engineering perspective, Theorems 1 and 2 estab-
lish the information-theoretic optimality of OFDM-type trans-
mission systems operating over channels with memory as in
(2), since such systems essentially “implement” the capacity
expressions in (11), (28), (30) by replacing the integrals with
Riemann sums, e.g., Cinf in (28) is approximated by

Cinf ≈ 1
4π

max
Rx(θi)

∑
i

log |I + W (θi)Rx(θi)|Δθi (31)

where θi represents i-th subcarrier, Δθi represents its band-
width and the sum is over all subcarriers. While such systems
are widely studied in the literature, see e.g., [20], [21], their
information rates are often evaluated via respective mutual
information and it remains unclear whether (i) those rates
are indeed achievable (this is not trivial since channels with
memory are not necessarily information-stable and hence their
mutual information may have no operational meaning [12]-
[17]) and whether (ii) they can be further improved. The
above Theorems provide the affirmative answer to (i) and the
negative answer to (ii), both for the channel in (2).

V. CONCLUSION

A Gaussian MIMO channel with memory has been consid-
ered and its operational channel capacity hes been obtained
in a closed form under the total power constraint, and was
shown to be equal to its information capacity, thus proving
the earlier conjecture in [10]. This extends the seminal result
in [4], [5] to Gaussian MIMO channels with memory and
implies an information-theoretic optimality of OFDM-type
transmission systems for such channels. This result is further
extended to the case of joint power constraints, including
per-antenna constraints (either alone or in combination with
the total power constraints) as well as interference and energy-
harvesting constraints. For memoryless channels, the reported
results reduce to the well-known capacity expressions, as it
should be.
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