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Abstract—Intelligent reflective surface (IRS) has recently
emerged as a valuable addition to other key technologies for
5/6G to improve their energy efficiency and achievable rate at
low cost. An IRS-assisted single-input multiple-output (SIMO)
channel is studied here from an information-theoretic perspective.
Its channel capacity includes an optimization over IRS phase
shifts, which is not a convex problem and for which no closed-
form solutions are known either. A number of closed-form bounds
are obtained for the general case, which are tight in some special
cases and thus provide a globally-optimal solution to the original
problem. Based on a closed-form globally-optimal solution for
the single reflector case, a computationally-efficient iterative
algorithm is proposed for the general case. Its convergence to
a local optimum is rigorously proved and a number of cases are
identified where its convergence point is also globally optimal.
Numerical experiments show that the algorithm converges fast
in practice and its convergence point is close to a global optimum.

I. INTRODUCTION

Massive multi-antenna (MIMO) systems are a key tech-

nology for 5/6G as they offer high spectral efficiency and

simplified processing in multi-user environments [1]. However,

their hardware complexity and energy consumption are high

for many applications so that various techniques are explored

to reduce them. A promising new approach is an intelligent

reflective surface (IRS), which assists the regular MIMO chan-

nel and improves signal quality at the receiver via constructive

reflective paths [2]. Unlike the standard approach, whereby the

channel is considered to be out of control, this new approach

aims at controlling the channel to improve transmission rate

and energy efficiency. Furthermore, since IRS makes use of

passive elements (except for simple control circuits) and due

to its overall simplicity (as opposed to massive MIMO), this

can be achieved in a cost-efficient way.

One of the key problems is to optimize IRS to increase

the rate, spectral or energy efficiency or to decrease transmit

power. This problem has a difficult analytical structure and it

is non-convex, even in its most simple (but non-trivial) form,

i.e. for a MISO or SIMO channel. Therefore, various iterative

algorithms have been proposed [3]-[6].

In particular, the MISO channel with IRS assistance was

considered in [3] and a joint optimization problem of maximiz-

ing the receive (Rx) SNR over the transmit (Tx) beamforming

vector and IRS phase shifts was formulated. Since this problem

is not convex, the semidefinite relaxation technique was used

to obtain numerically an upper bound and an alternating

optimization method was used to minimize the Tx power. A

similar MISO setup was considered in [4], where an iterative

algorithm was proposed based on a fixed-point iteration for

Tx beamforming vector and manifold optimization for IRS
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phase shifts. This approach provides higher rates and lower

computational complexity compared to [3]. In [7], an IRS-

assisted cognitive communication system was considered and

the rates of secondary users were optimized while satisfying

interference constraint for a primary user.

A common feature of the above studies is that no analytical

solutions were obtained due to a difficult analytical structure of

the considered problems and that the proposed algorithms were

shown to converge only to a local rather than global optimum;

it is not clear how far away is an achieved local optimum

from a global one or whether the algorithms can converge to a

global optimum under certain conditions. Since the considered

problems are not convex, their numerical complexity is in

general exponential (i.e. prohibitively large for moderate to

large systems, especially for real-time optimization).

Some practical aspects of IRS design and implementation,

such as implementing phase shifts over the whole continuous

interval [0, 2π], or the availability and accuracy of channel

state information (CSI), have been also considered [7]-[9]. An

experimental study to validate the benefits of IRS in practice

has been reported in [12].

In this paper, we consider an IRS-assisted SIMO channel

from an information-theoretic perspective via its channel ca-

pacity, where IRS-induced phase shifts are also optimization

variables. Since an analytical solution to this problem is not

known in the general case and since the known numerical

algorithms exhibit local convergence at best, we obtain a

number of closed-form global bounds that hold in the general

case and are tight in some special cases. This yields a number

of closed-form solutions to optimal IRS phase shifts and also

serves as a benchmark for evaluating numerical algorithms (i.e.

how close they are to a global optimum): if an algorithm con-

vergence point is close to an upper bound, then automatically

it is also close to a global optimum (since global optimum is

sandwiched between the upper bound and convergence point)

and this can serve as a stopping criterion in some cases.

Based on an analytical closed-form and globally-optimal

solution for the single reflector case, a semi-analytical al-

ternating optimization algorithm is proposed for the general

case. At each alternation, it makes use of the closed-form

solution and hence does not need any numerical procedure

involving gradients and/or Hessians (as in e.g. gradient or

Newton method) and thus it is computationally-efficient, even

for a large number of antennas and reflectors (as in 5/6G). Its

convergence to a local maximum point is rigorously proved

and a number of cases are identified whereby it converges to a

global optimum or close to it. Numerical experiments show its

computational efficiency and fast convergence. A comparison

to the fixed point iteration (FPI) method in [4] shows that

the proposed algorithm achieves higher IRS gain for all tested

channels.
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Fig. 1. An illustration of IRS-assisted SIMO channel.

Notations: bold capitals and bold lower-case letters denote

matrices and vectors, respectively; |h|, h′ and h+ denote Eu-

clidean norm (length), transposition and Hermitian conjugation

of column vector h and hi is its i-th entry; ℜ{z} and ℑ{z}
denote real and imaginary parts of complex number z while

arg{z} is its argument (phase).

II. CHANNEL MODEL

Let us consider an IRS-assisted SIMO channel as in Fig. 1,

including a single-antenna transmitter (Tx), an IRS equipped

with L reflectors, and a receiver (Rx) equipped with N anten-

nas. This may represent an uplink of a cellular system where

a single-antenna user communicates with a multi-antenna base

station. The Rx signal can be expressed as

y = (h0 +

L
∑

l=1

ejφlhl)x + z (1)

where x is the scalar transmitted (Tx) signal satisfying the

power constraint E[|x|2] = P , y ∈ CN×1 is the received

(Rx) signal, z ∈ CN×1 denotes the AWGN noise vector;

h0,hl ∈ CN×1 are the channel vectors representing the

direct link and the reflected link via l-th IRS reflector, which

introduces phase shift φl (the reflection loss is absorbed into

hl). The noise is circularly symmetric complex Gaussian with

zero mean and variance of σ2
0 per Rx antenna. We further

assume that the channel is static or quasi-static (i.e. stays

fixed for a sufficiently long time) and that full channel state

information is available.

For a standard SIMO channel without IRS assistance, the Rx

SNR and thus the rate are maximized by matched filtering (or

maximal-ratio combining) at the Rx [10], so that the maximum

SNR γ0 is

γ0 = |h0|2P/σ2
0 . (2)

Without loss of generality, we further assume that |h0| = 1.

With IRS assistance, matched filtering at the Rx is still optimal

(maximizes the SNR and rate) so that

γ(φ) = |h0 +
L
∑

l=1

ejφihi|2γ0 = g(φ)γ0 (3)

where φ = [φ1, · · · , φL]
′ is the vector of IRS phase shifts,

and we emphasize that the SNR γ(φ) depends on φ (to be

optimized later on); g(φ) = |h0 +
∑L

l=1 e
jφ

ihi|2 is the IRS

gain.

III. IRS-ASSISTED CHANNEL CAPACITY

Unlike the standard SIMO channel, whereby the channel

vector h0 is constant and the channel capacity involves max-

imization of mutual information over the input distribution

only [10], the IRS-assisted channel provides extra degrees

of freedom for maximizing mutual information, i.e. IRS-

induced phase shifts φl. Since the equivalent IRS-assisted

channel vector h0 +
∑L

l=1 e
jφlhl is independent of the input

x, Gaussian input is still optimal [10] and the maximum

rate (spectral efficiency) supported by the IRS-assisted SIMO

channel for a given φ is

R(φ) = log(1 + γ(φ)) (4)

so that its capacity is

CIRS = max
φ

R(φ) = log(1 + max
φ

γ(φ)) (5)

We note that this problem is not convex and hence is difficult

to solve, either analytically or numerically, and, in the general

case, it remains open. Here, we address it by obtaining explicit

closed-form solutions for some special cases, establish bounds

and conditions for their achievability, propose an iterative al-

gorithm for the general case and prove its (local) convergence.

A. IRS-assisted capacity via bounds

In this section, we establish some bounds on the IRS-

assisted SNR and conditions for their achievability, which can

be further used to solve (5) in some cases in closed-form.

Proposition 1. The IRS-assisted SNR γ(φ) is upper bounded

as follows:

γ(φ) ≤ Gγ0, G =

(

1 +

L
∑

l=1

|hl|
)2

. (6)

and the upper bound is attained if

hl = alh0, φl = − arg{al}, l = 1..L. (7)

for some complex al.

Proof. Using the triangle inequality,

γ(φ) = |h0 +

L
∑

l=1

ejφlhl|2γ0

≤ γ0

(

1 +

∣

∣

∣

∣

∣

L
∑

l=1

ejφlhl

∣

∣

∣

∣

∣

)2

(8)

≤ Gγ0

It can be verified that the equality is attained under (7).

Since the upper bound in (6) is independent of φ, a solution

to (5) follows.

Corollary 1. The maximum IRS-assisted SNR γIRS is

bounded as follows

γIRS = max
φ

γ(φ) ≤ Gγ0 (9)

and the IRS-assisted capacity is bounded as

CIRS ≤ log(1 +Gγ0) (10)
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Both bounds are attained if hl = alh0, l = 1..L, so that

φ∗
l = − arg{al} solve the problem in (5).

Next, we consider a more general case, where hl and h0

are not required to be parallel. To this end, let us define the

channel matrix H and the phase shift vector w as follows:

H = [h0, · · · ,hL], w = [1, ejφ1 , · · · , ejφL ]′ (11)

Proposition 2. In the general case, the IRS-assisted SNR can

be bounded as follows:

σ2
min(H)(L+ 1)γ0 ≤ γ(φ) ≤ σ2

1(H)(L+ 1)γ0 (12)

where σ1(H) and σmin(H) are the largest and smallest sin-

gular values of H. The upper bound is attained if w = α1v1

for some α, where v1 is the right singular vector of H

corresponding to its largest singular value. The lower abound

is attained if w = α2vmin for some α2, where vmin is

the right singular vector of H corresponding to its smallest

singular value.

Proof. Using (11),

γ(φ) = |Hw|2γ0 ≤ σ2
1(H)|w|2γ0 = σ2

1(H)(L + 1)γ0 (13)

where the inequality is due to the singular value inequality

|Hw| ≤ σ1(H)|w| [11, pp. 267-268.] and the equality is from

|w|2 = L+1. The achievability follows from |Hv1| = σ1(H).
The lower bound is proved in the same way.

Since the upper bound in (12) is independent of φ, it can

be used to solve (5).

Corollary 2. The maximum IRS-assisted SNR is bounded as

follows

γIRS ≤ σ2
1(H)(L + 1)γ0 (14)

and the IRS-assisted capacity is bounded as

CIRS ≤ log(1 + σ2
1(H)(L + 1)γ0) (15)

Both bounds are attained if v1 has equal-magnitude entries,

i.e. |v1l| = 1/
√
L+ 1, then φ∗

l = − arg{v1l} solve the

problem in (5).

Since these bounds are global (i.e., apply to a globally-

optimal IRS and any channel), they can be used as a bench-

mark to evaluate numerical algorithm’s performance: if its

convergence point is close to the upper bound, then it is

also close to a global optimum, since the latter is sandwiched

between the upper bound and a convergence point. This can

also be used as algorithm’s stopping criterion in some cases.

B. Single-reflector case

Next, we consider the case of L = 1, which is the least

complex IRS implementation, and solve (5) in full generality

for a global optimum, i.e. not imposing any conditions on

h0 and h1. This analytical solution will be used later on for

efficient iterative algorithm to solve (5) for general L and

general H. To this end, let

akn = |hkn|, θkn = arg{hkn}, k = 0, 1, n = 1...N

cn = a0na1n, ∆θn = θ0n − θ1n, (16)

CI =
N
∑

n=1

cn cos(∆θn), CQ =
N
∑

n=1

cn sin(∆θn)

so that akn and θkn represent magnitude and phase of each

link, and ∆θn are the phase differences between LOS and

reflected links.

Proposition 3. For a single-reflector IRS, the following φ∗ is

globally-optimal for (5):

φ∗ = arg{CI + jCQ} (17)

so that the IRS-assisted capacity is CIRS = log(1 + γIRS),
where

γIRS =
(

1 + |h1|2 + 2|CI + jCQ|
)

γ0 (18)

Proof. The SNR γ(φ) can be bounded as follows:

γ(φ) = |h0 + ejφh1|2γ0

=
(

1 + |h1|2 + 2

N
∑

n=1

cn cos(∆θn − φ)
)

γ0

=
(

1 + |h1|2 + 2(CI cos(φ) + CQ sin(φ))
)

γ0 (19)

=
(

1 + |h1|2 + 2ℜ
{

(CI + jCQ)e
−jφ
}

)

γ0

≤
(

1 + |h1|2 + 2|CI + jCQ|
)

γ0.

where the inequality is from ℜ{z} ≤ |z| for any complex z
and the equality is attained if ℑ{z} = 0 and ℜ{z} ≥ 0, i.e.

under (17).

It follows from (17) and (16) that weak links, i.e. those with

small cn, contribute little to φ∗ while strong links contribute

most. When all links are equally strong (all cn are equal), (17)

simplifies to

φ∗ = arg

{

N
∑

n=1

ej∆θn

}

(20)

If all ∆θn are the same, ∆θn = ∆θ, then φ∗ = ∆θ so

that LOS and reflected path are added constructively in each

antenna, as it should be.

IV. ALTERNATING OPTIMIZATION ALGORITHM

While Proposition 3 provides a globally-optimal closed-

form solution to the non-convex problem in (5), it applies

to the single-reflector IRS only. However, it can be used as

a building block to construct a semi-analytical iterative algo-

rithm for any number of reflectors. The key idea is to optimize

a single reflector phase at each iteration using the closed-form

solution in (17) while keeping all other phases fixed. This

can be done sequentially for all reflectors. In the optimization

literature, this is known as alternating optimization (optimizing

only single variable at a time). Let us illustrate this idea for

L = 2.

• Step 1: optimize φ1 using (17) and (16) with h0+ejφ2h2

in place of h0.

• Step 2: optimize φ2 using (17) and (16) with h0+ejφ1h1

in place of h0 and h2 in place of h1.

These iterations can be repeated as many times as necessary,

using some initial value of φ2 at step 1 of very first iteration.

Since this algorithm generates non-decreasing sequences of

SNRs and since this sequence is bounded, it will converge,

which is a welcome property.
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In the general case (arbitrary L), φl is optimized at step l
while all other phases are kept constant:

• Step l: optimize φl using (17) and (16) with h0 +
∑

k 6=l e
jφkhk in place of h0 and hl in place of h1.

This is summarized in Algorithm 1. Phase optimization is

performed alternatingly in the inner loop, one phase at a time,

using the closed-form solution in (17) (which is globally-

optimal for that particular step), as in Step l above. Since one-

by-one optimization is not necessarily globally-optimal (even

though each step is), multiple iterations are needed, which are

performed by the outer loop. Step 3 of Algorithm 1 is needed

to account for a rare (but possible) case h
(l)
0 = 0, for which φl

is arbitrary so it is randomly generated. φ0 is an initial phase

vector (to be optimized), ∆γ is a convergence tolerance, i0
is the number of outer iterations over which the increase in

the SNR is evaluated in the termination criterion; γ(i) = 0 for

i < 0.

Since a closed-form solution is used in each iteration

of the inner loop, no gradients or Hessians are necessary

and no numerical optimization is used. Hence, Algorithm

1 is computationally-efficient. As we show below, the SNR

sequence γ(i) generated by this Algorithm is non-decreasing

and bounded and therefore converges, and so is the Algorithm.

Algorithm 1 Alternating optimization of γ(φ)

Required: H, φ0, ∆γ > 0, i0 ≥ 1
Initialization: i = 0, γ(0) = γ(φ0), φ = φ0

repeat (outer loop)

1. Update i → i + 1.

for l = 1 to L do (inner loop)

2. Set h
(l)
0 = h0 +

∑

k 6=l e
jφkhk

if h
(l)
0 = 0

3. Set φl ∼ uni(0, 2π).
else

4. Compute CI , CQ using (16) with

h0 → h
(l)
0 , h1 → hl.

5. Set φl = arg{CI + jCQ}
end if

6. Set γ(i,l) = γ(φ)
end for

7. γ(i) = γ(i,L).

until γ(i) − γ(i−i0) ≤ ∆γ
Output: φ

Proposition 4. Algorithm 1 generates a non-decreasing and

bounded sequence of SNRs γ(i) and therefore converges. Its

convergence point is a local maximum for the problem in (5).

Proof. To see that Algorithm 1 generates non-decreasing se-

quence γ(i), let φ(i,l) be the phase vector after step l of the

inner loop has been completed at step i of the outer loop, and

observe the following:

γ(i) = γ(i,L) (21)

≤ max
φ1

γ(φ(i,L)) = γ(φ(i+1,1)) = γ(i+1,1) (22)

≤ max
φ2

γ(φ(i+1,1)) = γ(i+1,2) (23)

≤ · · · ≤ max
φL

g(φ(i+1,L−1))) = γ(i+1) (24)

where (21) is the SNR after step i of the outer loop has

been completed; (22), (23) and (24) represent steps 1, 2

and L of the inner loop at step i + 1 of the outer loop.

Thus, γ(i) ≤ γ(i+1), i.e. γ(i) is a non-decreasing sequence.

Intuitively, this is so because, at each step of the inner loop,

the SNR cannot decrease since the respective phase is optimal,

i.e. maximizes the SNR, at that step. This sequence is bounded,

as has been established in Corollaries 1 and 2. Therefore, it

converges and hence the termination criterion in Algorithm 1,

i.e. γ(i) − γ(i−i0) ≤ ∆γ, will be eventually satisfied, for any

∆γ > 0 and any initial point φ0. To see that this convergence

point is a local maximum, observe that it cannot be a local

minimum or an inflection point since the latter would mean

that at least one φl is not (locally) optimal and hence it can be

improved at step l of the inner loop (since Step 5 of Algorithm

1 sets optimal φl while all other phases are fixed).

Since the problem in (5) is not convex, its local maximum

obtained by Algorithm 1 is not necessarily a global one.

However, numerical experiments show that in many cases

Algorithm 1 does achieve an SNR close to the upper bounds

established above and hence close to a global optimum. In

fact, it can be shown that, under some conditions, Algorithm

1 does converge to a global optimum provided that its initial

point φ0 is properly selected.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the analytical results and

performance of Algorithm 1 via numerical experiments.

For Algorithm 1, due to the non-convex nature of the

problem in (5), it is important to select properly an initial

point φ0. While in principle any initial point can be used since

the algorithm will converge anyway, its convergence point is a

local maximum, not necessarily a global one, and it is affected

by φ0. Extensive simulations suggest that the following point

is a good choice,

φ0l = − 1

N

∑

n

∆θn,l (25)

i.e. the opposite of the average phase difference between LOS

and reflector l paths across all antennas, which is indicated by

AOA-1 in the figures below. For comparison, we also show

the results with all-zero initial point labeled as AOA-2. The

IRS gain g(φ) as in (3) is used as a performance measure

since it is independent of γ0.

Fig. 2 shows the performance of Algorithm 1 along with

the upper bound in (14) and all φl = π IRS (which corre-

sponds to an ideal conductor with no phase adjustments), for

N = 2, L = 2 scenario (for which no closed-form solution

to (5) is known). To have representative results, 104 channel

realizations were generated randomly (with |hnl| ∼ uni(0, 1)
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Fig. 2. Highest (a) and lowest (b) IRS gain scenarios among 10
4 randomly-

generated channel realizations, with N = 2, L = 2.

and ∆θn,l ∼ uni(−π, π), all i.i.d.) and normalized to |hl| = 1
(to remove the impact of variable channel gains) and the IRS

gain was computed for each one. Fig. 2(a) and 2(b) show the

results for the channels with the highest and lowest IRS gains

over the entire set. Clearly, Algorithm 1 convergence to the

upper bound, thus achieving a global optimum, in case (a) and

close to it in case (b), all within a small number of iterations

(less than 5). As 2(b) shows, all-zero initial point is not the

best one and the one in (25) performs better. The all φl = π
IRS is far from optimum and much better performance can be

achieved via proper phase optimization.

Fig. 3 shows the IRS gain with a larger number of antennas

and reflectors, N = 5, L = 10. Clearly, this results in larger

IRS gain and Algorithm 1 still performs well. Even though

it takes more iterations to convergence compared to Fig. 2,

this number is still modest (less than 10). Even though a

convergence point is not necessarily a global optimum (since

the problem is not convex), it is close to the upper bound and

hence to the global optimum. Fig. 3(b) also demonstrates the

superiority of the initial point in (25). Similar results can also

be obtained for larger L.

A comparison to the fixed point iteration (FPI) method in

[4] shows that the proposed algorithm achieves higher IRS

gain for all tested channels (2 · 104 in total). A more detailed

comparison will be presented in a later publication.
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Fig. 3. The same setting as in Fig. 2 but with N = 5, L = 10.
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