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Favorable Propagation for Wideband Massive
MIMO with Non-Uniform Linear Arrays

Elham Anarakifirooz, Sergey Loyka

Abstract—Favorable propagation (FP) for massive MIMO with
uniform and non-uniform linear arrays is studied. A gap in
the existing FP studies of uniform linear arrays is identified,
which is related to the existence of grating lobes in the array
pattern and which results in the FP condition being violated, even
under distinct angles of arrival. A novel analysis and design of
non-uniform linear arrays are proposed to cancel grating lobes
and to restore favorable propagation for all distinct angles of
arrival. This design is based on a subarray structure and fits
well with efficient hybrid beamforming structures proposed for
5/6G systems. In addition, we show that the proposed design is
robust in the frequency domain and can be used for wideband
or ultra-wideband systems.

I. INTRODUCTION

Massive MIMO is widely accepted as one of the key

technologies for 5G and beyond. It provides significant im-

provements in spectral and energy efficiencies as well as

simplified processing in multi-user environments, due to a

phenomenon known as ”favorable propagation” (FP), whereby

the channel vectors of different users become orthogonal to

each other as the number of antennas increases [1][2]. While

channel vectors of different users are rarely exactly orthogonal

to each other in practice, it has been shown theoretically

and experimentally that the FP holds approximately in many

scenarios of practical interest so that the benefits of massive

MIMO can be exploited [1]-[9].

Favorable propagation for uniform linear arrays (ULA)

was studied analytically in [1]-[5] and experimentally in [6]-

[9]. Antenna array geometry and propagation environment

along with users’ locations were identified as the key factors

determining the existence or non-existence of the FP. It was

concluded that, for a fixed antenna element spacing and LOS

propagation, the FP holds asymptotically (as the number N
of antenna elements increases without bound) as long as users

have distinct angles of arrival (AoA). In this Paper, we show

that this conclusion is based on an implicit assumption (not

mentioned in the above studies) that there are no grating lobes

(GL) in the array pattern and that it fails to hold if GLs are

present (which is determined by the element spacing and beam

steering) and some users align with their directions.

Larger element spacing under fixed N (i.e. fixed complex-

ity/cost) is desirable to increase the array spatial resolution

(or, equivalently, to decrease its beamwidth), i.e. its ability to

resolve nearby users and hence to cancel inter-user inference

(IUI). However, this has a major drawback as grating lobes

appear in the array pattern for larger spacing [10][11] so

that different users appearing at the main beam and GLs

directions cannot be resolved, which creates significant IUI

at those directions. This has a profound negative impact on
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favorable propagation, even under distinct AoAs. The larger

the antenna spacing, the more grating lobes will appear and so

more directions should be banned for other users to maintain

the FP. An experimental observation of the grating lobe’s effect

on IUI and favorable propagation was reported in [9], but,

to the best of our knowledge, no comprehensive analysis is

available in the literature, so that the existing FP analysis for

ULAs is incomplete in this respect. No design to eliminate the

impact of GLs on favorable propagation was proposed either.

To address these issues, we present a rigorous analysis of

grating lobes’ impact on favorable propagation (see Propo-

sitions 1 and 2) and propose a non-uniform linear array

(NULA) design that effectively cancels grating lobes and

thus ensures that the FP holds for any element spacing and

any distinct AoAs (see Theorem 1). The NULA design we

propose is block-partitioned, whereby each block (subarray)

is an ULA but the overall array is not uniform. In order

to cancel GLs, we show that the number Nb of subarrays

(blocks) and their spacing ∆D have to be carefully selected

so that, asymptotically, grating lobes are cancelled by nulls

in the block array factor and thus the FP is restored for any

distinct AoAs. To this end, we use some concepts from number

theory, which, to the best of our knowledge, have not been

used before in massive MIMO or antenna array literature. It

should be noted that while the actual number of grating lobes

and their directions do depend on the main beam direction

(i.e. beam steering), see e.g. [10][11], the design we propose

is independent of it, so it can accommodate beam steering and

grating lobes are canceled for any direction of the main beam.

The proposed block-partitioned array structure fits well with

efficient designs proposed for 5/6G systems, which make use

of subarrays and hybrid beamforming [12][13].

Data rates demands continue their exponential growth due

to e.g. popular applications (HD video streaming) as well as

the increase in the number of wireless devices. 5G systems

make use of wide bandwidth (up to 400 MHz per channel)

to address this demand (along with other technologies such as

massive MIMO) [17, section 3.1.2]. 6G systems are envisioned

to have even larger bandwidth available at millimeter wave and

THz bands (e.g. up to 50 GHz as in IEEE 802.15.3d)[18].

While OFDM-type techniques handle efficiently frequency-

selective properties of a wideband channel, antenna array

design is much more challenging for wide bandwidth [10][11].

In particular, unlike signal processing techniques, antenna

array geometry cannot change on a sub-carrier basis. Hence,

frequency-independent geometric design is needed. To address

this issue, we show in Sec. V that the above analysis and

design are remarkably robust in frequency domain so that they

can be applied to wide-band systems as well. Specifically, the

FP property of ULA is essentially frequency-independent as

long as there are no grating lobes at all frequencies and the
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block-partitioned NULA design in Theorem 1 also holds over

a wideband channel provided the number of blocks is properly

selected (based on the largest frequency, see Proposition 3).

II. CHANNEL MODEL AND FAVORABLE PROPAGATION

Let us consider a Gaussian MIMO channel, where M
independent single-antenna users transmit simultaneously to

a base station (BS) equiped with an N -element antenna array:

y = h1x1 +

M
∑

i=2

hixi + ξ (1)

where hi, xi are the channel (column) vector and the trans-

mitted signal of user i, i = 1, ...,M ; y, ξ are the received

BS signal and noise vectors, respectively; |h|,h′ and h+

denote Euclidean norm (length), transposition and Hermitian

conjugation, respectively, of vector h. The noise is Gaussian

circularly symmetric, of zero mean and variance σ2
0 per Rx

antenna. Following [1][3][4], we consider a far-field LOS-

dominated environment, as in e.g. mmWave or THz systems

where LOS is essential to maintain a proper link SNR [14][18].
To simplify the decoding process, the BS uses linear pro-

cessing with matched filter beamforming w = h1/|h1| to

decode user 1, treating other users’ signals as interference.

Hence, its SINR can be expressed as follows:

SINR =
|h1|

2σ2
x1

|h1|−2
∑M
i=2 |h

+
1 hi|

2σ2
xi

+ σ2
0

(2)

= γ1

(

M
∑

i=2

|αiN |2γi + 1

)−1

, αiN =
h+
1 hi

N
(3)

where σ2
xi and γi = |hi|

2σ2
xi/σ

2
0 are the signal power and the

SNR of user i; the channel is normalized so that |hi|
2 = N

(this is consistent with the far-field LOS model in (8)) while

the propagation path loss is absorbed into the respective Rx

SNR γi. Using this simplified decoding method, the SINR

cannot exceed the single-user SNR γ1,

SINR ≤ γ1 (4)

and this maximum is attained when the users’ channels be-

come orthogonal to each other,

SINR → γ1 if αiN → 0 ∀ i > 1 (5)

as the number N of antenna elements increases and all

SNRs stay uniformly bounded, i.e. γi ≤ γmax < ∞ for

some γmax independent of N (where γi may depend on N ).

This is known as (asymptotically) favorable propagation (FP)

condition. When the number of users is finite, the FP condition

can be expressed in 2 equivalent ways:

lim
N→∞

α2
N = 0 ⇔ lim

N→∞

|αiN | = 0 ∀i > 1 (6)

where α2
N =

∑M
i=2 |αiN |2 characterizes the total interference

leakage and |αiN |2 represents IUI power ”leakage” from user

i to the main user. If all users have the same SNR (γi = γ1),

then the SINR simplifies to:

SINR = (α2
N + γ−1

1 )−1 ≤ γ1 (7)

and, under favorable propagation, the upper bound is attained,

SINR = γ1. While in practice the number N of elements is

Fig. 1. An illustration of ULA(N, d), where ui is a unitary vector directed
to user i and θi is its AoA while the main user is at θ1, all measured from
broadside; −π/2 ≤ θ1, θi ≤ π/2. When 1st user’s signal is decoded, i-th
user is a source of interference.

always finite and α2
N is never exactly zero, the FP is closely

approached if α2
N ≪ γ−1

1 so that SINR ≈ γ1. This justifies the

asymptotic analysis N → ∞ from the practical perspective,

since, if the asymptotic FP (6) holds, it follows from the limit

definition that there exists a sufficiently large N for which

α2
N ≪ γ−1

1 and thus SINR ≈ γ1. This is no longer the case

if the FP does not hold.

III. FAVORABLE PROPAGATION FOR ULAS

Favorable propagation for uniform linear arrays has been

investigated analytically and experimentally [1]-[9]. It was

concluded that FP holds asymptotically for ULAs of fixed el-

ement spacing under LOS propagation conditions and distinct

users’ AoAs [1][3][4] but does not hold if the antenna array

size is fixed (so that the element spacing decreases when N
increases) [5]. However, the former conclusion is based on the

implicit assumption, not stated in the above studies, that there

are no grating lobes in the array factor and it does not hold

if GLs are present. To see this, observe that [1, eq. (7.17)],

which is equivalent to eq. (9) below with minor notational

differences, converges to 0 as N → ∞ only if its denominator

is not zero. However, the denominator is indeed zero if GLs

are present in the antenna array pattern, even under distinct

users’ AoAs, as the example below shows. This observation

also applies to [4, eq. (18)] and [3, eq. (34), (42)]. In particular,

Propositions 4 and 5 in [3] fail to hold if GLs are present.

Example 1: consider a ULA of isotropic elements with

element spacing d = 1/2 measured in wavelengths, as illus-

trated in Fig. 1. Let θ1 = 90o and θi = −90o 6= θ1 (i.e.,

distinct AoAs). It is straightforward to see that, in this case,

the denominator in [1, eq. (7.17)] is zero and the respective

scalar product |αiN | = 1 for any N , see (9) below, i.e. the

FP fails to hold even though the AoAs are distinct. The same

observation applies to [4, eq. (18)] and [3, eq. (34), (42)]. This

can be explained via the array factor shown in Fig. 4, where

the main beam is at θ1 = 90o to follow user 1 while the

grating lobe appears at −90o, so that, if another user is at the

latter direction, it cannot be discriminated from the 1st user

and hence the FP fails to hold (even though the AoAs here are

distinct). Even if the main user is at broadside, i.e. θ1 = 0o,

grating lobes appear if d ≥ 1 and the FP fails to hold, even

under distinct AoAs, e.g. if d = 1, θ1 = 0o, θi = ±π/2, see

Fig. 3, which also results in zero denominators in [3][4]. In

general, the larger d, the more grating lobes emerge [10][11]

and favorable propagation fails to hold if users’ AoAs, being

distinct from each other, coincide with the GL directions. Eq.

(12) below gives precise condition for this to happen.
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To analyze the impact of grating lobes on favorable propa-

gation, we follow [1][3][4] and consider LOS-dominated en-

vironment, where users have distinct angles-of-arrival (AoAs).

In the far-field, the normalized channel vector of i-th user for

N -element ULA of isotropic elements with element spacing

d (measured in wavelengths) is:

hi = [ejψ0i , · · · , ejψ(N−1)i ]′, i = 1, · · · ,M (8)

ψni = 2πnd sin(θi), n = 0, · · · , N − 1

where θi is the AoA of user i signal of which there are M ,

−π/2 ≤ θi ≤ π/2; ψni is the phase shift at element n with

respect to 1st element, see Fig. 1. All users are assumed to

be in the front half-plane, −π/2 ≤ θi ≤ π/2, and there is no

backward radiation (usually eliminated by a ground plane or

by array elements). For further reference, we use ULA(N, d)
to denote a uniform linear array with N isotropic elements

and element spacing d. Using the system model in (1), the

inter-user interference leakage from user i to the main user

(i = 1) can be expressed as follows:

αiN = N−1h+
1 hi =

sin(N∆ψi/2)

N sin(∆ψi/2)
ej(N−1)∆ψi/2 (9)

where ∆ψi = 2πd(sin θi − sin θ1). Further notice that

limN→∞ αiN = 0, i.e. the FP holds, provided that

sin(∆ψi/2) 6= 0. The latter condition may be violated even if

θi 6= θ1 (distinct AoAs), e.g. if d = 1, θ1 = 0, θi = ±90o 6=
θ1 so that ∆ψi = ±2π, sin(∆ψi/2) = 0 and hence |αiN | = 1
for any N . This represents a grating lobe in the array pattern,

see e.g. [10][11]. In general, GL directions φk correspond to

zero denominator in (9), i.e. sin(∆ψi/2) = 0, and, for a given

θ1, can be found from ∆ψi = 2πk with θi = φk, which is

equivalent to

sin(φk) = sin(θ1) + k/d (10)

where k is the GL index, k = ±1,±2, .... Since | sinφi| ≤ 1,

there exist no grating lobes if

d(1 + | sin θ1|) < 1 (11)

In this case, the results in [1][3][4] do hold for any distinct

θi, but they may fail to hold if (11) is not satisfied. Indeed,

using (9), it follows that, under distinct AoAs θi 6= θ1,

lim
N→∞

|αiN | =

{

1, if d(1 + | sin θ1|) ≥ 1 & θi = φk
0, otherwise.

(12)

Note a dichotomy here: the limit is either zero or one. The

latter case gives the conditions when the FP fails to hold:

d(1+ | sin θ1|) ≥ 1 is the condition for the GL existence, and

θi = φk is the condition for i-th user AoA to coincide with

k-th GL direction. These are precisely the cases overlooked

in [1][3][4]. Note from (12) that the FP may fail to hold even

if d = 1/2 (as in [1, eq. (7.17)]), e.g. if θ1 = 90o, θi =
φ−1 = −90o 6= θ1 so that ∆ψi = −2π, sin(∆ψi/2) = 0 and

|αiN | = 1 for any N , but the FP always holds if d < 1/2.

To determine the number of grating lobes, observe that

| sin(φk)| ≤ 1 and use (10) to obtain the range of k:

k ≥ kmin = −⌊d(1 + sin(θ1))⌋ ≥ −⌊2d⌋ (13)

k ≤ kmax = ⌊d(1− sin(θ1))⌋ ≤ ⌊2d⌋ (14)

Fig. 2. Block-partitioned NULA of Nb subarrays (blocks) ULA(N, d) with
subarray spacing ∆D; D = (N −1)d+∆D, and (N −1)D is the subarray
length. The AoAs are distinct, θ1 6= θi, and −π/2 ≤ θ1, θi ≤ π/2.

where ⌊·⌋ is the floor function, so that Ik =
{{kmin, · · · , kmax} − {0}} is the GL index set, k = 0
represents the main beam and hence is excluded; Ik is an

empty set if there are no GLs. Thus, the number K of GLs

does not exceed ⌊2d⌋,

K = kmax − kmin ≤ ⌊2d⌋ (15)

and there are no grating lobes if d < 1/2, for any θ1.

Motivated by the above analysis of grating lobes and their

impact on the FP, we present below a structural design of

nonuniform linear arrays that eliminates grating lobes and

guarantees FP to hold for any distinct AoAs.

IV. NON-UNIFORM LINEAR ARRAY DESIGN FOR FP

This section aims to exploit a non-uniform array structure

to cancel grating lobes and hence to achieve favorable prop-

agation for all distinct AoAs and any element spacing d. We

consider a block-partitioned non-uniform array as in Fig. 2:

the overall NULA consists of Nb subarrays (blocks), which

are ULA(N, d) and which are arranged in the ULA(Nb, D)
block-wise pattern. The overall NULA pattern is a product of

the subarray factor of ULA(N, d) and the block array factor of

ULA(Nb, D) (where each block is replaced with an isotropic

element), see e.g. [10, p. 75][11, p. 7]. Thus, the GLs in the

subarray factor can be cancelled with nulls in the block array

factor, as explained below. Finding proper Nb and the subarray

spacing ∆D are crucial to cancel all GLs and hence to achieve

favorable propagation for any distinct AoAs and any d.

Due to the block-wise symmetry of the structure, the overall

channel vector hi of the NULA for user i can be expressed

as follow:

hi = hsi ⊗ hbi (16)

where ⊗ denotes Kronecker product; hsi and hbi represents

the channel vector of the subarray ULA(N, d) and of the block

array ULA(Nb, D), respectively, where hsi is as in (8) and

hbi is

hbi = [ejψb,0i , · · · , ejψb,(Nb−1)i ]′, i = 1, · · · ,M (17)

ψb,ni = 2πnD sin(θi), n = 0, · · · , Nb − 1

For further use, the interference leakage terms of the NULA

are defined as follows:

αiN =
h+
1 hi

NbN
, αsiN =

h+
s1hsi

N
, αbi =

h+
b1hbi

Nb
(18)
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where αsiN and αbi represent the respective terms for a single

subarray ULA(N, d) and the block array ULA(Nb, D) while

αiN represents the overall leakage.

The following proposition is instrumental in establishing the

FP for the block-partitioned NULA.

Proposition 1. Let hi have Kronecker structure as in (16).

Then, αiN can be expressed and bounded as follows:

αiN = αsiNαbi (19)

|αiN | ≤ min{|αsiN |, |αbi|} (20)

Proof. Observe the following:

αiN = (NbN)−1h+
1 hi

= (NbN)−1(hs1 ⊗ hb1)
+(hsi ⊗ hbi)

= (NbN)−1(h+
s1 ⊗ h+

b1)(hsi ⊗ hbi)

= (N−1h+
s1hsi)(N

−1
b h+

b1hbi) = αsiNαbi (21)

where 3rd and 4th equalities are due to the properties of

Kronecker products [15]. The inequality in (20) follows from

|αsiN |, |αbi| ≤ 1.

Thus, the impact of subarray and block array factors αsiN ,

αbi on the overall IUI leakage factor αiN is factorized, which

simplifies the analysis considerably. In particular, using (20),

|αiN | → 0 if either |αsiN | → 0 or |αbi| → 0. This can be

exploited to cancel grating lobe’s effect on the FP. To this

end, let us consider the asymptotic (”massive”) regime where

N → ∞ while Nb is fixed (constant), under distinct AoAs.

Proposition 2. If Nb is fixed and θ1 6= θi, then the following

asymptotic relationship holds for the block-portioned NULA:

lim
N→∞

|αiN | =

{

|αbi(φk)|, ∃k ∈ Ik : θi = φk
0, otherwise .

(22)

Proof. Using (20),

lim
N→∞

|αiN | = 0 if θi 6= θ1 & θi 6= φk ∀k ∈ Ik (23)

since, from (12), limN→∞ |αsiN | = 0 in this case. On the

other hand, if θi = φk for some k ∈ Ik, then |αiN | = |αbi(φk)|
since |αsiN | = 1 in this case. Note from (18) that, in this case,

αbi(φk) =
1

Nb

Nb−1
∑

n=0

ej2πnD(sin(φk)−sin(θ1))

=
1

Nb

sin(πNbk∆D/d)

sin(πk∆D/d)
ejπNbk∆D/d (24)

where the last equality is from (10) and D = (N−1)d+∆D.

Thus, αbi(φk) is independent of N and this proves the 1st

case in (22).

From (22), the FP is guaranteed under distinct AoAs if

users do not align with grating lobes (or if GLs do not exist),

θi 6= φk ∀ k ∈ Ik. If some users do align, then the following

equivalence holds:

lim
N→∞

αiN = 0 ⇔ αbi(φk) = 0 ∀k ∈ Ik (25)

i.e. grating lobes are canceled and the FP holds under any

distinct AoAs if αbi(φk) = 0 ∀k ∈ Ik. The latter can

be achieved by exploiting the NULA structure and choosing

appropriate values of Nb and ∆D as shown below.
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Fig. 3. Array factor of a ULA with N = 25 and d = 1. While the main
beam is at θ1 = 0o, note the presence of grating lobes at θ2 = ±90o. The
proposed NULA design with N = 5, Nb = 5, p = 4 partially cancels these
grating lobes.

To this end, we need the following concepts from number

theory [16, p. 231]:

• Greatest common divisor of two integer m and n,

gcd(m,n): the largest positive integer that devides m and

n without remainder; e.g. gcd(15, 12) = 3.

• Coprime (relative prime): two numbers n and m are

coprime if gcd(n,m) = 1 (no common divisors); e.g.

gcd(3, 5) = 1, so, 3 and 5 are coprime. If gcd(n,m) = 1
and n,m > 1, then n/m or m/n are not integer.

The following theorem presents the NULA design to cancel

grating lobes and to achieve favorable propagation under any

distinct AoAs.

Theorem 1. In LOS environment, favorable propagation holds

asymptotically (N → ∞) for the NULA comprised of Nb
subarrays ULA(N, d), as in Fig. 2, with subarray spacing

∆D > 0, any fixed element spacing d > 0 and any distinct

users’ AoAs, θ1 6= θi, if:

(a) Nb > ⌊2d⌋ and (b) ∆D = pd/Nb, (26)

where p is a positive integer coprime with Nb, i.e.

gcd(p,Nb) = 1, and there is no backward radiation.

Proof. The proof is based on the following 3 key steps. (i)

Use (22) and ensure that αbi(φk) = 0 ∀k ∈ Ik. To achieve

this, (ii) select ∆D as in (26)(b) so that each GL is cancelled

by a null in the block-array factor. (iii) Select Nb as in (26)(a)

to make sure there are enough nulls to cancel all grating lobes.

The details are omitted due to the page limit.

An example of NULA design using Theorem 1, is illustrated

in Fig. 3, where the grating lobes of a ULA with d = 1, θ1 =
0o occur at ±90o. Designing a non-uniform structure using

Nb = 5 > ⌊2d⌋ and p = 4 (coprime with Nb) which results

in ∆D = pd/Nb = 4/5, partially cancells the grating lobes.

V. EXTENSION TO WIDEBAND CHANNELS

While the above analysis and design apply to a single

carrier frequency, as typical for antenna arrays, it remains to

be seen whether they still hold for wide or ultra-wideband
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systems, as typical for 5/6G systems, which use multiple sub-

carriers, as in wideband OFDM or with bandwdith agregation.

In this section, we demonstrate that the proposed NULA

design demonstrates a remarkable robustness property in the

frequency domain and therefore is applicable to wideband or

ultra-wideband channels.
To this end, let us consider an LOS channel with operating

frequency range [f1, f2], which corresponds to the wavelength

interval [λ2, λ1], and let d and ∆D be physical distances,

measured in meters (not in wavelengths); ULA(N, d) will

represent an N -element ULA of the physical element spacing

d. We impose no limitation on bandwidth. The following

Proposition extends Theorem 1 to a wideband setting.

Proposition 3. Consider an LOS channel operating over

a (wide) frequency range [f1, f2] under the conditions of

Theorem 1. Then, favorable propagation holds asymptotically

over the entire frequency range for a NULA comprised of Nb
subarrays ULA(N, d) with subarray spacing ∆D if:

(a) Nb > ⌊2d/λ2⌋ and (b) ∆D/d = p/Nb, (27)

where d is the physical element spacing and p is a positive

integer coprime with Nb.

Proof. Let K(λ) be the number of grating lobes at wavelength

λ ∈ [λ2, λ1]. Using (15),

K(λ) ≤ ⌊2d/λ⌋ ≤ ⌊2d/λ2⌋, ∀λ ≥ λ2 (28)

In particular, there are no grating lobes for any λ ≥ λ2 if

d < λ2/2, which is remarkable robustness property as it also

applies to wide and ultra-wideband channels. Now, (27)(a)

ensures that there are enough nulls in the block array factor to

cancel all grating lobes. Condition (27)(b) ensures that those

nulls do align with GL directions. It follows directly from

(26)(b) since the latter is frequency-independent (both sides

can be multiplied by λ to obtain physical distances).

Comparing (27) to (26), note that a wideband or ultra-

wideband setting requires Nb to be set based on the highest

frequency or shortest wavelength; there is no any specific

limitation related to bandwidth here.
To illustrate Proposition 3 for a finite number of elements,

we apply it to Example 1 above with d = λ2/2, θ1 = 90◦

(this corresponds to an endfire array, which are often used

in practice, see e.g. [10, Sec. 2.5][11, Sec. 9.2][13][19, Sec.

6.3.2]), and set f1 = 0.8f2. It follows from (27) that

Nb > ⌊2d/λ2⌋ = 1 so that setting Nb = 5, p = 4 (coprime

with Nb), ∆D = pd/Nb = 2λ2/5 satisfies the conditions of

Proposition 3. Fig. 4 shows that this design partially cancels

the GL even with finite NNb = 25. It should be pointed out

that this selection of Nb, p,∆D guarantees GL cancellation

for any main beam direction θ1 (not only θ1 = 90o) and any

f ≤ f2, i.e. for a wideband or ultra-wideband channel.
Fig. 4 suggests that even the single carrier frequency design

at f1 can be significantly improved (better GL cancellation)

by designing at a slightly higher frequency f2 instead, which

corresponds to using a smaller d.
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Fig. 4. Array factors of ULA(25, d) and the NULAs at corresponding
frequencies, with f1 = 0.8f2, and d = λ2/2. While the main beam is
at θ1 = 90o, note the presence of a grating lobe in the ULA factor at
θ2 = −90o. The proposed NULA design with N = 5, Nb = 5, p = 4
partially cancels this grating lobe over the entire frequency range, with better
cancellation at f1.
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