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Abstract—The problem of optimal power allocation for parallel
Gaussian channels under modulation order constrains, in addition
to the total transmit power constraint, is considered. It is motivated
by coded-modulation systems using powerful capacity-approaching
codes. While only analytically-intractable solution is known to this
problem, an explicit closed-form solution is obtained here using
a sphere-packing-based approximation for modulation-constrained
rates. It can be interpreted as waterfilling with variable water level,
which is also expressed in a closed-form. The obtained power allo-
cation also solves the dual problem of minimizing the total transmit
power subject to the sum rate and modulation order constraints.
More insightful analytical solutions are obtained in some special
cases. While the new power allocation is similar to the well-known
waterfilling procedure at low SNR, it is dramatically different at
moderate to high SNR. Proportional cardinality allocation is shown
to be optimal at high SNR under the uniform power allocation.

I. INTRODUCTION

Parallel Gaussian channel model appears in many areas of

modern communication systems in space, frequency or time do-

main, including multiple-input multiple-output (MIMO) systems

(after unitary precoding), OFDM-based wideband systems or

wavelength division multiplexing (WDM) optical fiber systems

[1]-[7]. For such systems, independent Gaussian signaling is

optimal (capacity-achieving) and, under the total (sum) transmit

power constraint (TPC), optimal power allocation is given by

the well-known waterfilling (WF) procedure, which originates

back to Shannon [8]-[11]. The WF procedure plays a prominent

role in many areas of information/communication theory, signal

processing and control.

However, in many systems modulation format is constrained

to have a constellation of given cardinality due to e.g complex-

ity/implementation constraints. If capacity-approaching codes are

used, an achievable information rate can be expressed as the

input-output mutual information (MI) of an extended channel,

which also includes modulator/demodulator [10][14][15]. This

approach has recently gained wide acceptance to characterize the

performance of optical transmission systems [7][12][13]. While

the expressions for the MI of 1-D (e.g. M -PAM) and 2-D (e.g.

M -QAM) constellations in the AWGN channel are available

[10][14], they are not in a closed form and are analytically-

intractable. This makes it difficult to find an optimal power allo-

cation for parallel Gaussian channels under the added modulation

constraints, which is important for applications. To overcome

this difficulty, an MMSE-based approach was used in [16][17]

and an optimal power allocation was obtained, termed ”mer-

cury/waterfilling” (MWF) thus extending the standard WF to

modulation-constrained inputs.

However, unlike the standard WF, no closed-form solution is

available for the MWF in general since it requires the inverse
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MMSE functions for which no closed-form expressions are avail-

able; their numerical evaluation can be computationally-expensive

and, sometimes, can result in numerical instabilities, especially at

high SNR [18]. The underlying problem is that the exact MI and

MMSE expressions include multiple integrals over infinite inter-

vals for which no closed-from solutions are available, and which

have to be evaluated numerically. This can be computationally-

expensive, especially for high-order modulation formats (which

are now widely used to achieve high spectral efficiency), and also

in an iterative optimization process, where such expressions have

to be numerically evaluated over many iterations. The lack of

closed-form solutions also limits significantly available insights,

from which design guidelines can be developed.

To address these issues, a number of approximations to the

exact modulation-constrained MI have been developed [19][20].

Here, we make use of the approximation in [20] due to several

reasons: it is sufficiently accurate for the whole SNR range and for

constellations of various cardinalities; it compares favourably ro

recent experimental results for fiber optics systems (being closer

to those results than the exact MI); and it is in an explicit closed

form, which possess a number of analytical properties making

it suitable for optimization. In addition, it was obtained via

the sphere-packing method, which has long information-theoretic

roots [8]-[11].

We obtain a closed-form optimal power allocation (OPA) to

maximize the sum rate (MI) of modulation-constrained Gaussian

channels with different channel gains and different constellation

cardinalities, all under the total Tx power constraint (TPC). Using

the approximation in [20], we formulate the OPA problem as a

convex optimization problem, for which a closed-form globally-

optimal solution is obtained via Karush-Kuhn-Tucker (KKT)

conditions. Unlike the MMSE-based MWF in [16][17], our so-

lution is in an explicit closed form, which is computationally-

efficient and from which a number of insights follow. It can

be interpreted as waterfilling with variable water level for each

channel, for which a closed-form expression is obtained with

explicit dependence on channel gain and modulation order. When

modulation order increases, our solution gradually converges to

the standard WF. Numerical experiments demonstrate that the true

sum rate (MI) of this explicit closed-form solution is very close

to that of the (non-explicit) MWF. We further show that the OPA

also solves the dual problem of minimizing the total transmit

power subject to the sum rate constraint.

To obtain an optimal cardinality allocation (OCA), we turn the

OPA problem around and ask a question: what is a cardinality

allocation so that the OPA is uniform? An explicit solution to

this problem is given, which can be used in systems with uniform

power allocation (UPA).

II. CHANNEL MODEL AND INFORMATION RATES

Let us consider a set of n parallel (independent) AWGN

channels, which, after after matched filtering and sampling, can
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be expressed as

yk =
√
gkxk + ξk, k = 1...n, (1)

where xk and yk are transmitted and received symbols respec-

tively at time k, ξk is the additive white Gaussian noise of zero

mean and unit variance, and gk is the channel power gain (if noise
variance is not the same in all channels, this can be accounted

for in gk). This model can represent spatial parallel channels

available in MIMO systems after unitary precoding based on

channel singular value decomposition, channels corresponding to

different sub-carriers in OFDM-based wireless systems or WDM-

based optical fiber systems [1]-[7].

With no modulation constraints, the capacity of each channel

Ck = log(1 + gkpk) [bit/symbol], (2)

where pk is the power of channel k, and pkgk = SNRk is its

Rx SNR (since the noise variance is 1). When there is the total

(sum) power constraint (TPC) at the transmitter (Tx), the total

(sum) capacity can be expressed as

max
pk≥0

n
∑

k=1

Ck(pk) s.t.

n
∑

k=1

pk ≤ P (3)

where P is the maximum Tx power. The solution of this problem

(i.e. optimal power allocation) is given by the well-known and

widely-used water-filling (WF) procedure [8]-[11]:

pk(WF ) = (λ−1
WF − g−1

k )+ (4)

where λWF is the dual variable (”water level”), which is found

from the total power constraint
∑

k

pk(WF )(λWF ) = P (5)

by e.g. bisection method, and (x)+ = max{0, x}. The WF

procedure is widely used in many areas of information and

communication theory as well as in signal processing and control.

A. Modulation-constrained channels

The complexity of the problem in (3) increases dramatically

when modulation constraints are present (when the respective

mutual information should be used instead of the unconstrained

capacity Ck); no closed-form solution is known in this case.

Indeed, when modulation is constrained for each channel so that

its constellation has given (fixed) cardinality Mk (due to e.g.

complexity, implementation issues etc.), the relevant performance

metric is modulation-constrained achievable information rate,

which is given by the mutual information (MI) between input and

output of the equivalent channel (including the modulator as its

part) [10][14][15] and which is used extensively as a performance

metric of modern optical fiber transmission systems [7][12][13].

While its analytical expression is available [10][14][15], it in-

cludes integrals over infinite intervals for which no closed-form

solutions are available and which are time-consuming to evaluate

numerically, especially in iterative numerical optimization.

To overcome these difficulties, the MMSE-based formulation

was used in [16][17]. Based on it, the following optimal power

allocation pk(MWF ), termed ”mercury/waterfilling” (MWF), for

the problem in (3) under the added modulation constraints was

obtained:

pk(MWF ) = g−1
k ·MMSE−1

k {min(1, ηg−1
k )} (6)

where the ”water level” η is determined from the TPC
∑

k pk(MWF ) = P , and MMSE−1
k {·} is the inverse MMSE

function for k-th channel, whose constellation cardinality is Mk.

However, the key difficulty here is that inverse MMSE functions

are not available in closed-form (except for Gaussian inputs)

making this solution analytically-intractable in general. One has to

resort to their numerical evaluation, which can be time-consuming

and numerically-unstable (especially at high SNR and for high-

order modulations) [18]. This limits significantly the available

insights as well as related design and optimization procedures.

To overcome this drawback, we use here an approximation Rk

of the modulation-constrained MI obtained in [20] via the sphere-

packing method extended to modulation-constrained inputs,

Rk = log(1 + gkpk)− log(1 + gkpk/Mk) (7)

where Mk is the constellation cardinality of k-th channel (e.g.

Mk-QAM), and 2nd term represents the rate loss due to using a

constellation of finite cardinality. Albeit its approximate nature,

this expression has a number of advantages: it is in an explicit

closed-form and yet sufficiently accurate over the whole SNR

range and for constellations of various cardinalities; it compares

favorably to the rates achieved in recent state-of-the-art fiber-

optics transmission systems using coded modulation (being in

fact more close to those rates than the exact MI); it possesses

a number of useful analytical properties (important for optimiza-

tion) and allows one to obtain a closed-form solution to the related

optimization problem. For completeness, its derivation from ”first

principles” (extending the standard sphere-packing method to

modulation-constrained inputs) is given in Appendix I. For its

accuracy, see Fig. 4 in [20] and Fig. 2 in this paper.

III. OPTIMAL POWER ALLOCATION

Under modulation constraints and using the above approxima-

tion, the sum rate maximization problem becomes

(P1) max
pk≥0

n
∑

k=1

Rk(pk) s.t.

n
∑

k=1

pk ≤ P (8)

where Rk(pk) is as in (7). Unlike the MWF in (6), the above

problem admits a closed-form solution in the general case as

follows.

Theorem 1. The optimal power allocation for the problem in (8)

is unique and is given by

pk =
1

2gk

(

√

(Mk − 1)2 +
4gk
λ

(Mk − 1)−Mk − 1

)

+

(9)

where the dual variable λ > 0 is found as a unique solution of
the following (nonlinear) equation (the TPC):

∑

k

pk(λ) = P. (10)

Proof. see Appendix II.

Since the left-hand side of (10) is a monotonically-decreasing

function of dual variable λ, it can be solved efficiently using the
bisection method. In fact, in some special cases, this equation can

also be solved analytically.

The OPA in (9) possesses the following properties:

1. Channel k is active, i.e. pk > 0, if and only if its channel

gain (or SNR) is sufficiently large, gk(1−M−1
k ) > λ.
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2. Since λ is a monotonically-decreasing function of P , the
number of active channel increases with P : only the channel with
largest gk(1 − M−1

k ) is active at low SNR (small P ) while all

channels are active at large SNR (large P ).
3. If all channel gains gk are the same, then channels with

larger constellations (larger Mk) get more power.

4. For identical Mk, weaker channels get more power at high

SNR while the opposite is true at low SNR and only the strongest

channel is active at sufficiently low SNR,

P (1 + g1P/M1) ≤ g−1
2 − g−1

1 (11)

where Mk ≫ 1, and gk are in descending order.

Note that while some of these properties are qualitatively

similar to those of the standard WF, others are dramatically

different (e.g. weaker channels get more power at high SNR).

To see further analogy of the above OPA with the standard WF

in (4), we re-write (9) as follows:

pk =

(

αk

λ
− 1

gk

)

+

, αk =
2

√

1 + 4gk
λ(Mk−1) + 1

(12)

Note that αk represents a correction to the standard WF in (4)

due to the constrained cardinality Mk and can be interpreted as

variable ”water level” for each channel depending on its gain and

cardinality: higher gk/(Mk − 1) call for lower water levels. This
is in stark contrast to the standard WF in (4), where the ”water

level” is the same for all channels. The variable ”water-level”

above is consistent with the ”mercury-waterfilling” interpretation

in [16][17] (for which no explicit expressions are available for

variable water levels).

It follows from (12) that αk → 1, pk → pk(WF ) as Mk → ∞,

pk =
(

λ−1 − g−1
k

)

+
+ o(1) ≈ pk(WF ) (13)

where the approximation holds if Mk ≫ 4gk/λ+1. Further note
that, under a more relaxed (SNR-independent) conditionMk ≫ 1,
the channel activity condition gk(1 − M−1

k ) > λ converges to

that of the standard WF gk > λWF . However, we caution the

reader that while these two conditions have similar appearance,

the respective ”water levels” are different since they are found

from different conditions in (10) and (5). In fact, λ ≤ λWF ,

since pk(λ) ≤ pk(WF )(λ).
To gain further insights into the OPA and to obtain closed-form

solutions for ”water level” λ, we study some special cases below.

IV. HIGH SNR REGIME

In this section, we will assume that all gk > 0 and study the

high SNR regime. This is motivated by the fact that high SNR is

needed to achieve high spectral efficiency and thus overall high

transmission rate, which is an important practical objective for

many applications [1][2][6][7]. We use the tools of asymptotic

analysis [24] to obtain the following approximation.

Proposition 1. In the high-SNR regime P → ∞, all channels are
active and the OPA in (9) can be expressed as follows:

pk = θkP (1 + o(1)) ≈ θkP, θk =
βk

∑n
i=1 βi

(14)

where βk =
√

(Mk − 1)/gk and the approximation holds for

P ≫ 1

2

n
∑

i=1

βi max
k

βk (15)

Proof. Since P → ∞ implies λ → 0, it follows from (9) that

pk =
√

(Mk − 1)/λgk(1 + o(1)) (16)

where o(1) collects all asymptotically-negligible terms [24],

o(1) → 0 as P → ∞. Using this in the TPC
∑

k pk = P ,
one obtains

1√
λ
=

P
∑

k

√

(Mk − 1)/gk
(1 + o(1)) (17)

Combining the last two equalities, one obtains (14). The approx-

imation follows by omitting o(1).

Note from (14) that, at high SNR, pk is proportional to
√

(Mk − 1)/gk, i.e. weaker channels get more power. This is

in stark contrast to the standard WF in (4), where all channels

get the same power at high SNR, pk(WF ) ≈ 1/λ = P/n, and, in
general (any SNR), weaker channels get less power.

Further note from (14) that channels with larger Mk get more

power, as expected intuitively (the above OPA quantifies this

intuition).

V. OPTIMAL CARDINALITY ALLOCATION

Quite often in practice multiple channels are allocated the same

Tx power while they have different gains so that they also have

different SNRs at the Rx end. A question arises as to how to chose

constellation cardinalities to fit these conditions. An intuitively-

appealing choice is to use largeMk for channels with larger SNR.

However, even if one follows this intuition, it remains unclear

what are the specific values of Mk to be used. Usually, they

are selected in ad-hoc way in practice (following the qualitative

intuition above) [21]. To address this issue, we consider here an

optimal cardinality allocation (OCA), based on different channel

gains with uniform Tx power allocation (UPA), i.e. the same pk
for all k: pk = P/n.
To this end, we turn the OPA problem around and ask the

question: under what selection of Mk, the OPA in (9) is uniform?

To simplify the analysis, we consider here the practically-

important large SNR regime, when per-channel SNRs are large:

SNRk = pkgk = Pgk/n ≫ 1 (this is necessary for the spectral

efficiency to be high). Using Proposition 1, it follows that the

optimal power allocation becomes uniform, i.e. pk = P/n for all

k, if all θk are the same, i.e. the cardinalities satisfy:

Mk = agk + 1 ≈ agk (18)

for some a > 0, where the approximation holds for moderately-
large cardinalities Mk ≫ 1, which is the case for modern

optical fiber systems [6][7]; setting a = 4P/n allows one

to approach closely the modulation-unconstrained rates without

using unnecessarily large constellations. It follows from (18) that

proportional cardinality allocationMk ∼ gk is optimal under the

uniform power allocation. This rule makes precise the intuitive

and well-known observation that stronger channels can support

higher-order modulation formats. Since Mk is integer (and, in

practice, is often a power of 2 or 4), the value in (18) should be

rounded off to the nearest available one.

VI. DUAL PROBLEM

In this section, we consider a problem dual of (P1), namely,

minimizing the total Tx power P subject to the rate constraint:

(P2) min
pk≥0, P

P s.t.

n
∑

k=1

pk ≤ P,

n
∑

k=1

Rk(pk) ≥ C2 (19)
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where C2 is a given target sum rate, and the problem’s variables

are {pk} and P . The next Proposition shows that the OPA of

(P1) in (9) can also be used to solve (P2). To this end, let p
(1)
k

and p
(2)
k be the OPA of (P1) and (P2), respectively, and Pi =

∑

k p
(i)
k , i = 1, 2, i.e. P1 is the total Tx power of (P1), and

let C1 =
∑

k Rk(p
(1)
k ) be the optimal value (rate) of (P1), and

likewise for (P2).

Proposition 2. The optimal power allocations of (P1) and (P2)

are the same, i.e. p
(1)
k = p

(2)
k , if C2 = C1. Hence, the OPA of

(P1) not only maximizes the sum rate but also minimizes the total

Tx power needed to achieve this sum rate.

Proof. First, observe that P2 ≤ P1, since p
(1)
k is also feasible

for (P2) under C2 = C1. Next, we show by contradiction that

P2 < P1 is not possible and hence P1 = P2. Indeed, if

P1 > P2 =
∑

k

p
(2)
k (20)

then p
(2)
k is also feasible for (P1) and hence

∑

k

Rk(p
(2)
k ) ≤ C1 (21)

On the other hand, from (19),

n
∑

k=1

Rk(p
(2)
k ) ≥ C2 = C1 (22)

so that
n
∑

k=1

Rk(p
(2)
k ) = C1 (23)

i.e. p
(2)
k is also optimal for (P1). This, however, is impossible

since (i) p
(2)
k 6= p

(1)
k (from P1 > P2) and (ii) the OPA of (P1)

is unique. Thus, P1 = P2 and (23) follows from (21) and (22).

Hence, p
(2)
k also solves (P1), p

(2)
k = p

(1)
k , and is unique.

VII. AN EXAMPLE

To validate and illustrate the analytical results above, we

consider the following (representative) example: n = 2, g1 =
100, g2 = 1 and use 16-QAM for both channels, Mk = 16.
For convenience of presentation over a wide range of P , we use
normalized power allocations p′k = pkn/P (so that

∑

k p
′
k = n

regardless on P ). Fig. 1 shows normalized power allocations:

the OPA in (9), the MWF in (6) and the WF in (4). Note that

all 3 allocations coincide at low SNR P < −9 dB, where all

power goes to the strongest channel. The OPA in (9) and the

MWF in (6) are close to each other for whole SNR range while

being significantly different from the WF for P > −8 dB. The

strongest channel gets more (or all) power if P < −6 dB, while

the weakest channel gets more power if P > −4 dB and almost

all power if P > 10 dB. This is in sharp contrast to the standard

WF where stronger channel always gets more power and its power

allocations approaches uniform one at high SNR.

While there is some discrepancy between the OPA in (9) and

the MWF in (6), this has negligible impact on the true sum rate,

as Fig. 2 shows. In fact, the OPA in (9) and the MWF in (6)

deliver almost the same sum rate at any SNR while the standard

WF is noticeably below at the transition range -5 dB < P < 15
dB. The similarity between the OPA in (9) and the MWF in (6)
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Fig. 1. Normalized power allocations: the OPA in (9), the MWF in (6) and the
WF in (4); n = 2, g1 = 100, g2 = 1, 16-QAM for both channels.
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Fig. 2. The true sum rate (MI) attained by the power allocations in Fig. 1 along
with the UPA and strongest channel only rates. While the MWF and OPA deliver
almost the same sum rate at any SNR, the other strategies are sub-optimal over
some intervals.

can be explained via sensitivity analysis, which shows that the

sum rate is not very sensitive to power allocation, especially at

high SNR.

Since g1 ≫ g2 in this example, it may be argued that allocating
all power to the strongest channel is a good strategy. This,

however, is not the case at any but very low P < −7 dB, as

Fig. 2 shows: since modulation-constrained rate saturates at high

SNR, the excess power (beyond the saturation point) should be

allocated to weaker channel to boost the sum rate. However, if

SNR is sufficiently low, P < −7 dB, allocating all power to the

strongest channel is optimal.

VIII. APPENDIX I: SPHERE PACKING METHOD

The sphere-packing method was originally used by Shannon to

provide an intuitive and insightful (albeit approximate) derivation

of the AWGN channel capacity [8]-[11]. We exploit this approach

here and extend it to modulation-constrained inputs.

Consider first a (single) real-valued AWGN channel with

codewords of blocklength N , yi = xi + ξi, i = 1...N , where

ξi is i.i.d. Gaussian noise of variance Nσ2
0 . As N increases,
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∑

i ξ
2
i approaches Nσ2

0 with high probability (known as ”sphere

hardening”), so that the received sequence belongs to a noise

sphere centered on the transmitted codeword (codeword region)

with high probability. As long as the noise spheres corresponding

to different codewords do not overlap, probability of error can be

made as small as desired. Without modulation constraints, the

maximum possible number of codewords is given by the ratio

of volumes of the received signal sphere and noise sphere [8]-

[11]. However, for a fixed constellation of M points, the number

of codewords of length N can be at most MN . To evaluate the

impact of this constraint on the rate, we present the per-symbol

MI in the following form:

CM = C −∆C, (24)

where C is the (unconstrained) channel capacity (as above) and

∆C ≥ 0 is the rate loss due to a fixed modulation of orderM . To

estimate ∆C, consider a hypothetical channel with noise power

σ2
1 such that the number of distinct codewords (noise spheres) is

exactly MN :

MN =
V

V1
=

(Nσ2
x +Nσ2

1)
N/2

(Nσ2
1)

N/2
, (25)

where V1 = α(Nσ2
1)

N/2 is the volume of the hypothetical noise

sphere, which is also the volume of a codeword region when there

are exactly MN codewords, and V is the volume of received

signal sphere (to which the received signal belongs with high

probability for any coderword). For this channel, there is no loss

in capacity due to a fixed constellation (within the sphere packing

approximation) since the noise power is ”right” (i.e. noise spheres

are the same as respective codeword regions so that no more

codewords can fit without increasing the error probability):

σ2
1 =

σ2
x

M2 − 1
≈ σ2

x

M2
, (26)

where the last approximation holds when M is reasonably large,

M2 ≫ 1. However, if the true noise power is less than the

hypothetical one, σ2
0 < σ2

1 , more than one noise sphere can fit

within the hypothetical noise sphere (codeword region), as shown

in Fig. 3 (the central sphere). The resulting∆C can be interpreted

as the capacity of the fictitious channel with signal power σ2
1

and the noise power σ2
0 , which can be estimated via the ratio of

volumes again:

∆C ≈ 1

N
log

(Nσ2
1 +Nσ2

0)
N/2

(Nσ2
0)

N/2
≈ 1

2
log

(

1 +
σ2
x

M2σ2
0

)

. (27)

Substituting this in (24), one finally obtains an approximation Ca

for the per-symbol MI of 1-D constellation (e.g. M -PAM):

CM ≈ Ca =
1

2
log

1 + γ

1 + γ/M2
. (28)

where γ = σ2
x/σ

2
0 is the SNR.

Note that as M increases, both CM and Ca approach C: Ca ≈
CM ≈ C ifM ≫ √

γ, from which one can estimate minimumM
required to approach closely the channel capacity without using

unnecessarily large constellations:

Mmin ≈ 2max{1,√γ}. (29)

This demonstrates that the upper bound in [22], which can be put

in the formMmin ≤ 2
√
1 + γ, is actually tight. Note also that the

��������

���	�
	�����

�����
��
	�����

	�����

��������
������

����������

��������

Fig. 3. The impact of the limited number of codewords: more noise spheres
representing additional codewords could be packed into existing codeword regions
when noise is small.

upper bound was obtained in [22] via an elaborate information-

theoretic analysis (which does not yield a rate approximation)

while our approximation to Mmin follows directly from (28).

Since complex-valued channel with 2-D constellations (e.g.M -

QAM) can be considered as two real-valued channels with 1-D

constellations (
√
M -PAM), its per-symbol MI can be expressed

as follows:

CM−QAM = 2C√
M−PAM ≈ log

1 + γ

1 + γ/M
, (30)

and the minimum constellation cardinality to approach closely the

channel capacity is Mmin ≈ 4max{1, γ}.

IX. APPENDIX II: PROOF OF THEOREM 1

Since all Rk(pk) are concave and differentiable (to any order)
functions, (P1) in (8) is convex and hence its KKT conditions

are sufficient for global optimality [23]. The Lagrangian for this

problem is

L = −
n
∑

k=1

ln
1 + pkgk

1 + pkgk/Mk
+ λ

(

∑

k

pk − P

)

−
∑

k

µkpk

where λ is the Lagrange multiplier (dual variable) responsible for

the TPC, and µk are dual variables responsible for pk ≥ 0. The
respective KKT conditions are

∂L

∂pk
= − (Mk − 1)gk

(1 + pkgk)(Mk + pkgk)
+ λ− µk = 0 (31)

λ

(

∑

k

pk − P

)

= 0, µkpk = 0 (32)

∑

k

pk ≤ P, pk ≥ 0 λ ≥ 0, µk ≥ 0 (33)

where (31) are stationarity conditions, (32) are complementary

slackness conditions, (33) are primal and dual feasibility condi-

tions. If pk > 0 (active channel), then µk = 0 and (31) reduces

to

g2kp
2
k + (Mk + 1)pkgk +Mk −

Mk − 1

λ
gk = 0 (34)

where pk > 0 implies λ < (1 − 1/Mk)gk. Solving (34), one

obtains (9). If λ ≥ (1− 1/Mk)gk, then pk = 0. It can be further
seen that λ > 0 so that, using complementary slackness in (33),

(10) follows (i.e. the TPC is always active, unless all gk = 0 - a

trivial case not considered here).

Since the objective in (8) is strictly concave (unless all gk = 0),
the above solution is unique.
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