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Introduction

Importance of spectrum sharing (SS)

significantly improves spectrum efficiency
cellular, cognitive radio (CR), HetNet, non-orthogonal multiple-access
(NOMA)
promising technology for 5G & beyond

Problem: multi-user interference

Control via multi-antenna (MIMO) systems

Optimal signaling? Capacity?
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Standard Gaussian MIMO Channel (no interference)

Tx Power Constraint (TPC)

Capacity is well-known (log-det expression under TPC)[T’65]1[T’95]2

Capacity-achieving input: Gaussian

Optimal signalling (covariance): on channel eigenvectors

Power allocation: via water-filling (WF)

1B. S. Tsybakov, Capacity of Vector Gaussian Memoryless Channel, Problems of
Information Transmission, v.1, n.1., 1965.

2I. E. Telatar, Capacity of Multi-Antenna Gaussian Channels, AT&T Bell Labs,
Internal Tech. Memo, June 1995, (European Trans. Telecom., v.10, no. 6, Dec. 1999).
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Cont.: Per-Antenna (PAC) and Joint Constraints

Per-antenna power constraint (PAC)[Vu’11]3

Joint power constraint (TPC+PAC)[L’17]4

Gaussian input is still optimal
optimal signaling: not on channel eigenvectors anymore
MISO: EGT or/and MRT
MIMO: open in general

3M. Vu, MISO Capacity With Per-Antenna Power Constraint, IEEE Trans. on
Commun., vol. 59, no. 5, May 2011.

4S. Loyka, The Capacity of Gaussian MIMO Channels Under Total and Per-Antenna
Power Constraints, IEEE Trans. Comm., v.65, n.3, Mar. 2017
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MIMO Channel Under Interference Constraint

Interference power constraint (IPC), in addition to the TPC

Much less in known

Capacity-achieving input: Gaussian

Optimal signalling (Tx covariance): not known in general

Numerical (algorithmic) solutions

game-theoretic approach (fixed point equation) [SP’10]5

dual problem approach [Z’10]6

many more

5G. Scurati, D.P. Palomar, MIMO Cognitive Radio: A Game Theoretical Approach,
IEEE Trans. Signal Processing, v. 58, n. 2, Feb. 2010.

6R. Zhang et al, Dynamic Resource Allocation in Cognitive Radio Networks, IEEE
Signal Procesing Magazine, v.27, n.3, May 2010.
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This paper: closed-form solutions + properties

Gaussian MIMO channel under TPC + IPCs

Closed-form solutions for optimal signaling

the general case: two (or more) dual variables (via e.g. IBA)
explicit for full-rank and rank-1 cases

Major differences to the standard WF

signaling on the channel eigenmodes is not optimal
e.g. independent signaling is not optimal for parallel channels
optimal covariance is not necessarily unique
TPC can be inactive
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This paper: closed-form solutions + properties

Interplay of TPC and IPCs: interference-limited and power-limited
regimes

Potential of spectrum sharing (SS)

via linear-algebraic structure of MIMO channels
favorable propagation via simple rank condition

Optimality of ”pre-whitening”filter

Optimality of partial null forming
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Standard Gaussian MIMO (under TPC)

Channel model:

y = H1x+ ξ (1)

Capacity:

C = max
R∈SR

ln |I+W1R| (2)

W1 = H+
1 H1 = channel Gram matrix

R = E{xx+} = Tx covariance, x ∼ CN (0,R)
SR = STPC , {R : R ≥ 0, tr(R) ≤ PT} = constraint set

Optimal signaling (covariance) via WF:

R∗ = RWF , (µ−1I−W−1
1 )+ (3)
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MIMO Channel Under Interference Constraint

Channel model: Tx-Rx link is the same, y = H1x+ ξ

Tx-PR(U) links: y2k = H2kx+ ξ2k , k = 1...K

1H
Tx

Rx

1ξ

1yx

21H

U1

21ξ

21y

2KH

UK

2Kξ

2Ky

Figure: Multi-user MIMO channel under IPCs.

Interference constraint (IPC): tr(H2kRH
+
2k) ≤ PIk ∀k

Constraint set: SR = {R : R ≥ 0, tr(R) ≤ PT , tr(W2kR) ≤ PIk ∀k}
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MIMO Channel Under Interference Constraint

The capacity:

C = max
R∈SR

ln |I+W1R| (4)

Optimal signaling?

Caution:

constraint set SR is not less important than the objective
unitary invariance is lost (due to IPCs): SR is not isotropic
standard tricks (e.g. Hadamard inequality) do not apply
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Optimal Signaling Under Interference Constraint

Theorem (General case)

The optimal Tx covariance matrix is

R∗ = W†
µ(I−WµW

−1
1 Wµ)+W

†
µ (5)

Wµ = (µ1I+
∑

k
µ2kW2k)

1
2 ;

µ1, µ2k ≥ 0 are Lagrange multipliers (dual variables),

µ1(trR
∗ − PT ) = 0, µ2k(tr(W2kR

∗)− PIk) = 0 (6)

s.t. tr(R∗) ≤ PT , tr(W2kR
∗) ≤ PIk ∀k. The capacity is

C =
∑

i :λi>1

log λi (W
†
µW1W

†
µ) (7)
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Optimal Signaling: cont.

R∗ = W†
µ(I−WµW

−1
1 Wµ)+W

†
µ (8)

W
†
µ = ”pre-whitening”filter; no IPCs: W†

µ = 1√
µ1
I

Closed-form solution up to µ1, {µ2k}

Explicit in some cases (full-rank, rank-1)

In general: numerically, via an iterative bisection algorithm (IBA)[14]

Alternative: PT (µ1, {µ2k}), PIk(µ1, {µ2k}) parametrized by µ1, {µ2k}
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General Properties: Unbounded Growth

When does C (PT ) → ∞ as PT → ∞ ?

i.e. arbitrary large spectral efficiency of spectrum sharing (given
enough power budget)

Trivial under TPC alone, but not for TPC + IPCs

Proposition

Let 0 ≤ PIk < ∞ be fixed for all k. Then, the capacity grows unbounded
as PT increases, i.e. C (PT ) → ∞ as PT → ∞, if and only if

⋂

k

N (W2k) /∈ N (W1) (9)

or, equivalently,
N
(

∑

k

W2k

)

/∈ N (W1). (10)
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Unbounded Growth: Some Observations

”iff”: exhaustive characterization of all cases of unbounded growth

holds if r(
∑

k
W2k) < r(W1)

does not hold if N (
∑

k
W2k) ∈ N (W1), e.g. if

∑

k
W2k > 0
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General Properties: Zero Capacity

When is C = 0 ?

i.e. no spectrum sharing is possible

Trivial under the TPC alone, but not for TPC + IPC

Proposition

Consider the Gaussian MIMO channel under the TPC and IPCs and let
PT > 0, W1 6= 0. Its capacity is zero iff PIk = 0 for some k and

N
(

∑

k∈K0

W2k

)

∈ N (W1). (11)

where K0 = {k : PIk = 0}.
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Zero Capacity: Some Observations

PIk = 0: equivalent to ZF, , i.e. C = 0 only if ZF is required for at
least one user

C > 0 if r(W1) > r(
∑

k
W2k)
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Spectrum Sharing: favorable propagation

Corollary

If r(W1) > r(
∑

k
W2k), then

1. C 6= 0 ∀ PIk ≥ 0 and PT > 0.
2. C (PT ) → ∞ as PT → ∞ ∀ PIk ≥ 0

r(W1) > r(
∑

k
W2k): represents favorable propagation scenarios

spectrum sharing is possible for any PIk

arbitrary large spectral efficiency given enough Tx power budget

holds for massive MIMO ?
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Rank Bound

regular MIMO: r(R∗) ≤ r(W1)

is it still true under IPCs ?

Proposition

If the TPC is active or/and active
∑

k
W2k is full-rank, then

r(R∗) ≤ r(W1) (12)

Otherwise: (i) R∗ may be not unique; (ii) there exists R∗ for which (12)
holds.

Note that R∗ is not necessarily unique - a stark difference to the TPC
alone case (the standard WF).
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Rank-1 Solution (beamforming)

Corollary

If r(W1) = 1, then r(R∗) = 1, i.e. beamforming is optimal.

mimics the respective property for the standard WF

however, signalling on the (only) active eigenvector of W1 is not
optimal under TPC + IPC (unlike TPC alone/WF)
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Rank-1 Solution, K = 1

W1 = λ1u1u
+
1 i.e. rank-1,

K = 1 (one PR),

γI = PI/PT = ”interference-to-signal” ratio (ISR),

γ1,2 are ISR thresholds:

γ1 =
u+1 W

†
2u1

u+1 (W
†
2)

2u1
≤ γ2 = u+1 W2u1 (13)

where γ1 = γ2 = 0 if u1 ∈ N (W2).
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Rank-1 Solution, K = 1

Proposition (low ISR)

1. If γI < γ1 (low ISR regime), then the TPC is redundant and

R∗ = PI

W
†
2u1u

+
1 W

†
2

u+1 W
†
2u1

, C = log(1 + λ1αPT ) (14)

where α = ”SNR loss”= γIu
+
1 W

†
2u1 < 1.

beamforming on W
†
2u1, not on u1 !

W
†
2 = ”pre-whitening”filter (= I without IPCs)
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Rank-1 Solution, K = 1

Proposition (moderate ISR)

2. If γ1 ≤ γI < γ2 (moderate ISR), both constraints are active and

R∗ = PT

W−1
2µ u1u

+
1 W

−1
2µ

u+1 W
−2
2µ u1

, W2µ = I+ µ2W2 (15)

beamforming on W−1
2µ u1, not on u1 !

W−1
2µ = ”pre-whitening”filter

22 / 29



Rank-1 Solution K = 1

Proposition (high ISR)

3. If u1 ∈ N (W2) or γI ≥ γ2 (high ISR regime), then the IPC is
redundant and the standard beamforming solution applies: R∗ = PTu1u

+
1 ;

α = 1 (no SNR loss).

beamforming on u1 (standard)

no ”pre-whitening”filter
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Rank-1 Solution, K = 1

3 regimes (ISR) ⇒ 3 different solutions

different from the standard beamforming on u1, unless IPC is
redundant or u1 is an eigenvector of W2

low ISR moderate ISR high ISR

(IPC) (IPC + TPC) (TPC)
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Full-Rank Solutions, K = 1

Let W1,W2 > 0 and PI be bounded as follows:

PI > mλ1(W2W
−1
1 )− tr(W2W

−1
1 ) (16)

PI ≤
m

tr(W−1
2 )

(PT + tr(W−1
1 ))− tr(W2W

−1
1 )

then

Proposition (large SNR & INR)

The TPC is redundant, R∗ is of full-rank and is given by:

R∗ = µ−1
2 W−1

2 −W−1
1 , µ−1

2 =
1

m
(PI + tr(W2W

−1
1 )) (17)

W−1
2 = ”pre-whitening”filter

takes place of I in the standard WF
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Full-Rank Solutions, K = 1

Let W1 be of full rank, W2 = λ2u2u
+
2 be of rank-1.

Proposition (large SNR & INR)

1. The IPC is redundant, the optimal covariance is of full rank and is given
by the standard WF solution, R∗ = R∗

WF
, if

PI ≥ PI ,th = m−1λ2(PT + tr(W−1
1 ))− λ2u

+
2 W

−1
1 u2

PT > mλ1(W
−1
1 )− tr(W−1

1 ) (18)
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Full-Rank Solutions, K = 1

Proposition (large SNR, moderate INR)

2. The TPC and IPC are active if

λ2λ1(W
−1
1 )− λ2u

+
2 W

−1
1 u2 < PI < PI ,th, (19)

PT > mλ−1
2 PI +mu+2 W

−1
1 u2 − tr(W−1

1 ) (20)

and the optimal covariance is of full rank and is given by

R∗ = µ−1
1 I−W−1

1 − αu2u
+
2 (21)

where α, µ1 > 0 are given in the paper.

1st 2 terms of (21) = the standard WF

last term = correction due to IPC
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Full-Rank Solutions, K = 1

R∗ = µ−1
1 I−W−1

1 − αu2u
+
2 (22)

Link to the adaptive antenna array literature:

1st 2 terms of (22) = the standard WF

last term = correction due to IPC

well-known in the adaptive antenna array literature as partial null
forming7

hence, partial null forming is also optimal from the
information-theoretic perspective (for spectrum sharing)

7H.L. Van Trees, Optimum Array Processing, Wiley, New York, 2002.
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Conclusion

Gaussian MIMO channel under interference constraints

CR, spectrum sharing, HetNet, NOMA (5G)

Optimal signaling/covariance?

General properties

arbitrary large SE (unbounded growth)
zero SE
qualitative behaviour via the natural linear-algebraic structure
favorable propagation via the simple rank condition

Explicit closed-form solutions (rank-1, full rank)

Optimality of pre-whitening filter

Optimality of partial null forming

Independent signaling is not optimal for parallel channel
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