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Abstract—Gaussian MIMO channel under total transmit and mul-
tiple interference power constraints (TPC and IPCs) is conislered.
A closed-form solution for its optimal transmit covariance matrix
is obtained in the general case (up to dual variables). A nurdr
of more explicit closed-form solutions are obtained in somespecial
cases, including full-rank and rank-1 (beamforming) solutons, which
differ significantly from the well-known water-filling solu tions (e.qg.
signaling on the channel eigenmodes is not optimal anymorend
the capacity can be zero for non-zero transmit power). A whiéning
filter is shown to be an important part of optimal precoding under
interference constraints. Capacity scaling with transmit power is
studied: its qualitative behaviour is determined by a natusal linear-
algebraic structure induced by MIMO channels of multiple users.
A simple rank condition is given to characterize the cases wdre
spectrum sharing is possible. An interplay between the TPC rad
IPCs is investigated, including the transition from powerlimited
to interference-limited regimes. A number of unusual propeties of
an optimal covariance matrix under IPCs are pointed out and a
bound on its rank is established. Partial null forming known in the
adaptive antenna array literature is shown to be optimal fran the
information-theoretic perspective as well in some cases.

|I. INTRODUCTION

(rather, being "absorbed” into the IPC), hence eliminatthg
important case of inactive IPC and, consequently, no ifdgrp
between the TPC and the IPC can be studied.

Cognitive radio MIMO systems under interference constgain
have been also studied in [9]-[11], where a number of numeri-
cal optimization algorithms were developed but no closmanf
solutions are known to the underlying optimization probdem
Optimal signaling for the Gaussian MIMO channel under the
TPC and the IPC has been also studied in [12]-[14] using the
dual problem approach, and was extended to multi-usengstti
in [15]. However, the constraint matrices are required tdutle
rank and no closed-form solution was obtained for optimadl du
variables. Hence, various numerical algorithms or sulircgdt
solutions were proposed. This limits insights significantl

In this paper, we study the spectrum-sharing potential of
Gaussian MIMO channels and concentrate on analysis rather
than numerical algorithms. This provides deeper undedgtgn
of the problem and a number of insights unavailable from
numerical algorithms alone. Specifically, we obtain novesed-
form solutions for an optimal transmit covariance matrix floe

Aggressive frequency re-use and hybrid (non-orthogora) %aussian MIMO channel under the TPC and multiple IPCs. All

cess schemes envisioned as key technologies in 5G systém

can potentially generate significant amount of inter-usezrfer-

%:Qnstraints are included explicitly and hence anyone st

to be inactive. This allows one to study the interplay betwie

ence and hence should be designed and managed carefullis In§o, o and interference constraints and, in particulartréesition

respect, multi-antenna (MIMO) systems have significanépiil
due to their significant signal processing capabilitiegjuding
interference cancellation and precoding, which can alsddres

in an adaptive and distributed manner [2][3]. The capacitg a

optimal signalling for the Gaussian MIMO channel under ttalt

from power-limited to interference limited regimes as the T
power increases. As an added benefit, no limitation is placed
the rank of the constraint matrices, so that the number @franas

of the PR(s) can be any (including massive MIMO settings). In
some cases, our approach leads to explicit closed-fornticotu

power constraints (TPC) is well-known: the optimal (Capaci ¢, ontimal dual variables as well, including full-rank arahk-1

achieving) signaling is Gaussian and is on the eigenveofaise

channel with power allocation to the eigenmodes given by the

water-filling (WF) [2]-[5]. Under per-antenna power corastits
(PAC), in addition or instead of the TPC, Gaussian signglis
still optimal but not on the channel eigenvectors anymoréhab
the standard water-filling solution over the channel eigedes
does not apply [6][7].

Much less is known if interference power constraints (IP
are added, which limit the power of interference induced by

beamforming) solutions and the conditions for their opatiity.
whitening filter is shown to play a prominent role in optimal
precoding under interference constraints. Partial nutinfag

well-known in the antenna array literature [21] is shown ® b

optimal from the information-theoretic perspective as |yl
certain cases. A simple rank condition is given to charaaer
the cases where spectrum sharing is possible for any ineede
ower constraints. In general, the primary users have armajo
ifﬁpact on the capacity at high SNR while being negligibleoat |

secondary transmitter to primary receivers (PR) in a SpEBIl gNR The high-SNR behaviour of the capacity is qualitaivel
sharing system (e.g. cognitive radio). A game-theoretfaich yoiormined by the null spaces of PR channel matrices. The

to this problem was proposed in [8], where a fixed-point eiquat

presented closed-form solutions of optimal signaling caused

was formulated from which the optimal transmit covarianc&xlrecﬂy in massive MIMO settings. Since numerical comjtiex

matrix can in principle be determined. Unfortunately, noseld-

form solution is known for this equation and the considerq\qlMo (in general,
settings require the channel to the primary receiver to We fu
rank hence excluding the important cases where the numbe
Rx antennas is less than the number of Tx antennas (typical

I’? 8

of generic convex solvers can be prohibitively large for shas

it scales asn® with the numberm of
aniﬁnnas), the above analytical solutions are a valuabie lo
plexity alternative.

O|t should be emphasized that, under the added IPCs, theymnita

massive MIMO downlink); the TPC is not included explicitlyj, 4 riance of the feasible set is lost and hence many known
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solutions and standard "tricks” (e.g. Hadamard inequptifythe

analysis under the TPC alone cannot be used. This has pbfoun



impact on optimal signaling strategies as well as on arcaiti TX
H
21
X

technigues to solve the underlying optimization problem. | &1 |H 1 &
particular, unlike the standard water-filling solutior), gignaling Yai PR O H—4
Sk

on the channel eigenmodes is not optimal anymore (unless all -

IPCs are inactive or if their channel eigenmodes are the sme - Hy -
those of the main MIMO channel); (ii) the rank of an optimal Tx YK (P (X)
covariance matrix can exceed that of the channel; (iii) atimogd

covariance matrix is not necessanly unique, (IV) the Clw'nnFi 1. A block diagram of multi-user Gaussian MIMO channedler interference

capacity can be zero for a non-zero Tx power and Chann&&straintsﬂl and H, are the channel matrices to the Rx dnth user (PR)
(v) the channel capacity may stay bounded under unboundegpbectively. Interference constraints are to be satigfieetach user.

growth of the Tx power (in which case the TPC is inactive). ] ] N

All these phenomena have major impact on the spectrumrghari-th €igenvalue and eigenvector & ; (R), denotes positive

capabilities of MIMO channels. We demonstrate that the ciapa €igenmodes of Hermitian matriR: (R), = 35, .o Aiwiu;

scaling with the Tx power under multiple IPCs can be undexstoWnereAs, u; arei-th eigenvalue and eigenvector &.

in terms of a natural linear-algebraic structure inducedtiy /N @ Spectrum-sharing multi-user system (e.g. cognitietioja

MIMO channels of different users. there is a limit on how much interference the Tx can induca (vi
Notations bold capitals R) denote matrices while bold lower- %) to primary uset/;, see Fig. 1,

case letters o) denote column vectorsR™ is the Hermitian NI _ +

conjugation gf‘)R; R > 0 means thaiR is positive semi-definite; E{z" H ;) Hopw}y = tr(Hox RHy,) < Pry ()

|R|, tr(R), r(R) denote determinant, trace and rank Bf whereP;; is the maximum acceptable interference power and the

respectively; \;(R) is i-th eigenvalue ofR; unless indicated |eft-hand side is the actual interference power at @igerin this

otherwise, eigenvalues are in decreasing order> X2 > ..; setting, the feasible set becomes
(z)+ = max|0,z] is the positive part oft; R(R) and N'(R)
denote the range and null space Bfwhile R' is its Moore- Sr={R>0: tr(R) < Pr, tr(WxR) < P Vk}  (5)

Penrose pseudo-inverdgé{-} is statistical expectation. .
P ) P whereW y;, = H;,CHQ;C and Py, are the channel Gram matrix of

Il. CHANNEL MODEL userk and the respective interference constraint powet, 1.. K,
Let us consider the standard discrete-time model of the Gawdiere K is the number of primary users.
sian MIMO channel: The Gaussian signalling is still optimal in this setting ahd
capacity subject to the TPC and IPCs can still be expressed as
v = Hiz +&, @) (2) but the optimal covariance is n&y, » anymore. In particular,

wherey,, x, &, and H; are the received and transmitted signalghe unitary-invariance of the feasible s&pc under the TPC
noise and channel matrix. This is illustrated in Fig. 1. Tlise alone is lost due to the presence of the IREIV 2, R) < Pry

is assumed to be complex Gaussian with zero mean and WfitSr SO that well-known results and "tricks” (based on unitary
variance, so that the SNR equals to the signal power. A complévariance of the feasible set) cannot be used anymoree Sivec
valued channel model is assumed throughout the paper, ulith fshape” of the feasible sef affects significantly optimalz,
channel state information available both at the transmatel the this results in a number of new properties of optimal sigmgli
receiver. Gaussian signaling is known to be optimal in thitisg and of the capacity, as we show below.

[2]-[5] so that finding the channel capacify amounts to finding  One may also consider the total (rather than individuagrint
an optimal transmit covariance matrR, which can be expressedference power constraint so that

as the following optimization problem (P1):
Spr={R:R>0, tr(R) < Pr, Y tr(WyR) < P}
(P1): C= nax C(R) (2) %
€SR

In this case, all the results of this paper will apply with= 1,

— _ + i
whereC'(R) = log|I + W1 R|, W1 = H{ H; is the channel Pri= Pr, andWa, — 5, W,

Gram matrix, R is the Tx covariance matrix andr is the
constraint (feasible) set. In the case of the total powestaimt
(TPC) only, it takes the form I1l. OPTIMAL SIGNALLING UNDER THETPCAND IPCs

Sp=Srpc 2{R:R>0,tr(R) < Pr}, ©) To characterize fully the capacity, a closed-form solufimrthe
) ) ) _optimal signaling problem (P1) in (2) under the joint coasits in
wherePT_ is the maximum total _Tx power. The sol_utlon to thls(5) is given below in the general case, W.;, W, are allowed
problem is well-known: optimal signaling is on the eigen@edf i, he singular and any of the constraints are allowed to htiirea

W, so that they are also the eigenmodes of optimal covarianggs extends the known results in [12]-[14] to the generaeca
R* = Ry, and the optimal power allocation is via the water-

filling (WF). This solution can be compactly expressed aloies: Theorem 1. Consider the capacity of the Gaussian MIMO
A . . . N channel in(2) under the joint TPC and IPC if5). The optimal
Ryr=(p I-Wi )= Z (™" = A Juriug; Tx covariance matrix to achieve the capacity can be exptesse
BAi>p as follows:
where . > 0 is the "water” level found from the total power ) ; . ;
constrainttr(R*) = Pp (which is always active)\,;, uq; are R = WM(I_ W,.W, Wu)JrWu (6)



whereW , = (1 I+, quW%)%; WL is the Moore-Penrose e On the other hand, ifV(}", W) € N (W), then very
pseudo-inverse oW ,; 11,2 > 0 are Lagrange multipliers high spectral efficiency cannot be achieved even with uitdichi
(dual variables) responsible for the TPC and IPCs, foundnfro power budget, due to the dominance of the IPCs. In particular
. . if N (W) = 0 or, equivalently,>”, Wy, > 0, then (9) is
pa(tr(RY) = Pr) =0, por(tr(WaeR") — Pri) =0 (7) imggssit(ﬂe an)d the capacity stays g(:)ﬁnded, even for infifjte
subject totr(R*) < Pr, tr(WayR*) < Py, Vk. The respective - the whole signaling space is dominated by IPCs in this case.
capacity is In the standard Gaussian MIMO channel without the IPCs,
C = 0 if either Pr = 0 orfand W, = 0, i.e. in a trivial
C= Y logh (8) way. On the other hand, in the same channel under the TPC
A >1 and IPCs, the capacity can be zero in non-trivial ways, as the
where\,; = )\i(WLW1WL)- following proposit_ion shows. In practic_al terms,_ this cheterizes
the cases where interference constraints of primary usérout
Proof. See Appendix. O any positive rate of a given user and, hence, spectrum shexin
not possible. To this end, 1€y = {k : P;;, = 0}, i.e. a set of

Based on (6), one observes thi, plays a role of a all primary users requiring no interferende;, = 0.

"whitening” filter, which disappears when all IPCs are ineet
When W is full-rank, i.e. W > 0, then R* is unique, which Proposition 2. Consider the Gaussian MIMO channel under the
is not necessarily the case in general - a remarkable difftereo  TPC and IPCs and lePr > 0, W, # 0. Its capacity is zero if
the TPC-only case, wheRyy  is always unique. Dual variablesand only if Pr;, = 0 for somek and

11, op can be found numerically using the iterative bisection

algorithm in [14]. In some special cases, closed-form smhst N( Z W%) eEN(Wy). (11)
are possible - see Sections IV and V. keko
A number of known special cases follow from (6): K = 1 pyof. See the full version of this paper [22]. 0

and W, is full-rank, thenWL = W;l (see e.g. [17]) andR®”
in (6) reduces to the respective solutions in [12]-[14].IIIRCs  Note that the conditiorP;;, = 0 is equivalent to zero-forcing
are inactive, themug, = 0, W, = /il and R* = Ry, as it transmission with respect to uséy, i.e. the capacity is zero only

should be. if ZF transmission is required for at least one user; othsewi
) C > 0. The condition in (11) cannot be satisfiedrifW ) >
A. General properties r(3>°, Wai) and hence” > 0 under the latter condition, which

Next, we explore some general properties of the capacigyalso sufficient for unbounded growth of the capacity wih.
related to its unbounded growth withr and its being strictly This is summarized below.
posmve_. It turns out that those properties induce a natunaar- Corollary 1. If r(W1) > r(3>, Way), then
algebraic structure for the set of channels of all users.

It is well-known that, without the IPCsC(Pr) grows un- 1.C#0Y Pp. > 0and Pp > 0.
bounded asPr increases((Pr) — oo as Pr — oo (assuming 2.C(Pr) —ooasPr—ooV P, >0
W # 0). This, however, is not necessarily the case under theThus, the condition(W 1) > (3, Way) represents favor-
added IPCs with all fixed®;,. The following proposition gives able propagation scenarios where spectrum sharing is bp@ssi
sufficient and necessary conditions when it is indeed the.cas for any P;;, and arbitrary large capacity can be attained given
enough Tx power budget.

Unlike the standard WF where the TPC is always active, it
can be inactive under the IPCs, which is ultimately due to the
interplay of interference and power constraints. The foilhg

Proposition 1. Let 0 < P, < oo be fixed for allk. Then, the
capacity grows unbounded d%- increases, i.eC(Pr) — oo as
Pr — oo, if and only if

ﬂN(Wzk) ¢ N(Wy) (9) proposition explores this in some details. To this end, weaa
k constraint "redundant” if it can be omitted without affexjithe
or, equivalently, capacity.
N w N(Wy). 10
(zk: Qk) FNW) (10) Proposition 3. The TPC is redundant only if

Proof. See Appendix. O

The following observations are in order:
¢ Since the above conditions are both sufficient and necessary ) ) ) o )
for the unbounded growth of the capacity, they give the estige @Nd is active otherwise. In particular, it is active (for arfj
characterization of all the cases where such growth is plessi @nd Prx) if 7(W1) > r(32, W), e.g. if W is full-rank and
In practical terms, those cases represent the scenariaeahg - W2k is rank-deficient.
high spectral efficiency is achievable givgn enough powelgbll  pyof. See the full version of this paper [22]. 0
e The unbounded growth of the capacity with- depends only
on N (>, Wy) and N (W), all other details being irrelevant. “inactive” implies "redundant” but the converse is not trder example,
iti inactive TPC meansrR* < Ppr and this impliesu; = 0 (from complementary
o It can be seen that the conditioWf(3_, W) ¢ N(Wl) slackness) so that it is also redundant (can be omitted utitiadfecting the
holds if r(}°, W2i) < (W), and hence the capacity grow

) ~ Sapacity), butu; = 0 does not implytr R* < Pr sincetrR* = Pr is also
unbounded withPr under the latter condition. possible in some cases.

N W) e N(WH) (12)
k



IV. FULL-RANK SOLUTIONS V. RANK-1 SOLUTIONS

While Theorem 1 establishes a closed-form solution foroati In this section, we explore the case wh#¥; is rank-one.
covariance R* in the general case, it is expressed via du#ls we show below, beamforming is optimal in this case. A
variablesy1, uax for which no closed-form solution is known inpractical appeal of this is due to its low-complexity implem
general so they have to be found numerically using (7). Timgd tation. Furthermore, rank-on®; is also motivated by single-
insights significantly. In this section, we explore the cagdien antenna mobile units while the base station is equipped with
the optimal covariancdR™ is of full rank and obtain respective multiple antennas, or when the MIMO propagation channefis o
closed-form solutions. To this end, we 96t= 1, Wy = Wy, degenerate nature resulting in a keyhole effect, see e9i{2[1].

P; = Pry, ua = uoy. First, we consider an interference-limited We begin with the following result which bounds the rank of
regime, where the TPC is redundant and hence the IPC is activptimal covariance in any case.

Proposition 4. Let W1, W, > 0 and P; be bounded as follows: Proposition 6. If the TPC is active or/fand¥ ; is full-rank, then
the rank of the optimal covariancB™ of the problem (P1) irf2)

—1 —1
mh (WaW,7) T_ntr(WQ‘}Vl ) <P (13) " under the constraints i1t5) is bounded as follows:
e —1\y -1 .
= e,y P W) = (W W r(R) < r(Wh) (22)
theny, = 0, i.e. the TPC is redundan®* is of full-rank and is If the TPC is redundant an@V, is rank-deficient, then there
given by: exists an optimal covariancR™ (not necessarily unique) of (P1)

L B under the constraints if5) that also satisfies this inequality.
R*:H21W21_W11

) Proof. See [22]. 1st part of this Proposition also holds for> 1,
where p; ' = m~!(P; + tr(WoW7')). The capacity can be with w, — W,. O
expressed as _ ) ) )
Corollary 2. If W is of full-rank or/and if the TPC is active,

C = mlog((Pr + tr(WQWfl))/m) + log Wi (15) then the optimal covarianc®” is of full-rank only if W is of
(W full-rank (i.e. rank-deficien%; ensures thatR* is also rank-
Proof. See the full version of this paper [22]. O deficient).

Next, we explore the case wheW¥ is of rank 1. This models Corollary 3. If r(W) = 1, thenr(R*) = 1, i.e. beamforming
the case when a primary user has a single-antenna receiversarptimal.

when its channel is a keyhole channel, see e.g. [19][20]. Note that this rank (beamforming) property mimics the respe

Proposition 5. Let W; be of full rank andW, be of rank-1, tive property for the standard WF. However, while signajlion
so thatW, = \upuj, where X, > 0 and uy are its active the (only) active eigenvector 8 is optimal under the standard
eigenvalue and eigenvector. If WEF (no IPC), it is not so when the IPC is active, as the follayvin
o N a1 result shows. To this end, 186/, = \juju], ie. it is rank-1
Pr = Pron=m="ao(Pr+tr(Wy7)) = Aau; Wi us with A; > 0,u; be the (only) active eigenvalue and eigenvector;

Pr>mA (W) —tr(Wih) (16) ~; = P;/Pr be the "interference-to-signal” ratio, and
then.the. IPC is redundant, the optimal _covariance is of fahk _ uf Wiu, W 23)
and is given by the standard WF solution, g 7UT(W§)QU1’ V2 1 Wau

R" = Ry p = /L;VlFI -wi! A7) \where W; is Moore-Penrose pseudo-inverse Wf 5; Wg =
where il = m~ (P + tr(Wh). If Wyl if Wy is full-rank [17].
Mot (W) = Xoud Witug < Pr < Prag, (18) Proposition 7. Let W, be rank-1.

1. If y1 < 7, then the TPC is redundant and the optimal

-1 R 1
Pr >mAy " Pr+mug Wy us — tr(Wy) (19) covariance can be expressed as follows

then the IPC and TPC are active, the optimal covariance is of Wihwurwi
o * 2U1U; W
full rank and is given by R = P[ﬁ (24)
u; Wiuq
R AT —-wil — ausud (20) L
1 1 1 2 The capacity is C = log(1 + MaPy) (25)
wherea = p7 ' — (u1 + Aapo) ™t and g, po > 0 are
) P e wherea = yjuf Whu, < 1.
pr=(Pr =Xy Pr—ug Wi up +ir(Wy7))" (m—1) 2. If y1 > 73, then the IPC is redundant and the standard WF
o = (Pr + /\QuijluQ)’l — A;lul (21) solution appliesR* = Pru,u; . This condition is also necessary

for the optimality ofPTulu{r under the TPC and IPC wheW
is rank-1. The capacity is as i(25) with o = 1.

Note that the 1st two terms in (20) represent the standard WR3. If v; < 77 < ., then both constraints are active. The
solution while the last term is a correction due to the IPCiclwh optimal covariance is
is reminiscent of a partial null forming in an adaptive ami&n wol 1A —
array, see e.g. [21, Sec. 6.3.1]. Hence, partial null fogisnalso R = PTQ’—_Q‘ (26)
optimal from the information-theoretic perspective. uf W, u

Proof. See the full version of this paper [22]. O



where Wy, = I + oW, and us > 0 is found from the IPC: and this condition is also necessary for the TPC to be rechinda
tr(WoR") = Pr. The capacity is as if25) with Further notice that

a = (uf Wi, w)*[Wa,ui| 2 <1 @7 NOQ_maWa) = [ NWa) =N( DY Wa)  (37)
k

with equality if and only ifu; is an eigenvector ofV . kel kel

where £ = {k : por > 0} is the set of users with active
IPCs. LetWy = >, 110, Wai. Using (34), (36) and projecting
Note that the optimal signalling in case 1 is along the dicect all matrices on the active sub-space Wdf2, one can apply the
of Wlu, and not that ofu; (unlessu, is also an eigenvector of solution in (6) with full-rank projectedV ,, (as established above)
W), as would be the case for the standard WF with redundaatthe projectedR. Using this solution and transforming it back
IPC. In fact,Wg plays a role of a "whitening” filter here. Similar to the original basis, one obtains (6) after some manipmrati
observation applies to case 3, wii , replaced byW,,. o in  see [22] for further details.
Proposition 7 quantifies power loss due to enforcing the IPC;

Proof. See the full version of this paper [22].

«a =1 means no power loss.

VI. APPENDIX
A. Proof of Theorem 1

B. Proof of Proposition 1

To prove the "if" part, observe thgf), N'(Wi) ¢ N (W)
implies 3u : Woiu = 0 Vk, Wiu # 0. Now setR = Pruu™,

Since the problem is convex and Slater's condition holds, tfr which tr(R) = Pr,tr(W2,R) = 0 Vk, so it is feasible for
KKT conditions are both sufficient and necessary for optitpal @0y Pr, Prx. Furthermore,

[16]. They take the following form:

~ I+ WiR) "Wy = M + T+ poxWap =0 (28)
k
MR = 07 ,ul(tr(R) - PT) = 07

piok (tr(W ok R) — Pry) =0, (29)
M207 ,ulzoa M?kZO (30)
tr(R) < Pp, tr(Wa.R) < Pry, R>0 (31)

whereM is Lagrange multiplier responsible for the positive sem
definite constraintR > 0. We consider first the case of full-

rank W, (i.e. eithery, > 0 or/fand}_, poeWa > 0), so that

WL = W;l. Let us introduce new variablei2 = W ,RW ,,
Wi = W,'W,W,', M = W_'MW,". It follows that
MR = 0 and (28) can be transformed to
(I+W,R)'W,+M=1 (32)
for which the solution is
R=(I-M)"'-W, =(I-W,), (393

(this can be established in the same way as for the standajd WF

Transforming back to the original variables results in (8).are
complementary slackness conditions in (29); (8) followera
some manipulations, by usinB* of (6) in C(R).

The case of singuld ,, is more involved. It implieg:; = 0 so
thatWw, = (3, quW%)%. It follows from the KKT condition
in (28) that, for the redundant TPQ = 0),

Q:(I+QRQ,)™'Q, +M = ZM%W%
k

where Q, W}/Q. Let € € N, parxWoak), le.
Zk o Wopx = 0, then

z"Q,(I+Q,RQ,)'Qx+x " Mx =0 (35)

so thatzt*Mx = 0 and Q,z = 0, sinceM > 0 and I +
Q. RQ, > 0. Thus, N (>_, p2xWar) € N(Q,) = N(W,) and
N(Zk ,LLQkWQk) S N(M), ie.

N narxWar) € N(W1) NN (M)
k

(34)

(36)

C > C(R) =log(1+ PrutWiu) — (38)

as Pr — oo, sinceutWiu > 0.
Next, we will need the following technical result, which il
also establish the last claim.

Lemma 1. The following holds:

ﬂN(Wzk) :N(ZW%) (39)
k k

Broof. See the full version of this paper [22]. O

To prove the "only if” part, letW, = >, Woi, Pr =
>, Pri and assume tha/(W,) € N (W ). This implies that
R(W1) € R(W3) (sinceR(W) is the complement ofV (W)
for Hermitian W). Let

Wi =U MUY, k=1,2 (40)

whereU ., is a semi-unitary matrix of active eigenvectorsify
and diagonal matrixA; collects its strictly-positive eigenvalues.
Notice that, from the IPC,

P] Z tT(WQR) = tT(A2U5r+RU2+)

> )\thr(U2++RU2+) (42)
where),., > 0 is the smallest positive eigenvalue W 5, so that
(42)

for any Pr. On the other handR(W;) € R(W3) implies
span{U1+} € span{U24+} and hence

A1 (U3_+RU2+) < P]//\T2 < 0

MUY RU ) < M (U3 RU2y ) < Pr/A, <o (43)
so that
C(Pr) =log|I + AU, R'U 1|
= log(1+ Xi(A U R'U1y))
<mlog(1+ M (W) (Ui, R'U14))
< mlog(l+ M (W1)Pr/Ar,) < o0 (44)

is bounded for anyPr, as required.
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