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Abstract—Gaussian MIMO channel under total transmit and mul-
tiple interference power constraints (TPC and IPCs) is considered.
A closed-form solution for its optimal transmit covariance matrix
is obtained in the general case (up to dual variables). A number
of more explicit closed-form solutions are obtained in somespecial
cases, including full-rank and rank-1 (beamforming) solutions, which
differ significantly from the well-known water-filling solu tions (e.g.
signaling on the channel eigenmodes is not optimal anymore and
the capacity can be zero for non-zero transmit power). A whitening
filter is shown to be an important part of optimal precoding under
interference constraints. Capacity scaling with transmit power is
studied: its qualitative behaviour is determined by a natural linear-
algebraic structure induced by MIMO channels of multiple users.
A simple rank condition is given to characterize the cases where
spectrum sharing is possible. An interplay between the TPC and
IPCs is investigated, including the transition from power-limited
to interference-limited regimes. A number of unusual properties of
an optimal covariance matrix under IPCs are pointed out and a
bound on its rank is established. Partial null forming known in the
adaptive antenna array literature is shown to be optimal from the
information-theoretic perspective as well in some cases.

I. I NTRODUCTION

Aggressive frequency re-use and hybrid (non-orthogonal) ac-
cess schemes envisioned as key technologies in 5G systems [1]
can potentially generate significant amount of inter-user interfer-
ence and hence should be designed and managed carefully. In this
respect, multi-antenna (MIMO) systems have significant potential
due to their significant signal processing capabilities, including
interference cancellation and precoding, which can also bedone
in an adaptive and distributed manner [2][3]. The capacity and
optimal signalling for the Gaussian MIMO channel under the total
power constraints (TPC) is well-known: the optimal (capacity-
achieving) signaling is Gaussian and is on the eigenvectorsof the
channel with power allocation to the eigenmodes given by the
water-filling (WF) [2]-[5]. Under per-antenna power constraints
(PAC), in addition or instead of the TPC, Gaussian signalling is
still optimal but not on the channel eigenvectors anymore sothat
the standard water-filling solution over the channel eigenmodes
does not apply [6][7].

Much less is known if interference power constraints (IPC)
are added, which limit the power of interference induced by a
secondary transmitter to primary receivers (PR) in a spectrum-
sharing system (e.g. cognitive radio). A game-theoretic approach
to this problem was proposed in [8], where a fixed-point equation
was formulated from which the optimal transmit covariance
matrix can in principle be determined. Unfortunately, no closed-
form solution is known for this equation and the considered
settings require the channel to the primary receiver to be full-
rank hence excluding the important cases where the number of
Rx antennas is less than the number of Tx antennas (typical for
massive MIMO downlink); the TPC is not included explicitly
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(rather, being ”absorbed” into the IPC), hence eliminatingthe
important case of inactive IPC and, consequently, no interplay
between the TPC and the IPC can be studied.

Cognitive radio MIMO systems under interference constraints
have been also studied in [9]-[11], where a number of numeri-
cal optimization algorithms were developed but no closed-form
solutions are known to the underlying optimization problems.
Optimal signaling for the Gaussian MIMO channel under the
TPC and the IPC has been also studied in [12]-[14] using the
dual problem approach, and was extended to multi-user settings
in [15]. However, the constraint matrices are required to befull-
rank and no closed-form solution was obtained for optimal dual
variables. Hence, various numerical algorithms or sub-optimal
solutions were proposed. This limits insights significantly.

In this paper, we study the spectrum-sharing potential of
Gaussian MIMO channels and concentrate on analysis rather
than numerical algorithms. This provides deeper understanding
of the problem and a number of insights unavailable from
numerical algorithms alone. Specifically, we obtain novel closed-
form solutions for an optimal transmit covariance matrix for the
Gaussian MIMO channel under the TPC and multiple IPCs. All
constraints are included explicitly and hence anyone is allowed
to be inactive. This allows one to study the interplay between the
power and interference constraints and, in particular, thetransition
from power-limited to interference limited regimes as the Tx
power increases. As an added benefit, no limitation is placedon
the rank of the constraint matrices, so that the number of antennas
of the PR(s) can be any (including massive MIMO settings). In
some cases, our approach leads to explicit closed-form solutions
for optimal dual variables as well, including full-rank andrank-1
(beamforming) solutions and the conditions for their optimality.
A whitening filter is shown to play a prominent role in optimal
precoding under interference constraints. Partial null forming
well-known in the antenna array literature [21] is shown to be
optimal from the information-theoretic perspective as well, in
certain cases. A simple rank condition is given to characterize
the cases where spectrum sharing is possible for any interference
power constraints. In general, the primary users have a major
impact on the capacity at high SNR while being negligible at low
SNR. The high-SNR behaviour of the capacity is qualitatively
determined by the null spaces of PR channel matrices. The
presented closed-form solutions of optimal signaling can be used
directly in massive MIMO settings. Since numerical complexity
of generic convex solvers can be prohibitively large for massive
MIMO (in general, it scales asm6 with the numberm of
antennas), the above analytical solutions are a valuable low-
complexity alternative.

It should be emphasized that, under the added IPCs, the unitary-
invariance of the feasible set is lost and hence many known
solutions and standard ”tricks” (e.g. Hadamard inequality) of the
analysis under the TPC alone cannot be used. This has profound



impact on optimal signaling strategies as well as on analytical
techniques to solve the underlying optimization problem. In
particular, unlike the standard water-filling solution, (i) signaling
on the channel eigenmodes is not optimal anymore (unless all
IPCs are inactive or if their channel eigenmodes are the sameas
those of the main MIMO channel); (ii) the rank of an optimal Tx
covariance matrix can exceed that of the channel; (iii) an optimal
covariance matrix is not necessarily unique; (iv) the channel
capacity can be zero for a non-zero Tx power and channel;
(v) the channel capacity may stay bounded under unbounded
growth of the Tx power (in which case the TPC is inactive).
All these phenomena have major impact on the spectrum-sharing
capabilities of MIMO channels. We demonstrate that the capacity
scaling with the Tx power under multiple IPCs can be understood
in terms of a natural linear-algebraic structure induced bythe
MIMO channels of different users.

Notations: bold capitals (R) denote matrices while bold lower-
case letters (x) denote column vectors;R+ is the Hermitian
conjugation ofR; R ≥ 0 means thatR is positive semi-definite;
|R|, tr(R), r(R) denote determinant, trace and rank ofR,
respectively;λi(R) is i-th eigenvalue ofR; unless indicated
otherwise, eigenvalues are in decreasing order,λ1 ≥ λ2 ≥ ..;
(x)+ = max[0, x] is the positive part ofx; R(R) and N (R)
denote the range and null space ofR while R† is its Moore-
Penrose pseudo-inverse;E{·} is statistical expectation.

II. CHANNEL MODEL

Let us consider the standard discrete-time model of the Gaus-
sian MIMO channel:

y1 = H1x+ ξ1 (1)

wherey1,x, ξ1 andH1 are the received and transmitted signals,
noise and channel matrix. This is illustrated in Fig. 1. The noise
is assumed to be complex Gaussian with zero mean and unit
variance, so that the SNR equals to the signal power. A complex-
valued channel model is assumed throughout the paper, with full
channel state information available both at the transmitter and the
receiver. Gaussian signaling is known to be optimal in this setting
[2]-[5] so that finding the channel capacityC amounts to finding
an optimal transmit covariance matrixR, which can be expressed
as the following optimization problem (P1):

(P1) : C = max
R∈SR

C(R) (2)

whereC(R) = log |I + W 1R|, W 1 = H+

1 H1 is the channel
Gram matrix,R is the Tx covariance matrix andSR is the
constraint (feasible) set. In the case of the total power constraint
(TPC) only, it takes the form

SR = STPC , {R : R ≥ 0, tr(R) ≤ PT }, (3)

wherePT is the maximum total Tx power. The solution to this
problem is well-known: optimal signaling is on the eigenmodes of
W 1, so that they are also the eigenmodes of optimal covariance
R∗ = RWF , and the optimal power allocation is via the water-
filling (WF). This solution can be compactly expressed as follows:

RWF , (µ−1I −W−1

1 )+ =
∑

i:λ1i>µ

(µ−1 − λ−1

1i )u1iu
+

1i

whereµ ≥ 0 is the ”water” level found from the total power
constrainttr(R∗) = PT (which is always active),λ1i, u1i are
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Fig. 1. A block diagram of multi-user Gaussian MIMO channel under interference
constraints.H1 andH2k are the channel matrices to the Rx andk-th user (PR)
respectively. Interference constraints are to be satisfiedfor each user.

i-th eigenvalue and eigenvector ofW 1; (R)+ denotes positive
eigenmodes of Hermitian matrixR: (R)+ =

∑

i:λi>0
λiuiu

+

i ,
whereλi, ui are i-th eigenvalue and eigenvector ofR.

In a spectrum-sharing multi-user system (e.g. cognitive radio),
there is a limit on how much interference the Tx can induce (via
x) to primary userUk, see Fig. 1,

E{x+H+

2kH2kx} = tr(H2kRH+

2k) ≤ PIk (4)

wherePIk is the maximum acceptable interference power and the
left-hand side is the actual interference power at userUk. In this
setting, the feasible set becomes

SR = {R ≥ 0 : tr(R) ≤ PT , tr(W 2kR) ≤ PIk ∀k} (5)

whereW 2k = H+

2kH2k andPIk are the channel Gram matrix of
userk and the respective interference constraint power,k = 1..K,
whereK is the number of primary users.

The Gaussian signalling is still optimal in this setting andthe
capacity subject to the TPC and IPCs can still be expressed asin
(2) but the optimal covariance is notRWF anymore. In particular,
the unitary-invariance of the feasible setSTPC under the TPC
alone is lost due to the presence of the IPCstr(W 2kR) ≤ PIk

in SR so that well-known results and ”tricks” (based on unitary
invariance of the feasible set) cannot be used anymore. Since the
”shape” of the feasible setSR affects significantly optimalR,
this results in a number of new properties of optimal signaling
and of the capacity, as we show below.

One may also consider the total (rather than individual) inter-
ference power constraint so that

SRT = {R : R ≥ 0, tr(R) ≤ PT ,
∑

k

tr(W 2kR) ≤ PI}

In this case, all the results of this paper will apply withK = 1,
PI1 = PI , andW 21 → ∑

k W 2k.

III. O PTIMAL SIGNALLING UNDER THE TPC AND IPCS

To characterize fully the capacity, a closed-form solutionfor the
optimal signaling problem (P1) in (2) under the joint constraints in
(5) is given below in the general case, i.e.W 1,W 2k are allowed
to be singular and any of the constraints are allowed to be inactive.
This extends the known results in [12]-[14] to the general case.

Theorem 1. Consider the capacity of the Gaussian MIMO
channel in(2) under the joint TPC and IPC in(5). The optimal
Tx covariance matrix to achieve the capacity can be expressed
as follows:

R∗ = W †
µ(I −W µW

−1

1 W µ)+W
†
µ (6)



whereW µ = (µ1I+
∑

k µ2kW 2k)
1
2 ; W †

µ is the Moore-Penrose
pseudo-inverse ofW µ; µ1, µ2k ≥ 0 are Lagrange multipliers
(dual variables) responsible for the TPC and IPCs, found from

µ1(tr(R
∗)− PT ) = 0, µ2k(tr(W 2kR

∗)− PIk) = 0 (7)

subject totr(R∗) ≤ PT , tr(W 2kR
∗) ≤ PIk ∀k. The respective

capacity is

C =
∑

i:λµi>1

logλµi (8)

whereλµi = λi(W
†
µW 1W

†
µ).

Proof. See Appendix.

Based on (6), one observes thatW µ plays a role of a
”whitening” filter, which disappears when all IPCs are inactive.
WhenW 1 is full-rank, i.e.W 1 > 0, thenR∗ is unique, which
is not necessarily the case in general - a remarkable difference to
the TPC-only case, whereRWF is always unique. Dual variables
µ1, µ2k can be found numerically using the iterative bisection
algorithm in [14]. In some special cases, closed-form solutions
are possible - see Sections IV and V.

A number of known special cases follow from (6): IfK = 1
andW µ is full-rank, thenW †

µ = W−1

µ (see e.g. [17]) andR∗

in (6) reduces to the respective solutions in [12]-[14]. If all IPCs
are inactive, thenµ2k = 0, W µ =

√
µ1I andR∗ = RWF , as it

should be.

A. General properties

Next, we explore some general properties of the capacity
related to its unbounded growth withPT and its being strictly
positive. It turns out that those properties induce a natural linear-
algebraic structure for the set of channels of all users.

It is well-known that, without the IPCs,C(PT ) grows un-
bounded asPT increases,C(PT ) → ∞ asPT → ∞ (assuming
W 1 6= 0). This, however, is not necessarily the case under the
added IPCs with all fixedPIk. The following proposition gives
sufficient and necessary conditions when it is indeed the case.

Proposition 1. Let 0 ≤ PIk < ∞ be fixed for allk. Then, the
capacity grows unbounded asPT increases, i.e.C(PT ) → ∞ as
PT → ∞, if and only if

⋂

k

N (W 2k) /∈ N (W 1) (9)

or, equivalently,
N
(

∑

k

W 2k

)

/∈ N (W 1). (10)

Proof. See Appendix.

The following observations are in order:
• Since the above conditions are both sufficient and necessary

for the unbounded growth of the capacity, they give the exhaustive
characterization of all the cases where such growth is possible.
In practical terms, those cases represent the scenarios where any
high spectral efficiency is achievable given enough power budget.
• The unbounded growth of the capacity withPT depends only

on N (
∑

k W 2k) andN (W 1), all other details being irrelevant.
• It can be seen that the conditionN (

∑

k W 2k) /∈ N (W 1)
holds if r(

∑

k W 2k) < r(W 1), and hence the capacity grows
unbounded withPT under the latter condition.

• On the other hand, ifN (
∑

k W 2k) ∈ N (W 1), then very
high spectral efficiency cannot be achieved even with unlimited
power budget, due to the dominance of the IPCs. In particular,
if
⋂

k N (W 2k) = ∅ or, equivalently,
∑

k W 2k > 0, then (9) is
impossible and the capacity stays bounded, even for infinitePT

- the whole signaling space is dominated by IPCs in this case.
In the standard Gaussian MIMO channel without the IPCs,

C = 0 if either PT = 0 or/and W 1 = 0, i.e. in a trivial
way. On the other hand, in the same channel under the TPC
and IPCs, the capacity can be zero in non-trivial ways, as the
following proposition shows. In practical terms, this characterizes
the cases where interference constraints of primary users rule out
any positive rate of a given user and, hence, spectrum sharing is
not possible. To this end, letK0 = {k : PIk = 0}, i.e. a set of
all primary users requiring no interference,PIk = 0.

Proposition 2. Consider the Gaussian MIMO channel under the
TPC and IPCs and letPT > 0, W 1 6= 0. Its capacity is zero if
and only ifPIk = 0 for somek and

N
(

∑

k∈K0

W 2k

)

∈ N (W 1). (11)

Proof. See the full version of this paper [22].

Note that the conditionPIk = 0 is equivalent to zero-forcing
transmission with respect to userUk, i.e. the capacity is zero only
if ZF transmission is required for at least one user; otherwise,
C > 0. The condition in (11) cannot be satisfied ifr(W 1) >
r(
∑

k W 2k) and henceC > 0 under the latter condition, which
is also sufficient for unbounded growth of the capacity withPT .
This is summarized below.

Corollary 1. If r(W 1) > r(
∑

k W 2k), then
1. C 6= 0 ∀ PIk ≥ 0 andPT > 0.
2. C(PT ) → ∞ asPT → ∞ ∀ PIk ≥ 0

Thus, the conditionr(W 1) > r(
∑

k W 2k) represents favor-
able propagation scenarios where spectrum sharing is possible
for any PIk and arbitrary large capacity can be attained given
enough Tx power budget.

Unlike the standard WF where the TPC is always active, it
can be inactive under the IPCs, which is ultimately due to the
interplay of interference and power constraints. The following
proposition explores this in some details. To this end, we call a
constraint ”redundant” if it can be omitted without affecting the
capacity1.

Proposition 3. The TPC is redundant only if

N (
∑

k

W 2k) ∈ N (W 1) (12)

and is active otherwise. In particular, it is active (for anyPT

and PIk) if r(W 1) > r(
∑

k W 2k), e.g. ifW 1 is full-rank and
∑

k W 2k is rank-deficient.

Proof. See the full version of this paper [22].

1”inactive” implies ”redundant” but the converse is not true: for example,
inactive TPC meanstrR∗ < PT and this impliesµ1 = 0 (from complementary
slackness) so that it is also redundant (can be omitted without affecting the
capacity), butµ1 = 0 does not implytrR∗ < PT since trR∗

= PT is also
possible in some cases.



IV. FULL -RANK SOLUTIONS

While Theorem 1 establishes a closed-form solution for optimal
covarianceR∗ in the general case, it is expressed via dual
variablesµ1, µ2k for which no closed-form solution is known in
general so they have to be found numerically using (7). This limits
insights significantly. In this section, we explore the cases when
the optimal covarianceR∗ is of full rank and obtain respective
closed-form solutions. To this end, we setK = 1, W 2 = W 21,
PI = PI1, µ2 = µ21. First, we consider an interference-limited
regime, where the TPC is redundant and hence the IPC is active.

Proposition 4. LetW 1,W 2 > 0 andPI be bounded as follows:

mλ1(W 2W
−1

1 )− tr(W 2W
−1

1 ) < PI (13)

≤ m

tr(W−1

2 )
(PT + tr(W−1

1 ))− tr(W 2W
−1

1 )

thenµ1 = 0, i.e. the TPC is redundant,R∗ is of full-rank and is
given by:

R∗ = µ−1

2 W−1

2 −W−1

1 (14)

whereµ−1

2 = m−1(PI + tr(W 2W
−1

1 )). The capacity can be
expressed as

C = m log((PI + tr(W 2W
−1

1 ))/m) + log
|W 1|
|W 2|

(15)

Proof. See the full version of this paper [22].

Next, we explore the case whereW 2 is of rank 1. This models
the case when a primary user has a single-antenna receiver or
when its channel is a keyhole channel, see e.g. [19][20].

Proposition 5. Let W 1 be of full rank andW 2 be of rank-1,
so thatW 2 = λ2u2u

+

2 , whereλ2 > 0 and u2 are its active
eigenvalue and eigenvector. If

PI ≥ PI,th = m−1λ2(PT + tr(W−1

1 ))− λ2u
+

2
W−1

1 u2

PT > mλ1(W
−1

1 )− tr(W−1

1 ) (16)

then the IPC is redundant, the optimal covariance is of full rank
and is given by the standard WF solution,

R∗ = R∗
WF = µ−1

WF I −W−1

1 (17)

whereµ−1

WF = m−1(PT + tr(W−1

1 )). If

λ2λ1(W
−1

1 )− λ2u
+

2 W
−1

1 u2 < PI < PI,th, (18)

PT > mλ−1

2 PI +mu+

2 W
−1

1 u2 − tr(W−1

1 ) (19)

then the IPC and TPC are active, the optimal covariance is of
full rank and is given by

R∗ = µ−1

1 I −W−1

1 − αu2u
+

2 (20)

whereα = µ−1

1 − (µ1 + λ2µ2)
−1, andµ1, µ2 > 0 are

µ1 = (PT − λ−1

2 PI − u+

2 W
−1

1 u2 + tr(W−1

1 ))−1(m− 1)

µ2 = (PI + λ2u
+

2 W
−1

1 u2)
−1 − λ−1

2 µ1 (21)

Proof. See the full version of this paper [22].

Note that the 1st two terms in (20) represent the standard WF
solution while the last term is a correction due to the IPC, which
is reminiscent of a partial null forming in an adaptive antenna
array, see e.g. [21, Sec. 6.3.1]. Hence, partial null forming is also
optimal from the information-theoretic perspective.

V. RANK -1 SOLUTIONS

In this section, we explore the case whenW 1 is rank-one.
As we show below, beamforming is optimal in this case. A
practical appeal of this is due to its low-complexity implemen-
tation. Furthermore, rank-oneW 1 is also motivated by single-
antenna mobile units while the base station is equipped with
multiple antennas, or when the MIMO propagation channel is of
degenerate nature resulting in a keyhole effect, see e.g. [19][20].

We begin with the following result which bounds the rank of
optimal covariance in any case.

Proposition 6. If the TPC is active or/andW 2 is full-rank, then
the rank of the optimal covarianceR∗ of the problem (P1) in(2)
under the constraints in(5) is bounded as follows:

r(R∗) ≤ r(W 1) (22)

If the TPC is redundant andW 2 is rank-deficient, then there
exists an optimal covarianceR∗ (not necessarily unique) of (P1)
under the constraints in(5) that also satisfies this inequality.

Proof. See [22]. 1st part of this Proposition also holds forK > 1,
with W 2 → W µ.

Corollary 2. If W 2 is of full-rank or/and if the TPC is active,
then the optimal covarianceR∗ is of full-rank only ifW 1 is of
full-rank (i.e. rank-deficientW 1 ensures thatR∗ is also rank-
deficient).

Corollary 3. If r(W 1) = 1, thenr(R∗) = 1, i.e. beamforming
is optimal.

Note that this rank (beamforming) property mimics the respec-
tive property for the standard WF. However, while signalling on
the (only) active eigenvector ofW 1 is optimal under the standard
WF (no IPC), it is not so when the IPC is active, as the following
result shows. To this end, letW 1 = λ1u1u

+

1 , i.e. it is rank-1
with λ1 > 0,u1 be the (only) active eigenvalue and eigenvector;
γI = PI/PT be the ”interference-to-signal” ratio, and

γ1 =
u+

1 W
†
2u1

u+

1 (W
†
2)

2u1

, γ2 = u+

1 W 2u1 (23)

where W
†
2 is Moore-Penrose pseudo-inverse ofW 2; W

†
2 =

W−1

2 if W 2 is full-rank [17].

Proposition 7. Let W 1 be rank-1.
1. If γI < γ1, then the TPC is redundant and the optimal

covariance can be expressed as follows

R∗ = PI
W

†
2
u1u

+

1
W

†
2

u+

1 W
†
2u1

(24)

The capacity is
C = log(1 + λ1αPT ) (25)

whereα = γIu
+

1 W
†
2u1 < 1.

2. If γI ≥ γ2, then the IPC is redundant and the standard WF
solution applies:R∗ = PTu1u

+

1 . This condition is also necessary
for the optimality ofPTu1u

+

1 under the TPC and IPC whenW 1

is rank-1. The capacity is as in(25) with α = 1.
3. If γ1 ≤ γI < γ2, then both constraints are active. The

optimal covariance is

R∗ = PT

W−1

2µu1u
+

1 W
−1

2µ

u+

1
W−2

2µu1

(26)



whereW 2µ = I + µ2W 2, andµ2 > 0 is found from the IPC:
tr(W 2R

∗) = PI . The capacity is as in(25) with

α = (u+

1 W
−1

2µu1)
2|W−1

2µu1|−2 ≤ 1 (27)

with equality if and only ifu1 is an eigenvector ofW 2.

Proof. See the full version of this paper [22].

Note that the optimal signalling in case 1 is along the direction
of W †

2u1 and not that ofu1 (unlessu1 is also an eigenvector of
W 2), as would be the case for the standard WF with redundant
IPC. In fact,W †

2
plays a role of a ”whitening” filter here. Similar

observation applies to case 3, withW 2 replaced byW 2µ. α in
Proposition 7 quantifies power loss due to enforcing the IPC;
α = 1 means no power loss.

VI. A PPENDIX
A. Proof of Theorem 1

Since the problem is convex and Slater’s condition holds, the
KKT conditions are both sufficient and necessary for optimality
[16]. They take the following form:

− (I +W 1R)−1W 1 −M + µ1I +
∑

k

µ2kW 2k = 0 (28)

MR = 0, µ1(tr(R)− PT ) = 0,

µ2k(tr(W 2kR)− PIk) = 0, (29)

M ≥ 0, µ1 ≥ 0, µ2k ≥ 0 (30)

tr(R) ≤ PT , tr(W 2kR) ≤ PIk, R ≥ 0 (31)

whereM is Lagrange multiplier responsible for the positive semi-
definite constraintR ≥ 0. We consider first the case of full-
rank W µ (i.e. eitherµ1 > 0 or/and

∑

k µ2kW 2 > 0), so that
W †

µ = W−1

µ . Let us introduce new variables:̃R = W µRW µ,
W̃ 1 = W−1

µ W 1W
−1

µ , M̃ = W−1

µ MW−1

µ . It follows that
M̃R̃ = 0 and (28) can be transformed to

(I + W̃ 1R̃)−1W̃ 1 + M̃ = I (32)

for which the solution is

R̃ = (I − M̃)−1 − W̃
−1

1 = (I − W̃
−1

1 )+ (33)

(this can be established in the same way as for the standard WF).
Transforming back to the original variables results in (6).(7) are
complementary slackness conditions in (29); (8) follows, after
some manipulations, by usingR∗ of (6) in C(R).

The case of singularW µ is more involved. It impliesµ1 = 0 so
thatW µ = (

∑

k µ2kW 2k)
1
2 . It follows from the KKT condition

in (28) that, for the redundant TPC (µ1 = 0),

Q1(I +Q1RQ1)
−1Q1 +M =

∑

k

µ2kW 2k (34)

where Q1 = W
1/2
1 . Let x ∈ N (

∑

k µ2kW 2k), i.e.
∑

k µ2kW 2kx = 0, then

x+Q1(I +Q1RQ1)
−1Q1x+ x+Mx = 0 (35)

so thatx+Mx = 0 and Q1x = 0, sinceM ≥ 0 and I +
Q1RQ1 > 0. Thus,N (

∑

k µ2kW 2k) ∈ N (Q1) = N (W 1) and
N (

∑

k µ2kW 2k) ∈ N (M ), i.e.

N (
∑

k

µ2kW 2k) ∈ N (W 1) ∩ N (M ) (36)

and this condition is also necessary for the TPC to be redundant.
Further notice that

N (
∑

k

µ2kW 2k) =
⋂

k∈K+

N (W 2k) = N (
∑

k∈K+

W 2k) (37)

where K+ = {k : µ2k > 0} is the set of users with active
IPCs. LetW 2 =

∑

k µ2kW 2k. Using (34), (36) and projecting
all matrices on the active sub-space ofW 2, one can apply the
solution in (6) with full-rank projectedW µ (as established above)
to the projectedR. Using this solution and transforming it back
to the original basis, one obtains (6) after some manipulations -
see [22] for further details.

B. Proof of Proposition 1

To prove the ”if” part, observe that
⋂

k N (W 2k) /∈ N (W 1)
implies ∃u : W 2ku = 0 ∀k,W 1u 6= 0. Now setR = PTuu

+,
for which tr(R) = PT , tr(W 2kR) = 0 ∀k, so it is feasible for
anyPT , PIk. Furthermore,

C ≥ C(R) = log(1 + PTu
+W 1u) → ∞ (38)

asPT → ∞, sinceu+W 1u > 0.
Next, we will need the following technical result, which will

also establish the last claim.

Lemma 1. The following holds:
⋂

k

N (W 2k) = N
(

∑

k

W 2k

)

(39)

Proof. See the full version of this paper [22].

To prove the ”only if” part, letW 2 =
∑

k W 2k, PI =
∑

k PIk and assume thatN (W 2) ∈ N (W 1). This implies that
R(W 1) ∈ R(W 2) (sinceR(W ) is the complement ofN (W )
for HermitianW ). Let

W k = Uk+ΛkU
+

k+, k = 1, 2 (40)

whereUk+ is a semi-unitary matrix of active eigenvectors ofW k

and diagonal matrixΛk collects its strictly-positive eigenvalues.
Notice that, from the IPC,

PI ≥ tr(W 2R) = tr(Λ2U
+

2+RU2+)

≥ λr2tr(U
+

2+RU2+) (41)

whereλr2 > 0 is the smallest positive eigenvalue ofW 2, so that

λ1(U
+

2+RU2+) ≤ PI/λr2 < ∞ (42)

for any PT . On the other hand,R(W 1) ∈ R(W 2) implies
span{U1+} ∈ span{U2+} and hence

λ1(U
+

1+RU1+) ≤ λ1(U
+

2+RU2+) ≤ PI/λr2 < ∞ (43)

so that

C(PT ) = log |I +Λ1U
+

1+R
∗U1+|

=
∑

i

log(1 + λi(Λ1U
+

1+R
∗U1+))

≤ m log(1 + λ1(W 1)λ1(U
+

1+R
∗U1+))

≤ m log(1 + λ1(W 1)PI/λr2) < ∞ (44)

is bounded for anyPT , as required.
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