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Abstract— We analyze the asymptotic nonanticipative rate
distortion function (NRDF) of vector-valued Gauss-Markov
processes subject to a mean-squared error (MSE) distortion
function. We derive a parametric characterization in terms of
a reverse-waterfilling algorithm, that requires the solution of a
matrix Riccati algebraic equation (RAE). Further, we develop
an algorithm reminiscent of the classical reverse-waterfilling
algorithm that provides an upper bound to the optimal solution
of the reverse-waterfilling optimization problem, and under
certain cases, it operates at the NRDF. Moreover, using
the characterization of the reverse-waterfilling algorithm, we
derive the analytical solution of the NRDF, for a simple two-
dimensional parallel Gauss-Markov process. The efficacy of our
proposed algorithm is demonstrated via an example.

I. INTRODUCTION

Gorbunov and Pinsker in [1], [2] introduced a variant of
the classical rate distortion function (RDF), called nonan-
ticipatory ε−entropy. The authors envisioned that such in-
formation theoretic measure is directly related the design
of real-time communication systems that can process infor-
mation with minimum coding delays. In [1], the authors
also characterized the nonanticipatory epsilon entropy for
a time-varying and stationary scalar-valued Gauss-Markov
process, subject to a pointwise or per-letter mean squared-
error (MSE) distortion function, in terms of a reverse-
waterfilling algorithm at each time instant. Tatikonda et al.
in [3] revisited the nonanticipatory epsilon entropy, for time-
invariant scalar and vector-valued Gauss-Markov processes
subject to pointwise MSE distortion function, under the
name “sequential RDF”, and identified connections between
unstable eignevalues of linear Gaussian control systems and
the minimum rate requirements to stabilize such systems,
when feedback is applied through a limited rate channel
(memoryless). Derpich and Østergaard in [4] characterized
variants of the nonanticipatory ε−entropy for stationary
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scalar-valued Gaussian autoregressive models with pointwise
MSE distortion function. Tanaka et al. in [5] revisited the
sequential RDF of a vector-valued Gauss-Markov process
subject to a pointwise MSE distortion function and applied
semidefinite programming (under certain assumptions) to
compute its optimal value numerically.

Recently, Stavrou et al. in [6] characterized the nonan-
ticipatory ε−entropy under the name nonanticipative rate
distortion function (NRDF), for a time-varying scalar-valued
Gauss-Markov process subject to a total (or average in time)
MSE distortion function and characterized it via the solution
of a reverse-waterfilling problem, similar to the well-known
reverse-waterfilling of classical RDF [7]. The extension of
[6] to time-varying Rp-valued Gauss-Markov processes is
considered in [8].

A. Motivation and Contributions

Recently, the authors in [9] provided a counterexample,
showing that the reverse-waterfilling algorithm the way it
was suggested in [3, Equation (15)] to solve optimally the
sequential RDF of a vector-valued Gauss-Markov process
is incorrect. As a consequence, the parametric or analytical
solution for this problem is still open. The only existing
knowledge about the problem is that it is semidefinite repre-
sentable and, thus, its solution can only be found numerically
(see [5]). Although this is an important step, it lacks the
insight of the parametric reverse-waterfilling solution that
identifies the realization of the optimal distribution that
achieves the NRDF. This paper analyzes the per unit time
limit of finite-time horizon characterization of NRDF, in
an effort to characterize the per unit time infinite horizon
NRDF through a reverse-waterfilling algorithm. The main
contributions of the paper are the following.
1) The characterization of the per unit time infinite horizon

NRDF for a vector-valued Gauss-Markov process subject
to a MSE distortion, via a reverse-waterfilling algorithm,
expressed in terms of a matrix RAE.

2) An iterative scheme that computes the reverse-
waterfilling optimization problem optimally at high rates,
whereas at the entire rate-distortion region it computes an
upper bound.

3) A closed form expression of the characterization of
the per unit time infinite horizon NRDF for a two-
dimensional parallel Gauss-Markov process subject to a
MSE distortion.
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II. PROBLEMS STATEMENT AND PRELIMINARY RESULTS

Notation: R denotes the set of real numbers, N0 the
set of nonnegative integers, and Nn0 , {0, . . . , n}, n ∈ N0.
Let X be a complete separable metric space, and BX be
the Borel σ-algebra on X . (Ω,F ,P) denotes a probability
space and X : (Ω,F) 7−→ (X ,BX ) a random variable (RV),
PX(dx) ≡ P(dx) is the probability distribution induced
by X on (X ,BX ). The conditional distribution of another
RV Y given X = x is denoted by PY |X(dy|X = x) ≡
P(dy|x). Xn = (X0, . . . , Xn) denotes a sequence of RVs
with convention X−1 = (X−∞, . . . , X−1). Unless otherwise
stated, the notation Σ � 0 (respectively, Σ � 0) means
symmetric positive-definite matrix (respectively, symmetric
positive-semidefinite matrix). The statement Λ � Σ (Λ � Σ)
means that Λ−Σ is a positive semidefinite (definite) matrix.
The determinant, diagonal and trace of a square matrix
Σ ∈ Rp×p are denoted by by |Σ|, diag(µΣ,i), and trace(Σ),
respectively, where µΣ,i is the ith eigenvalue of matrix Σ. I
is the identity matrix.

In rate distortion theory it is desirable to reproduce se-
quences of symbols Xn = xn generated by a source, via
their reproduction symbols Y n = yn, subject to a pre-
specified fidelity. The distribution of the source is fixed and
given by

P(dxn) ,
∏n

t=0
P(dxt|xt−1). (1)

The convention is that at t = 0,P(dx0|x−1) = P(dx0).
Following [1], the channel that is used to reproduce Y n = yn

from Xn = xn is described by the conditional distribution

P(dyn||xn) ,
∏n

t=0
P(dyt|yt−1, xt), (2)

and it is subject to a design or is found by an optimiza-
tion problem. Here the convention is P(dy0|y−1, x0) =
P(dy0|x0). By (1) and (2), the joint distribution is
P(dxn, dyn) , P(dxn) ⊗ P(dyn||xn) while P(dyt|yt−1)
is induced by the joint distribution P(dxn, dyn).
The NRDF of the source distribution (1) is defined
through the mutual information between Xn and Y n, i.e.,
I(Xn;Y n), subject to a distortion or fidelity of reproducing
Xn = xn by Y n = yn based on (2). Given (1) and (2), the
mutual information is defined by

I(Xn;Y n) =
∑n

t=0
E

{
log

(
P(dYt|Y t−1, Xt)

P(dYt|Y t−1)

)}
. (3)

Next, we introduce the finite-time horizon NRDF and its
per unit time limit, henceforth, called asymptotic NRDF of
a time-invariant vector-valued Gauss-Markov process subject
to a MSE distortion function. This definition was introduced
in [1] and further analyzed in [3].

Definition 1: (Asymptotic Gaussian NRDF with MSE
distortion) Let Xt be the time-invariant Rp-valued Gauss-
Markov process

Xt+1 = AXt +Wt, t ∈ Nn0 , (4)

where A ∈ Rp×p is a deterministic matrix, X0 ∼ N (0; ΣX0)
is the initial state with ΣX0 � 0, and Wt ∈ Rp ∼ N (0; ΣW ),

ΣW � 0, is a white Gaussian noise process independent of
X0. The finite-time horizon NRDF is defined by

Rna
0,n(D) , inf

P(dyn||xn)

1

n+ 1
I(Xn;Y n). (5)

s.t.
1

n+ 1

∑n

t=0
E‖Xt − Yt‖2 ≤ D (6)

assuming existence of a finite solution. The per unit time
limit, called asymptotic (5) is defined by

Rna(D) , lim
n→∞

Rna
0,n(D), (7)

provided that the limit exists and it is finite.
An upper bound on Rna(D) is the following expression:

R̂na(D) , inf
P(dy∞||x∞)

lim
n→∞

1

n+ 1
I(Xn;Y n), (8)

s.t.
1

n+ 1

∑n

t=0
E‖Xt − Yt‖2 ≤ D

provided the limit exists and it is finite, where P(dy∞||x∞)
denotes the sequence of conditional probability distributions
P(dyt|yt−1, xt), t ∈ N0. It should be mentioned that for
stationary Gauss-Markov process Rna(D) = R̂na(D) the
above expressions coincide as shown in [1, Theorem 4].

It is well-known that the optimization problem of (7) is
convex with respect to the set of test channels P(dyn||xn)
that satisfy the average (over time) MSE distortion, for
D ∈ (0, Dmax) ⊆ (0,∞), and there exists an optimal
solution characterizing it under general source distributions
and distortion functions (e.g., [10]). By [8, Theorem 4.1],
the optimal “test channel” corresponding to R0,n(D) is of
the form

P∗(dyt|yt−1, xt) = P∗(dyt|yt−1, xt), t ∈ N0, (9)

that is non necessarily time-invariant, while the correspond-
ing joint process {(Xt, Yt) : t ∈ N0} is not necessarily
stationary. Further, the joint process {(Xt, Yt) : t ∈ N0} is
jointly Gaussian [8, §5] (this is also shown in [3]).

It should be mentioned that in [1, Example 1] the authors
considered a scalar-valued Gauss-Markov process subject
to a pointwise MSE distortion, and derived the parametric
expression of the optimal distribution that corresponds to
Rna

0,n(D) and, its corresponding closed form solution. In
what follows, we generalize the parametric characterization
of Rna

0,n(D) given in [1, Example 1] to an Rp-valued Gauss-
Markov process, using a slightly different approach that
utilizes Kalman-filtering as an intermediate step.

Lemma 1: [8, Lemma 5.2](Realization of optimal re-
production distribution) Consider Definition 1. Then, the
following statements hold.
(a) Any candidate of the optimal reproduction distribution
{P(dyt|yt−1, xt) : t ∈ Nn0} is realized by the recursion

Yt =Ht

(
Xt − X̂t|t−1

)
+ X̂t|t−1 + Vt, t ∈ Nn0 (10)

where X̂t|t−1 , E{Xt|Y t−1}, X̂0|−1 = E{X0}, {Vt ∈
Rp ∼ N(0,ΣVt) : t ∈ Nn0} is an independent Gaussian
process independent of {Wt : t ∈ Nn−1

0 } and X0, and {Ht ∈
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Rp×p : t ∈ Nn0} are time-varying deterministic functions.
That is, the distribution P(dyt|yt−1, xt) is parametrized by
{Ht,KVt}.
Moreover, the innovations process {νt ∈ Rp : t ∈ Nn0} of
(10) is the orthogonal process defined by

νt , Yt −E
{
Yt|Y t−1

}
= Yt − X̂t|t−1 = Ht

(
Xt − X̂t|t−1

)
+ Vt,

where νt ∼ N (0; Σνt), Σνt = HtΣt|t−1H
T
t + ΣVt

and Σt|t−1 , E
{

(Xt − X̂t|t−1)(Xt − X̂t|t−1)T|Y t−1
}

.

(b) Let X̂t|t , E{Xt|Y t} and Σt|t ,

E
{

(Xt − X̂t|t)(Xt − X̂t|t)
T|Y t

}
. Then, {X̂t|t−1, Σt|t−1 :

t ∈ Nn0} satisfy the following Rp-valued filtering recursions:

X̂t|t−1 = AX̂t−1|t−1, (11a)
Σt|t−1 = AΣt−1|t−1A

T + ΣW , Σ0|−1 = ΣX0
, (11b)

X̂t|t = X̂t|t−1 +Ktνt, (11c)

Kt = Σt|t−1H
T
tΣ
−1
νt (Kalman Gain), (11d)

Σt|t = Σt|t−1 − Σt|t−1H
T
tΣ
−1
νt HtΣt|t−1, (11e)

where Σt|t = ΣT
t|t � 0 and Σt|t−1 = ΣT

t|t−1 � 0.
(c) Rna

0,n(D) is given by

Rna
0,n(D) = inf

Ht�0 ΣVt�0, t∈Nn0

1

2

1

n+ 1

n∑
t=0

log
|Σt|t−1|
|Σt|t|

,

s.t. Ht is not necessarily symmetric

1

n+ 1

n∑
t=0

trace
(
(I −Ht)Σt|t−1(I −Ht)

T + ΣVt
)
≤ D

(12)

for some D ∈ [0,∞).
The next theorem is the analogue of [1, Theorem 5] but

for total MSE distortion function.
Theorem 1: [8, Theorem 5.3](Alternative characteriza-

tion of (12)) The following alternative characterization of
Definition 1, (5) holds.
(a) The optimal reproduction distribution is realized by

Yt = HtXt + (I −Ht)AYt−1 + Vt, t ∈ Nn0 , (13)

where

Ht , I − Σt|tΣ
−1
t|t−1 � 0, Σt|t � 0, Σt|t−1 � 0, (14a)

ΣVt , Σt|tH
T
t � 0, (14b)

Σt|t−1 = AΣt−1|t−1A
T + ΣW , Σ0|−1 = ΣX0

. (14c)

(b) Moreover, the above realization yields

X̂t|t = Yt, X̂t|t−1 = AYt−1, (15)

P(dyt|yt−1, xt) = P(dyt|yt−1, xt), (16)

(c) The characterization of Rna
0,n(D) is

Rna
0,n(D) = inf

Σt|t�0, t∈Nn0

1

2

1

n+ 1

n∑
t=0

log
|Σt|t−1|
|Σt|t|

, (17a)

s.t. Σt|t−1 satisfies (11b), Σt|t−1 � 0 (17b)
0 � Σt|t � Σt|t−1 (17c)

1

n+ 1

n∑
t=0

trace(Σt|t) ≤ D (17d)

for some D ∈ [0,∞).
Next, we discuss about some of the implications of The-

orem 1.
Remark 1: (1) Theorem 1, (a) provides the complete real-

ization of the Gaussian NRDF of Rp-valued Gauss-Markov
processes. This result complements the realization obtained
for the Gaussian NRDF in [1, Theorem 5] in the sense that
the structure of matrices (Ht, ΣVt ) is also provided. (2) The
constraint (17c) ensures a finite rate (existence of solution)
in (17a) if Σt|t � 0. Hence, a property of the solution is that
0 ≺ Σt|t, otherwise the rate is infinite.

III. MAIN RESULTS

In this section, we study the asymptotic limit of the
corresponding finite time horizon optimization problem of
Theorem 1. Before we proceed, we need the following
theorem.

Theorem 2: Consider the sequence of NRDF of Defini-
tion 1. Then the following hold.
(a) The sequence

{
Rna

0,n(D) : n = 0, 1, . . . ,
}

is sub-additive,
and the limit exists, i.e.,

lim
n−→∞

Rna
0,n(D) = inf

n
Rna

0,n(D) (18)

and further it is finite.
(b) The limits

lim
t−→∞

Σt|t = ∆, lim
t−→∞

Σt|t−1 = Λ, lim
t−→∞

Ht = H,

lim
t−→∞

ΣVt = ΣV (19)

exist and (Λ, H,ΣV ) satisfy the steady state versions of the
equations Theorem 1.

Proof: (a) Sub-additivity is well-known, and shown un-
der various conditions (see, e.g., [2, Lemma 1]). The fact that
the limit is finite follows from existence of the minimizing
distribution from [10, Theorem 15], since all conditions hold
for the source and distortion function of this paper, then the
limit is finite Σt|t � 0. (b) Consider the characterization of
Theorem 1, and for n ∈ N0 let P(n)(dyt|yt−1, xt) denote
the sequence of Gaussian distributions generated from the
sequence Σ

(n)
t|t , t ∈ Nn0 . Then the sequence of Gaussian

distributions is tight, hence relatively compact. Using this,
we can further show the limiting distribution is the one
parametrized the limits (19), i.e., it is closed.

First, we give the asymptotic characterization of Rna(D)
of Rp-valued Gauss-Markov process with MSE distortion.
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Lemma 2: (1) The asymptotic optimal reproduction dis-
tribution is realized by

Yt = HXt + (I −H)AYt−1 + V ct , (20)

where

H , I −∆Λ−1 � 0, ΣV , ∆HT � 0, (21)
Λ = A∆AT + ΣW , ∆ � 0, Λ � 0. (22)

(2) For D > 0, Rna(D) is given by

Rna(D) = inf
∆�0: trace(∆)≤D

1

2
log
|Λ|
|∆|

, (23a)

s. t. 0 ≺ ∆ � Λ (23b)
Λ = A∆AT + ΣW (23c)

Proof: This follows from Theorem 2.
Next, we provide the solution to the asymptotic characteri-
zation of Rna(D) of Rp-valued Gauss-Markov process with
MSE distortion.

Theorem 3: The parametric solution subject to a reverse-
waterfilling algorithm that corresponds to (23) is the follow-
ing.

Rna(D) =
1

2
log
|Λ|
|∆|

, (24)

such that

∆ =


∆∗1, if ∆ ≺ Λ,

∆∗2, if ∆ � Λ and ∆ ⊀ Λ,

Λ, otherwise
(25)

where ∆∗1 � 0 is the solution of the Riccati equation(
−I

2

)
∆∗1 + ∆∗1

(
−I

2

)
−∆∗1B∆∗1 +

1

2θ
I = 0,

B , ATΣ−1
W A,

(26)

and ∆∗2 � 0 is the solution of the Riccati equation(
−I

2

)
∆∗2 + ∆∗2

(
−I

2

)
−∆∗2B∆∗2 + Υ−1 = 0, (27)

Υ , 2(θI + F2 −ATF2A), Υ = ΥT � 0, (28)

with the Lagrangian variables θ > 0 and F2 = F T
2 � 0

chosen such that

trace(∆) = D, F2(∆− Λ) = 0. (29)
Proof: The proof follows similar steps to the derivation

of [8, Appendix A] with a few necessary changes. The aug-
mented Lagrange functional can be formulated as follows:

L(∆,Λ, θ, F1, F2) =
1

2
[log |ΣW |+ log |B∆ + I| − log |∆|]

+ θ (trace(∆)−D)− trace (F1∆t) + trace (F2∆)

− trace (F2 (A∆AT + ΣW )) , (30)

where θ ∈ [0,∞) is a Lagrange multiplier for the distortion
constraint trace(∆) ≤ D, and Fj � 0, j = 1, 2 are
the Lagrange multiplier symmetric matrices responsible for

∆ � 0,Λ � ∆. By KKT conditions, we differentiate (30)
to obtain

1

2
(I +B∆∗)−1B − 1

2
∆∗,−1 − F1 + F2 + θI −ATF2A = 0.

(31)

The analysis of the individual cases as these arise from the
KKT conditions gives (25) with (26)-(29). Note that if any
other case occurs, the problem is trivial since the rate is
always zero.

Remark 2: (1) The reverse-waterfilling algorithm of The-
orem 3 is based on the Riccati equations (26), (27). (26)
allocates the distortion when there is no reverse-waterfilling
in dimension, i.e., when ∆ ≺ Λ. On the contrary, (27) takes
care the distortion allocation at each dimension when some
dimensions are inactive. This corresponds to ∆ � Λ. Unfor-
tunately, finding F2 in (27) is very hard and for this reason
in the sequel we propose a suboptimal numerical scheme
to solve the reverse-waterfilling optimization problem of
Theorem 3. (2) Equation (27) (and its special case (26)) are
cast as continuous-time algebraic Riccati equations (CARE).
Also, for (27) observe that the pair (− I2 , A) is always
stabilizable and the pair (− I2 ,Υ

−1) is always detectable. This
means that the solution of (27) (or (26)) is unique (for details
on sufficient conditions of unique positive definite solutions
of CARE see, for instance, [11]).

Remark 3: (Simultaneous diagonalization of ∆, Λ) The
symmetric positive definite matrices (∆, Λ) can be jointly
diagonalized using a version of the cogredient diagonal-
ization of [12, Theorem 8.3.1]. Then, there exists a sin-
gle non-singular matrix S ∈ Rp×p such that S∆ST =
diag (µ∆,i) , SΛST = diag (µΛ,i).

The next proposition leverages Remark 3 to arrive at a
good approximation to the reverse-waterfilling algorithm of
Theorem 3.

Proposition 1: (Upper bound to the reverse-waterfilling
solution of Theorem 3) An upper bound to the solution of
(24), (25) is given by

∆ , min
{

∆†,Λ
}
, (32)

where min
{

∆†,Λ
}
, S−1 diag

(
min

{
µ∆†,i, µΛ,i

})
(ST)

−1

(for details, see [13, Section II.A]), and ∆† � 0, is the
unique solution of(

−I
2

)
∆† + ∆†

(
−I

2

)
−∆†B∆† +

1

2θ
I = 0, (33)

Λ is given by (23c) using ∆, and with θ ∈ (0,∞) chosen to
satisfy trace(∆) = D. This upper bound gives the optimal
solution for the case where ∆ ≺ Λ.

Proof: If ∆ ≺ Λ, then, (33) corresponds to the optimal
solution of (26). However, if ∆ � Λ the solution is not
necessarily the optimal one, hence it serves as an upper
bound. Note that by choosing ∆ as in (32), we ensure that
∆ � Λ.
We wish to remark that the extension of Theorem 3 and
Proposition 1 to the non-asymptotic regime appears in [8].
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Based on the solution provided in Proposition 1, we
propose Algorithm 1, based on bisection method, to solve
Theorem 3 numerically to a predefined approximation.

Algorithm 1 Rp-valued reverse-waterfilling algorithm of
Proposition 1

Initialize: distortion level D; error tolerance ε; nominal
minimum and maximum value θmin = 0 and θmax =
p

2D (where p denotes the number of dimensions); initial
variance Λ = ΣX0 of the initial state X0, values of A and
ΣW of (4).
Set θ = 1/2D; flag = 0.
while flag = 0 do

Compute ∆ as follows:
Compute ∆† according to (33).
Compute ∆ according to (32).
Compute Λ according to (23c).
if θmax − θmin ≥ ε then

if trace(∆)−D ≥ ε then
Set θmin = θ.

else
Set θmax = θ.

end if
Compute θ = θmin+θmax

2 .
else

flag← 1
end if

end while
Output: ∆, Λ, for a distortion level D.

It should be noted that although Algorithm 1 is suboptimal
in general, it is much faster compared to the existing optimal
numerical approach via semidefinite programming (SDP)
(see [5]). To illustrate this point, in Table I, we provide
an example where we compare the mean and the standard
deviation of the computational time needed for each of the
two numerical methods to execute over a sample of 1000
instances. Algorithm 1 is using an error tolerance ε = 10−9.

Solver Mean Standard Deviation
SDP [5] 0.697 0.0498
Algorithm 1 (ε = 10−9) 0.031 0.0057

TABLE I: Comparison of the computational time needed
between SDP and Algorithm 1 for 1000 instances.

Our results demonstrate that, despite its sub-optimality, Al-
gorithm 1 is much faster (more than 20 times) and the
fact that we can allow for different levels of tolerance (and
thus make it faster or slower accordingly), makes it more
preferable to be implemented in modern delay-constrained
and computationally-limited devices than the optimal but
much slower SDP.

IV. EXAMPLES

In this section, we give two examples to demonstrate the
validity of our framework. The results are compared to the

optimal numerical solution of [5, Equation (27)] obtained via
semidefinite programming.

Example 1: Consider a R4-valued time-invariant Gauss-
Markov process with parameters

A =


0.5508 0.8929 0.0515 0.6491
0.7081 0.8963 0.4408 0.2785
0.2909 0.1256 0.0299 0.6763
0.5108 0.2072 0.4568 0.5909

 ,

ΣW =


0.0240 0 0 0

0 0.6931 0 0
0 0 0.3064 0
0 0 0 0.6724

 .
To compute Rna(D), we run Algorithm 1 for error tolerance
ε = 10−9 and initial θ = 1

2D , for distortion levels D ranging
in the interval [0.1, 1.8] with a step size of 0.1. Then, we use
the same parameters (A,ΣW ) and the same distortion levels
D in the SDP algorithm of [5, Equation (27)]. In Fig. IV.1
we illustrate a comparison between Algorithm 1 with the
SDP algorithm. At high rates, where the condition ∆ ≺ Λ
is always satisfied, Algorithm 1 performs optimally. On the
other hand, at low rates the algorithm is suboptimal because
the reverse-waterfilling kicks in and (33) is not the optimal
equation to solve this case as we know from (27).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Distortion, [D]

0

2

4

6

8

R
at

e,
 [R

]

SDP

Algorithm 1

Fig. IV.1: Comparison of algorithm 1 to the optimal numer-
ical solution obtained via SDP algorithm.

Example 2: We consider a R2-valued time-invariant
Gauss-Markov process with parameters

(A, ΣW ) =

([
α 0
0 0

]
,

[
σ2
W1

0
0 σ2

W2

])
,

where a ∈ R \ {0}, σWi
> 0, i = 1, 2. In this example,

we use Theorem 3, to derive a closed form solution for
Rna(D) for this specific class of Gaussian sources. Following
Theorem 3, we observe that in (25) we need to solve two
cases, i.e., when ∆ ≺ Λ that corresponds to the Riccati
equation (26), and, when ∆ � Λ that corresponds to the
Riccati equation (27). We refer to the former as full-rank
solution because µ∆−Λ,i < 0, for i = 1, 2 and to the latter
as rank-deficient solution because µ∆−Λ,i ≤ 0, for i = 1, 2.
We note that the last case in (25) requires zero rate, hence
for this case the problem is trivial.
Full-rank Solution (∆ ≺ Λ): Upon solving (26) we obtain

µ∆,1 = − 1

2β2
± 1

2β2

√
1 +

2β2

θ
, µ∆,2 =

1

2θ
.
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Note that one of the solutions of µ∆,1 is rejected because it
is negative hence the resulting matrix ∆ gives eigenvalues:

µ∆,1 =
1

2β2

(√
1 +

2β2

θ
− 1

)
, µ∆,2

1

2θ
. (34)

From (23c) we obtain Λ with eigenvalues:

µΛ,1 = α2

(
1

2β2

(√
1 +

2β2

θ
− 1

))
+ σ2

W1
, µΛ,2 = σ2

W2
.

(35)

Now, we use the left hand side (LHS) equation in (29) to
obtain an additional equation which is used to find θ. By
substituting (34) in (29) we obtain

1

2β2

(√
1 +

2β2

θ
− 1

)
+

1

2θ
= D. (36)

The solution of (36) gives

θ =


β2

2(1+β2D)
(

1+
√

1
1+β2D

) , (rejected),

β2

2(1+β2D)
(

1−
√

1
1+β2D

) , . (37)

Both solutions in (37) are positive. However, from the
Lagrange duality theorem [14] we know that the chosen θ is
the one that results in greater rates. In this case, the second
solution gives greater rates, whereas the first solution gives
lower rates hence the first solution is rejected.

Next, we compute the individual rates and the total sum
rate over both dimensions.
Clearly, µ∆,1 , 1

2β2

(√
1 + 2β2

θ − 1

)
, µ∆,2 , 1

2θ , µΛ,1 ,

α2

(
1

2β2

(√
1 + 2β2

θ − 1

))
+ σ2

W1
, µΛ,2 , σ2

W2
. Then,

from (24) we obtain

Rna(D) =
1

2
log
|Λ|
|∆|

=
1

2

2∑
i=1

log

(
µΛ,i

µ∆,i

)
=

1

2

{
log

(
α2 +

σ2
W1

µ∆,1

)
+ log

(
σ2
W2

µ∆,2

)}
(38)

(a)
=

1

2

{
log

α2 +
2α2√

1 + 4(1 + β2D)
(

1−
√

1
1+β2D

)
− 1


+ log

 σ2
W2
β2

(1 + β2D)
(

1−
√

1
1+β2D

)
}, (39)

where (a) follows if we substitute µ∆,1, µ∆,2, and θ in (38).
Recall that (39) holds if and only if µ∆,i < µΛ,i, i = 1, 2,
which means that

µmax
∆,1 ≡ µΛ,1 =

{
α2µ∆,1 + σ2

W1
, if |α| ≥ 1,

σ2
W1

1−α2 , if −1 < α < 1,
, (40)

µmax
∆,2 ≡ µΛ,2 = σ2

W2
. (41)

Rank-Deficient Solution (∆ � Λ): this case corresponds to
solving (27) such that the right hand side (RHS) equation

of (29) is satisfied. First, observe that because we consider a
R2-valued parallel Gaussian source, then from (29) we can
show that F 2, ∆, Λ commute hence, they are jointly diag-
onalizable matrices. This implies the study of the following
two cases:
Case 1: µ∆−Λ,1 > 0 and µ∆−Λ,2 = 0 which in turn means
that µ∆,1 < µΛ,1 and µ∆,2 = µΛ,2. Since µ∆,2 = µΛ,2

then, from the RHS equation of (29) we require µF2,2 > 0
whereas µF2,1 = 0.
Case 2: µ∆−Λ,1 = 0 and µ∆−Λ,2 > 0 which in turn means
that µ∆,1 = µΛ,1 and µ∆,2 < µΛ,2. Since µ∆−Λ,1 = 0 we
require µF2,1 > 0 whereas µF2,2 = 0.

Case 1: Upon solving (28) we obtain:

Υ =

[
θ 0
0 µF2,2 + θ

]
. (42)

Moreover, by solving (27) we obtain:

µ∆,1 = − 1

2β2
± 1

2β2

√
1 +

2β2

θ
, µ∆,2 =

1

2(µF2,2 + θ)
.

Again, one of the solutions of µ∆,1 is rejected because it is
negative hence the resulting matrix ∆ has eigenvalues:

µ∆,1 =
1

2β2

(√
1 +

2β2

θ
− 1

)
, µ∆,2 =

1

2(µF2,2 + θ)
,

Additionally, using (23c) we obtain the following eigen-
values for Λ:

µΛ,1 =
α2

2β2

(√
1 +

2β2

θ
− 1

)
+ σ2

W1
, µΛ,2 = σ2

W2
.

Since µ∆,2 = µΛ,2, then, 1
2(µF2,2

+θ) = σ2
W2

, that is, µ∆,2 =

µΛ,2 = σ2
W2

. Hence, the LHS term of (29) gives

1

2β2

(√
1 +

2β2

θ
− 1

)
= D − σ2

W2
. (43)

The solution of (43) gives

θ =
1

2(D − σ2
W2

)(β2(D − σ2
W2

) + 1)
. (44)

From (44) we obtain for ∆ the eigenvalues µ∆,1 =
1

2β2

(√
1 + 4β2(D − σ2

W2
)(β2(D − σ2

W2
) + 1)− 1

)
,

µ∆,2 = σ2
W2

, and for Λ the eigenvalues µΛ,1 =
α2

2β2

(√
1 + 4β2(D − σ2

W2
)(β2(D − σ2

W2
) + 1)− 1

)
+

σ2
W1
, µΛ,2 = σ2

W2
. Hence, for case 1 the sum rate is

obtained as follows:

Rna(D) =
1

2
log
|Λ|
|∆|

=
1

2

2∑
i=1

log

(
µΛ,i

µ∆,i

)
,

=
1

2
log

(
α2

+
2α2√

1 + 4β2(D − σ2
W2

)(β2(D − σ2
W2

) + 1)− 1

)
. (45)

Recall that (45) holds if and only if µ∆,1 < µΛ,1 where
µΛ,1 is given from (40).
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Case 2: Upon solving (28) we obtain:

Υ =

[
µF2,1(1− α2) + θ 0

0 θ

]
.

Moreover, by solving (27), we obtain for matrix ∆:

µ∆,1 = − 1

2β2
± 1

2β2

√
1 +

2β2

µF2,1(1− α2) + θ
,

µ∆,2 =
1

2θ
.

(46)

Similar as before, one of the solutions of µ∆,1 is re-
jected because it is negative, hence giving µ∆,1 =

1
2β2

(√
1 + 2β2

µF2,1
(1−α2)+θ − 1

)
.

Also, from (23c) we obtain:

Λ =

[
α2

2β2

(√
1 + 2β2

µF2,1
(1−α2)+θ − 1

)
+ σ2

W1
0

0 σ2
W2

]
.

(47)

Similar to case 1, using the fact that µ∆,1 = µΛ,1, then,

µ∆,1 =
σ2
W1

1−α2 . Hence, from the LHS of (29) we obtain

µ∆,1 +
1

2θ
= D ⇒ θ =

1

2

(
D −

σ2
W1

1−α2

) ,
which means that from (46) we obtain µ∆,1 = D − σ2

W1

1−α2 .
We also have from (47) that µΛ,2 = σ2

W2
. Hence, the sum

rate for case 2 is obtained as follows:

Rna(D) =
1

2
log
|Λ|
|∆|

=
1

2
log

 σ2
W2

D −
σ2
W1

1−α2

 . (48)

We note that (48) holds if and only if µ∆,2 < µΛ,2 where
µΛ,2 = σ2

W2
.

Fig. IV.2 illustrates a comparison between the optimal closed
form solution for this class of R2-valued Gauss-Markov
processes and the optimal numerical solution obtained via
SDP for some random values of α, σ2

W1
and σ2

W2
.

1 2 3 4 5 6 7
Distortion, [D]

1

1.05

1.1

1.15

1.2

1.25

R
at

e,
 [R

]

SDP

Closed form expression

log|A|

Fig. IV.2: Comparison of SDP with the closed form expres-
sion of Rna(D) for a R2-valued Gauss-Markov process with
parameters α = 2, σ2

W1
= 0.1, σ2

W2
= 1.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we revisited the asymptotic nonanticipative
or sequential rate distortion problem and derive the paramet-
ric expression of the Gaussian NRDF subject to a reverse-
waterfilling algorithm. Then, we proposed an iterative al-
gorithm reminiscent of the classical reverse-waterfilling al-
gorithm to compute the reverse-waterfilling solution. This
scheme is, in general, suboptimal but at high rates performs
optimally. Moreover, we used the matrix equations of the
reverse-waterfilling algorithm to obtain the optimal closed
form solution of a simple R2-valued Gauss-Markov source.
Our framework is demonstrated via numerical experiments.
The proposed framework is general and, therefore, it is
not restricted to the analytical solution of the Gaussian
NRDF derived in this paper. Instead, it can be used to
obtain analytical expressions of the Gaussian NRDF for
more general Rp-valued Gauss-Markov processes. To the
best of our knowledge, this is the first work where analytical
solutions of the Gaussian NRDF beyond the scalar case are
provided.

As an ongoing research, we investigate schemes that may
lead to the optimal evaluation of the reverse-waterfilling
algorithm of Theorem 3 for the whole rate-distortion region.
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