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OPTIMAL ESTIMATION VIA NONANTICIPATIVE RATE
DISTORTION FUNCTION AND APPLICATIONS TO
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Abstract. In this paper, we develop finite-time horizon causal filters for general processes taking
values in Polish spaces using the nonanticipative rate distortion function (NRDF). Subsequently, we
apply the NRDF to design optimal filters for time-varying vector-valued Gauss–Markov processes,
subject to a mean-squared error (MSE) distortion. Unlike the classical Kalman filter design, the de-
veloped filters based on the NRDF are characterized parametrically by a dynamic reverse-waterfilling
optimization problem obtained via Karush–Kuhn–Tucker conditions. We develop algorithms that
provide, in general, tight upper bounds to the optimal solution to the dynamic reverse-waterfilling
optimization problem subject to a total and per-letter MSE distortion constraint. Under certain
conditions, these algorithms produce the optimal solutions. Further, we establish a universal lower
bound on the total and per-letter MSE of any estimator of a Gaussian random process. Our theo-
retical framework is demonstrated via simple examples.
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tion, dynamic reverse-waterfilling, universal lower bound

AMS subject classifications. 93E03, 94A34, 90C25, 15A60, 65F10

DOI. 10.1137/17M1116349

1. Introduction. Motivated by real-time control applications of communication
system design, Gorbunov and Pinsker in [1] introduced the so-called nonanticipatory
ε-entropy of general processes (see [1, Introduction I]). The nonanticipatory ε-entropy
is equivalent to Shannon’s classical rate distortion function (RDF) [2, 3] with an
additional causality constraint imposed on the optimal reproduction distribution or
estimator. Along the same lines, for a two-sample Gaussian process, Bucy in [4]
derived a causal estimator using the distortion rate function1 subject to a causality
constraint. Galdos and Gustafson in [6] applied the classical RDF to design reduced
order estimators. Tatikonda, in his Ph.D. thesis [7], applied the nonanticipatory ε-
entropy, called therein the sequential RDF, and related it to the optimal performance
theoretically attainable by causal codes, as defined by Neuhoff and Gilbert in [8]. In
addition, Tatikonda in [7] applied the sequential RDF of a scalar-valued Gaussian
process described by a discrete recursion, subject to a mean-squared error (MSE)
distortion at each time instant, computed by Gorbunov and Pinsker [9, Examples 1,
2] to illustrate by construction how to communicate a scalar-valued Gaussian process,
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optimally over a memoryless additive Gaussian noise channel. In [10], the authors
showed that a necessary condition to stabilize a controlled process described by a
linear discrete recursion driven by a control process and an independent Gaussian
process, over a limited-rate communication channel, is “the capacity of the channel,
noiseless or noisy, is larger than the sum of logarithms of the absolute values of the
unstable eigenvalues of the open-loop control system.” Similar conditions are derived
by many authors via alternative methods in [11, 12, 13].

In [14], Charalambous, Stavrou, and Ahmed revisited the relation between infor-
mation theory and filtering theory, using the so-called nonanticipative RDF (NRDF),
showed its equivalence to the nonanticipatory ε-entropy RDF (see [14, Lemma II.6]),
and derived sufficient conditions for the existence of an optimal reproduction distri-
bution of the NRDF. Moreover, in [14], the authors derived the form of the optimal
reproduction distribution, under the assumption that the solution to the NRDF is
time-invariant. Then, they used this expression to derive a suboptimal causal filter
for time-invariant multidimensional partially observed Gaussian processes described
by discrete-time recursions, subject to an MSE distortion. The optimal reproduction
distribution which minimizes the directed information from one process to another
process, subject to a general fidelity criterion of reproduction, is given in [15] and
further explained in [16].

In recent years, the NRDF has been applied in many communication-related
problems. Derpich and Østergaard in [17] applied the nonanticipatory ε-entropy of
the scalar Gaussian process subject to an MSE distortion at each time instant to
derive several bounds on the optimal performance theoretically attainable by causal
and zero-delay codes. The importance of NRDF to the joint design of an {encoder,
channel, decoder} operating optimally in real time is investigated in [18]. The sim-
plicity of such joint {encoder, channel, decoder} design, operating optimally in
real time, is demonstrated by Kourtellaris, Charalambous, and Boutros in [19], first
by communicating a binary symmetric Markov process over a binary input-output
channel with unit memory on past channel outputs (with symmetry) subject to a
transmission cost constraint, and then by reconstructing it subject to an average
Hamming distortion.

In [20], Tanaka et al. computed numerically the expression given in [21] of the
finite-time and stationary NRDF of a multidimensional fully observed Gauss–Markov
process subject to a per-letter and asymptotic MSE distortion, using semidefinite
programming. Further, in [20] connections to the minimum data-rate achievable by
zero-delay source coding problems are discussed.

1.1. Problem statement. In this paper we investigate the following estimation
problem: given an arbitrary random process, we wish to design an optimal commu-
nication system such that at its output, the estimated process satisfies an end-to-end
fidelity criterion or the average distortion is below a given level.

This problem is equivalent to the design of an optimal {encoder, channel,

decoder} that communicates an arbitrary random process to the output of the de-
coder, with the specified average distortion level. Formally, the problem can be cast
as follows.

Problem 1 (information-based estimation). Given
(a) a random process {Xt : t = 0, . . . , n} taking values in complete separable

metric spaces {Xt : t = 0, . . . , n}, with conditional distribution {PXt|Xt−1
0

:

t = 0, . . . , n}, xt−1
0 , (x0, x1, . . . , xt−1);
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(b) a distortion function of reproducing xt by yt ∈ Yt ⊆ Xt, t = 0, 1, . . . , n, defined
by a real-valued measurable function d0,n(·, ·)

d0,n(xn0 , y
n) ,

n∑

t=0

ρt
(
T txn0 , T

tyn
)
∈ [0,∞],(1.1)

or at each time t, defined by

dt
(
xt0, y

t
)
, ρt

(
T txn0 , T

tyn
)
, t = 0, . . . , n,(1.2)

where T txn0 ⊆ (x0, x1, . . . , xt), T
tyn ⊆ (y−1, y0, y1, . . . , yt), is either fixed or

nonincreasing with time2 for t = 0, 1, . . . , n, and y−1 ∈ Y−1 is the initial
state,

we wish to determine an optimal probabilistic {encoder, channel, decoder} to com-
municate {Xt : t = 0, . . . , n} to the output of the decoder or estimator, with end-to-end
average distortion that satisfies

1

n+ 1
E {d0,n(Xn

0 , Y
n)} ≤ D ∀D ∈ [0,∞),(1.3)

or at each time t, the average distortion satisfies

E
{
ρt
(
T tXn

0 , T
tY n

)}
≤ Dt ∀Dt ∈ [0,∞), t = 0, . . . , n.(1.4)

Regarding application examples, our focus is on Gaussian sources with memory,
subject to the total and per-letter MSE distortions (1.3) and (1.4). Apart from the
numerical computation of [20], the reverse-waterfilling solution for Problem 1 remains
to this date unsolved in the literature.3 For the analogous classical RDF a similar
problem has also remained open for several years (see the discussion in [24]).

The above definition of information-based estimation problem ensures the fidelity
criterion (1.3) or (1.4) is met, hence it is fundamentally different from standard es-
timation techniques, such as MSE, maximum a posteriori, and maximum likelihood.
In general, it is known from Shannon’s information theory [2] that to achieve such a
fidelity criterion, for any D ∈ [Dmin,∞] ⊆ [0,∞], we need to design an encoder, a
channel whose output is the actual observation process or sensor measurements, and
a decoder or estimator that takes as an input the channel outputs and produces the
estimated process Y n of Xn. In Shannon’s noiseless source coding theorem [2] the
channel is noiseless. However, for the noisy coding theorem the channel is noisy, and
the problem is equivalent to the construction of the {encoder, channel, decoder},
as shown in Figure 1 (for a thorough discussion on the duality of sources and channels
see, e.g., [25]).

Our main objective is to address Problem 1 using information-theoretic measures.
By the converse coding theory of causal codes [16], the natural information-theoretic
measure to address Problem 1 is the NRDF (see Definition 1.1). Moreover, by data
processing inequality, the capacity of the channel in Figure 1 is larger than or equal to
the NRDF, and equality holds if the encoder and decoder operate optimally (see, e.g.,
[18, Theorem 38.3]). Hence, we leverage upon the previous observations to emphasize
the connection of the NRDF to Problem 1.

In the next subsection, we describe the fundamental differences between infor-
mation-based estimation via NRDF and Bayesian estimation theory.

2For example ρt(T txn0 , T
tyn) = ρ(xt, yt), t = 0, . . . , n, where ρ(·, ·) is a distance metric.

3We note that it was recently demonstrated via a counterexample in [22] that the reverse-
waterfilling algorithms derived in [21, 23] serve as upper bounds to the optimal solution in the
asymptotic regime. Hence, these are also suboptimal in the nonasymptotic regime.
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System Encoder Decoder
X0, X1, . . . Y0, Y1, . . .

Optimal 
Reproduction 
Distribution

Channel
Z0, Z1, . . .R0, R1, . . .

Sensor map Filter

PXt|Xt�1
0

<latexit sha1_base64="8ZAm+o/wv3R2391N9s++3w2uR7I=">AAAB/3icbVDLSsNAFJ3UV62vqAsXbgaL4MaSiOBjVXDjsoKxgTaGyXTSDp08mLkRSszGX3HjQsWtv+HOv3HaZqGtBy4czrmXe+8JUsEVWNa3UVlYXFpeqa7W1tY3NrfM7Z07lWSSMocmIpFuQBQTPGYOcBDMTSUjUSBYOxhejf32A5OKJ/EtjFLmRaQf85BTAlryzb28G4S4Vfi568Oj61v3ORzbReGbdathTYDniV2SOirR8s2vbi+hWcRioIIo1bGtFLycSOBUsKLWzRRLCR2SPutoGpOIKS+fPFDgQ630cJhIXTHgifp7IieRUqMo0J0RgYGa9cbif14ng/Dcy3mcZsBiOl0UZgJDgsdp4B6XjIIYaUKo5PpWTAdEEgo6s5oOwZ59eZ44J42LhnVzWm9elmlU0T46QEfIRmeoia5RCzmIogI9o1f0ZjwZL8a78TFtrRjlzC76A+PzB6GKlfU=</latexit><latexit sha1_base64="8ZAm+o/wv3R2391N9s++3w2uR7I=">AAAB/3icbVDLSsNAFJ3UV62vqAsXbgaL4MaSiOBjVXDjsoKxgTaGyXTSDp08mLkRSszGX3HjQsWtv+HOv3HaZqGtBy4czrmXe+8JUsEVWNa3UVlYXFpeqa7W1tY3NrfM7Z07lWSSMocmIpFuQBQTPGYOcBDMTSUjUSBYOxhejf32A5OKJ/EtjFLmRaQf85BTAlryzb28G4S4Vfi568Oj61v3ORzbReGbdathTYDniV2SOirR8s2vbi+hWcRioIIo1bGtFLycSOBUsKLWzRRLCR2SPutoGpOIKS+fPFDgQ630cJhIXTHgifp7IieRUqMo0J0RgYGa9cbif14ng/Dcy3mcZsBiOl0UZgJDgsdp4B6XjIIYaUKo5PpWTAdEEgo6s5oOwZ59eZ44J42LhnVzWm9elmlU0T46QEfIRmeoia5RCzmIogI9o1f0ZjwZL8a78TFtrRjlzC76A+PzB6GKlfU=</latexit><latexit sha1_base64="8ZAm+o/wv3R2391N9s++3w2uR7I=">AAAB/3icbVDLSsNAFJ3UV62vqAsXbgaL4MaSiOBjVXDjsoKxgTaGyXTSDp08mLkRSszGX3HjQsWtv+HOv3HaZqGtBy4czrmXe+8JUsEVWNa3UVlYXFpeqa7W1tY3NrfM7Z07lWSSMocmIpFuQBQTPGYOcBDMTSUjUSBYOxhejf32A5OKJ/EtjFLmRaQf85BTAlryzb28G4S4Vfi568Oj61v3ORzbReGbdathTYDniV2SOirR8s2vbi+hWcRioIIo1bGtFLycSOBUsKLWzRRLCR2SPutoGpOIKS+fPFDgQ630cJhIXTHgifp7IieRUqMo0J0RgYGa9cbif14ng/Dcy3mcZsBiOl0UZgJDgsdp4B6XjIIYaUKo5PpWTAdEEgo6s5oOwZ59eZ44J42LhnVzWm9elmlU0T46QEfIRmeoia5RCzmIogI9o1f0ZjwZL8a78TFtrRjlzC76A+PzB6GKlfU=</latexit>

PZt|Zt�1,Rt
<latexit sha1_base64="lSXv2VliELXABmDhjUdpCuBuCXY=">AAACAXicbVDLSgNBEJyNrxhfUU/iZTAIHjTsiuDjFPDiMYoxIclmmZ3MJkNmH8z0CmFdvPgrXjyoePUvvPk3TpI9aGJBQ1HVTXeXGwmuwDS/jdzc/MLiUn65sLK6tr5R3Ny6U2EsKavRUISy4RLFBA9YDTgI1ogkI74rWN0dXI78+j2TiofBLQwjZvukF3CPUwJacoo7Sdv1cDV1kqYDD81OAkdWenjTgdQplsyyOQaeJVZGSihD1Sl+tbshjX0WABVEqZZlRmAnRAKngqWFdqxYROiA9FhL04D4TNnJ+IUU72uli71Q6goAj9XfEwnxlRr6ru70CfTVtDcS//NaMXhndsKDKAYW0MkiLxYYQjzKA3e5ZBTEUBNCJde3YtonklDQqRV0CNb0y7Okdlw+L5vXJ6XKRZZGHu2iPXSALHSKKugKVVENUfSIntErejOejBfj3fiYtOaMbGYb/YHx+QMoAZbO</latexit><latexit sha1_base64="lSXv2VliELXABmDhjUdpCuBuCXY=">AAACAXicbVDLSgNBEJyNrxhfUU/iZTAIHjTsiuDjFPDiMYoxIclmmZ3MJkNmH8z0CmFdvPgrXjyoePUvvPk3TpI9aGJBQ1HVTXeXGwmuwDS/jdzc/MLiUn65sLK6tr5R3Ny6U2EsKavRUISy4RLFBA9YDTgI1ogkI74rWN0dXI78+j2TiofBLQwjZvukF3CPUwJacoo7Sdv1cDV1kqYDD81OAkdWenjTgdQplsyyOQaeJVZGSihD1Sl+tbshjX0WABVEqZZlRmAnRAKngqWFdqxYROiA9FhL04D4TNnJ+IUU72uli71Q6goAj9XfEwnxlRr6ru70CfTVtDcS//NaMXhndsKDKAYW0MkiLxYYQjzKA3e5ZBTEUBNCJde3YtonklDQqRV0CNb0y7Okdlw+L5vXJ6XKRZZGHu2iPXSALHSKKugKVVENUfSIntErejOejBfj3fiYtOaMbGYb/YHx+QMoAZbO</latexit><latexit sha1_base64="lSXv2VliELXABmDhjUdpCuBuCXY=">AAACAXicbVDLSgNBEJyNrxhfUU/iZTAIHjTsiuDjFPDiMYoxIclmmZ3MJkNmH8z0CmFdvPgrXjyoePUvvPk3TpI9aGJBQ1HVTXeXGwmuwDS/jdzc/MLiUn65sLK6tr5R3Ny6U2EsKavRUISy4RLFBA9YDTgI1ogkI74rWN0dXI78+j2TiofBLQwjZvukF3CPUwJacoo7Sdv1cDV1kqYDD81OAkdWenjTgdQplsyyOQaeJVZGSihD1Sl+tbshjX0WABVEqZZlRmAnRAKngqWFdqxYROiA9FhL04D4TNnJ+IUU72uli71Q6goAj9XfEwnxlRr6ru70CfTVtDcS//NaMXhndsKDKAYW0MkiLxYYQjzKA3e5ZBTEUBNCJde3YtonklDQqRV0CNb0y7Okdlw+L5vXJ6XKRZZGHu2iPXSALHSKKugKVVENUfSIntErejOejBfj3fiYtOaMbGYb/YHx+QMoAZbO</latexit>

PRt|Rt�1,Xt
0,Zt�1

<latexit sha1_base64="SqNXYluApjVagiGD0PPKROowWeU=">AAACDXicbZDLTgIxFIY7eEO8oS7dNBISF0hmjImXFYkbl0hEiDBOOqUDDZ1L2jMmZJwncOOruHGhxq17d76NBWah4J80+fqfc9Ke340EV2Ca30ZuYXFpeSW/Wlhb39jcKm7v3KgwlpQ1aShC2XaJYoIHrAkcBGtHkhHfFazlDi/G9dY9k4qHwTWMImb7pB9wj1MC2nKK5aTrerieOknDgYfGXQKHVlppO6amtHI7vadOsWRWzYnwPFgZlFCmulP86vZCGvssACqIUh3LjMBOiAROBUsL3VixiNAh6bOOxoD4TNnJZJ0Ul7XTw14o9QkAT9zfEwnxlRr5ru70CQzUbG1s/lfrxOCd2gkPohhYQKcPebHAEOJxNrjHJaMgRhoIlVz/FdMBkYSCTrCgQ7BmV56H5lH1rGpeHZdq51kaebSH9tEBstAJqqFLVEdNRNEjekav6M14Ml6Md+Nj2pozspld9EfG5w+4i5tx</latexit><latexit sha1_base64="SqNXYluApjVagiGD0PPKROowWeU=">AAACDXicbZDLTgIxFIY7eEO8oS7dNBISF0hmjImXFYkbl0hEiDBOOqUDDZ1L2jMmZJwncOOruHGhxq17d76NBWah4J80+fqfc9Ke340EV2Ca30ZuYXFpeSW/Wlhb39jcKm7v3KgwlpQ1aShC2XaJYoIHrAkcBGtHkhHfFazlDi/G9dY9k4qHwTWMImb7pB9wj1MC2nKK5aTrerieOknDgYfGXQKHVlppO6amtHI7vadOsWRWzYnwPFgZlFCmulP86vZCGvssACqIUh3LjMBOiAROBUsL3VixiNAh6bOOxoD4TNnJZJ0Ul7XTw14o9QkAT9zfEwnxlRr5ru70CQzUbG1s/lfrxOCd2gkPohhYQKcPebHAEOJxNrjHJaMgRhoIlVz/FdMBkYSCTrCgQ7BmV56H5lH1rGpeHZdq51kaebSH9tEBstAJqqFLVEdNRNEjekav6M14Ml6Md+Nj2pozspld9EfG5w+4i5tx</latexit><latexit sha1_base64="SqNXYluApjVagiGD0PPKROowWeU=">AAACDXicbZDLTgIxFIY7eEO8oS7dNBISF0hmjImXFYkbl0hEiDBOOqUDDZ1L2jMmZJwncOOruHGhxq17d76NBWah4J80+fqfc9Ke340EV2Ca30ZuYXFpeSW/Wlhb39jcKm7v3KgwlpQ1aShC2XaJYoIHrAkcBGtHkhHfFazlDi/G9dY9k4qHwTWMImb7pB9wj1MC2nKK5aTrerieOknDgYfGXQKHVlppO6amtHI7vadOsWRWzYnwPFgZlFCmulP86vZCGvssACqIUh3LjMBOiAROBUsL3VixiNAh6bOOxoD4TNnJZJ0Ul7XTw14o9QkAT9zfEwnxlRr5ru70CQzUbG1s/lfrxOCd2gkPohhYQKcPebHAEOJxNrjHJaMgRhoIlVz/FdMBkYSCTrCgQ7BmV56H5lH1rGpeHZdq51kaebSH9tEBstAJqqFLVEdNRNEjekav6M14Ml6Md+Nj2pozspld9EfG5w+4i5tx</latexit>

PYt|Y t�1,Zt
<latexit sha1_base64="LgR78L6okkVsz51dt4e9qOn8KFM=">AAACA3icbVC7TsMwFHV4lvIKMHaxqJAYoEoQEo+pEgtjkQhtaUvkuE5r1XnIvkGqQgYWfoWFARArP8HG3+C2GaDlSFf36Jx7Zd/jxYIrsKxvY25+YXFpubBSXF1b39g0t7ZvVJRIyhwaiUg2PKKY4CFzgINgjVgyEniC1b3Bxciv3zOpeBRewzBmnYD0Qu5zSkBLrllK256Pa5mbNl14aN6lcGhnB7e6Z5lrlq2KNQaeJXZOyihHzTW/2t2IJgELgQqiVMu2YuikRAKngmXFdqJYTOiA9FhL05AETHXS8REZ3tNKF/uR1BUCHqu/N1ISKDUMPD0ZEOiraW8k/ue1EvBPOykP4wRYSCcP+YnAEOFRIrjLJaMghpoQKrn+K6Z9IgkFnVtRh2BPnzxLnKPKWcW6Oi5Xz/M0CqiEdtE+stEJqqJLVEMOougRPaNX9GY8GS/Gu/ExGZ0z8p0d9AfG5w8FxZfg</latexit><latexit sha1_base64="LgR78L6okkVsz51dt4e9qOn8KFM=">AAACA3icbVC7TsMwFHV4lvIKMHaxqJAYoEoQEo+pEgtjkQhtaUvkuE5r1XnIvkGqQgYWfoWFARArP8HG3+C2GaDlSFf36Jx7Zd/jxYIrsKxvY25+YXFpubBSXF1b39g0t7ZvVJRIyhwaiUg2PKKY4CFzgINgjVgyEniC1b3Bxciv3zOpeBRewzBmnYD0Qu5zSkBLrllK256Pa5mbNl14aN6lcGhnB7e6Z5lrlq2KNQaeJXZOyihHzTW/2t2IJgELgQqiVMu2YuikRAKngmXFdqJYTOiA9FhL05AETHXS8REZ3tNKF/uR1BUCHqu/N1ISKDUMPD0ZEOiraW8k/ue1EvBPOykP4wRYSCcP+YnAEOFRIrjLJaMghpoQKrn+K6Z9IgkFnVtRh2BPnzxLnKPKWcW6Oi5Xz/M0CqiEdtE+stEJqqJLVEMOougRPaNX9GY8GS/Gu/ExGZ0z8p0d9AfG5w8FxZfg</latexit><latexit sha1_base64="LgR78L6okkVsz51dt4e9qOn8KFM=">AAACA3icbVC7TsMwFHV4lvIKMHaxqJAYoEoQEo+pEgtjkQhtaUvkuE5r1XnIvkGqQgYWfoWFARArP8HG3+C2GaDlSFf36Jx7Zd/jxYIrsKxvY25+YXFpubBSXF1b39g0t7ZvVJRIyhwaiUg2PKKY4CFzgINgjVgyEniC1b3Bxciv3zOpeBRewzBmnYD0Qu5zSkBLrllK256Pa5mbNl14aN6lcGhnB7e6Z5lrlq2KNQaeJXZOyihHzTW/2t2IJgELgQqiVMu2YuikRAKngmXFdqJYTOiA9FhL05AETHXS8REZ3tNKF/uR1BUCHqu/N1ISKDUMPD0ZEOiraW8k/ue1EvBPOykP4wRYSCcP+YnAEOFRIrjLJaMghpoQKrn+K6Z9IgkFnVtRh2BPnzxLnKPKWcW6Oi5Xz/M0CqiEdtE+stEJqqJLVEMOougRPaNX9GY8GS/Gu/ExGZ0z8p0d9AfG5w8FxZfg</latexit>
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Yt|Y t�1,Xt

0
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Fig. 1. Block diagram of Problem 1 with probabilistic {encoder, channel, decoder}.

System FilterSensor
X0, X1, ...

PXt|Xt�1
0

PZt|Zt�1,Xt
0

Z0, Z1, ... X̂0, X̂1, ...

PXt|Zt�1

Fig. 2. Bayesian filtering problem.

1.2. Relation betweenBayesian estimation and estimation usingNRDF.
In Bayesian filtering [26, 27], one is given a model that generates the unobserved
process Xn

0 , {Xt : t = 0, . . . , n}, via its conditional distribution {PXt|Xt−1
0

:

t = 0, . . . , n}, or via discrete-time recursive dynamics, and a model that gener-
ates observed data Zn , {Z−1, Z0, Z1, . . . , Zn}, based on its conditional distribution
{PZt|Zt−1,Xt

0
: t = 0, . . . , n}, that is obtained from sensors. At each time t, an es-

timate of the unobserved process Xt, denoted by X̂t, is constructed causally, from
the observed data Zt−1, for t = 0, . . . , n. Thus, in Bayesian filtering theory, both
models which generate the unobserved and observed processes, Xn

0 and Zn, respec-

tively, are given a priori, while at each time t, the estimator is X̂t = gt(Z
t−1) for

some nonanticipative measurable function gt(·) of the past information Zt−1, often
computed recursively, like the Kalman filter. Figure 2 illustrates the block diagram
of the Bayesian filtering problem.

On the other hand, in information-based estimation of Problem 1, one is given the
distribution {PXt|Xt−1

0
: t = 0, . . . , n} of the process Xn

0 and a fidelity criterion, and

the objective is to determine the optimal nonanticipative reproduction conditional
distribution {P∗Yt|Y t−1,Xt

0
: t = 0, . . . , n} that corresponds to the NRDF, denoted

hereinafter by Rna
0,n(D), and to realize this distribution by an {encoder, channel,

decoder} so that the end-to-end MSE distortions (1.3) or (1.4) are met. Thus, in
Problem 1, the observation model is constructed by the cascade of the {encoder,
channel} and the filter is the decoder, which satisfies the end-to-end average distor-
tion (1.3) or (1.4).

1.3. Contributions. The main contributions of this paper are the following:
(R1) A dynamic recursive expression for the optimal nonanticipative reproduction

conditional distribution, {P∗Yt|Y t−1,Xt
0

: t = 0, . . . , n}, which achieves the infimum of

the finite-time horizon, NRDF,4 and some of its properties.

4In what follows, when we refer to finite-time horizon NRDF we just say NRDF.
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(R2) Applications of (R1) to a time-varying multidimensional fully observed
Gauss–Markov process Xn with MSE distortion, to derive

(1) a parametric expression of Rna
0,n(D) obtained via KKT conditions that is char-

acterized by a time-space reverse-waterfilling;
(2) iterative algorithms that provide, in general, upper bounds to the time-space

reverse-waterfilling solution for both distortion constraints (1.3) and (1.4),
which perform optimally under certain conditions;

(3) a universal lower bound on the MSE of any causal estimator of the Gauss–
Markov process, expressed in terms of the NRDF.

Contribution (R1) generalizes previous work found in [14], in the sense that it holds
for any source process conditional distribution {PXt|Xt−1

0
: t = 0, . . . , n}, irrespective

of whether this is time-varying or Markov, and for any fidelity criterion, such as (1.3).
The optimal time-varying reproduction distribution {P∗Yt|Y t−1,Xt

0
: t = 0, . . . , n} of

the NRDF is characterized recursively, backward in time, starting at time t = n till
time t = 0.

Contribution (R2) demonstrates that for time-varying multidimensional fully ob-
served Gauss–Markov processes with MSE distortion, the parametric expression of
the NRDF, Rna

0,n(D), is characterized via dynamic programming, by a time-space
reverse-waterfilling optimization problem. To solve the time-space reverse-waterfilling
problem subject to the distortion constraints (1.3) or (1.4), we propose two iterative
algorithms which serve, in general, as upper bounds to the optimal value of Rna

0,n(D).
In some cases, these algorithms perform optimally. The efficiency of these algorithms
is exemplified to one numerical simulation where we compare with the optimal nu-
merical solution obtained via semidefinite programming [20]. The Markovian prop-
erty of the optimal reproduction distribution implies that the optimal distribution is
{P∗Yt|Yt−1,Xt

: t = 0, . . . , n}. This distribution is realized by an {encoder, channel,

decoder}, such that the estimation error decays exponentially, under certain con-
ditions. The new recursive estimator is finite-dimensional and ensures the fidelity
constraint is met. The time-space reverse-waterfilling implies that given a distortion
level, the optimal state estimation is chosen based on an optimal threshold policy, in
time and space (dimensions). This is the main fundamental difference compared to
the well-known Kalman filter equations. An application of the waterfilling is in sensor
selection problems, where the objective is to select, among a set of sensors, only a
subset of them to ensure a prespecified estimation error is met.

The universal lower bound on the MSE of any estimator generalizes the well-
known bound of a Gaussian random variable (RV) given in [28].

The rest of the paper is structured as follows. In section 2, we introduce the
notation used throughout the paper. In section 3, we formulate the NRDF for general
processes. In section 4, we describe the form of the optimal nonstationary (time-
varying) reproduction distribution of the NRDF. In section 5, we characterize the
NRDF for time-varying multidimensional Gauss–Markov processes with MSE distor-
tion, we present examples in the context of realizable filtering theory, and we derive
a universal lower bound to the MSE of any estimator in terms of the NRDF. Finally,
we draw conclusions and discuss future directions in section 6.

2. Notation. R , (−∞,∞), Z = {. . . ,−1, 0, 1, . . .}, N , {1, 2, . . .}, N0 ,
{0, 1, . . .}, Nn0 , {0, 1, . . . , n}. For any matrix A ∈ Rp×m, we denote its transpose by
AT. We denote the trace of a square matrix A ∈ Rp×p by trace(A) and by diag{A},
the matrix having Aii, i = 1, . . . , p, on its diagonal and zero elsewhere. The set of
symmetric positive semidefinite matrices A ∈ Rp×p is denoted by Sp×p+ and its subset
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of positive definite matrices by Sp×p++ . The statement A � A′ (resp., A � A′) means
that A−A′ is symmetric positive semidefinite (resp., definite). {(Xn,B(Xn)) : n ∈ Z}
denotes a measurable space, where Xn is a complete separable metric space or Polish
space, and B(Xn) is the Borel σ-algebra of subsets of Xn. Points in the product space
X Z , ×n∈ZXn are denoted by x∞−∞ , (. . . , x−1, x0, x1, . . .) ∈ X Z, and their restric-

tions to finite coordinates for any (m,n) ∈ N0 × N0 by xnm , (xm, . . . , . . . , xn) ∈
Xnm, n ≥ m. B(X Z) , ⊗t∈ZB(Xt) denotes the σ-algebra on X Z generated by cylinder
sets {x = (. . . , x−1, x0, x1, . . .) ∈ X Z : xj ∈ Aj , j ∈ Z}, Aj ∈ B(Xj), j ∈ Z. Thus,
B(Xnm) denote the σ-algebras of cylinder sets in Xnm, with bases over Aj ∈ B(Xj), j ∈
{m,m+1, . . . , n}, (m,n) ∈ Z×Z. Given an RV X : (Ω,F) 7−→ (X ,B(X )), we denote
by5 PX(dx) ≡ P(dx) the distribution induced by X on (X ,B(X )). M(X ) denotes
the set probability distributions on X . Given another RV Y : (Ω,F) 7−→ (Y,B(Y))
we denote by PY |X(dy|X = x) ≡ P(dy|x) the conditional distribution of RV Y for a
fixed X = x. Such conditional distributions are equivalently described by stochastic
kernels or transition functions [29] K(·|·) on B(Y)×X , mapping X intoM(Y) (space
of distributions), i.e., x ∈ X 7−→ K(·|x) ∈ M(Y), and such that for every A ∈ B(Y),
the function K(A|·) is B(X )-measurable. We denote the set of such stochastic kernels
by Q(Y|X ).

3. NRDF on general alphabets. In this section, we introduce the definition
of NRDF from the definition of relative entropy, using general processes which take
values in Polish spaces (complete separable metric spaces), that include finite, count-
able, and continuous alphabet spaces. Throughout, we assume there is a complete
probability space (Ω,F , {Ft : t ∈ Nn0},P) with complete filtration {Ft : t ∈ Nn0} on
which all processes are defined.

Source distribution. The process Xn
0 , (X0, X1, . . . , Xn) is described by the

collection of conditional probability distributions PXt|Xt−1
0

(·|xt−1
0 ), xt−1

0 ∈ Xn−1
0 , t ∈

Nn0 . For each t ∈ Nn0 , we let PXt|Xt−1
0

(·|·) ≡ Pt(·|·) ∈ Qt(Xt|X t−1
0 ), and for t = 0, we

set PX0|X−1
0

= P0(dx0). We define the probability distribution PXn
0

(·) ≡ P0,n(·) on

Xn0 by

P0,n(A0,n) ,
∫

A0

P0(dx0) . . .

∫

An

Pn
(
dxn|xn−1

0

)
, At ∈ B(Xt), A0,n = ×nt=0At.

(3.1)

Thus, for each n ∈ N0, P0,n(·) ∈M(Xn0 ).

Reproduction distribution. The reproduction process Y n , (Y −1, Y0, Y1, . . . ,
Yn) of Xn

0 , (X0, X1, . . . , Xn) is described by the collection of conditional distri-
butions PYt|Y t−1,Xt

0
(·|yt−1, xt0), (yt−1, xt0) ∈ Yt−1 × X t0 , t ∈ Nn0 , where Y −1 is the

initial state with fixed distribution PY −1 ≡ µ(dy−1). For each t ∈ N0, we let
PYt|Y t−1,Xt

0
(·|·, ·) = Qt(·|·, ·) ∈ Qt(Yt|Yt−1 × X t0), and for t = 0, PY0|Y −1,X0

=

Q0(dy0|y−1, x0). We define the family of conditional probability distributions on Yn0
parametrized by (y−1, xn0 ) ∈ Y−1 ×Xn0 as follows:

−→
Q0,n

(
B0,n

∣∣y−1, xn0
)
,
∫

B0

Q0

(
dy0|y−1, x0

)
. . .

∫

Bn

Qn
(
dyn|yn−1, xn0

)
, Bt ∈ B(Yt), B0,n = ×nt=0Bt.(3.2)

5The subscript notation is often omitted when it is clear from the arguments of the distribution.
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We note that the family of probability distributions
−→
Q0,n(·|y−1, xn0 ) parametrized by

(y−1, xn0 ) ∈ Y−1 ×Xn0 satisfies the following consistency condition (CC):

CC. For any F ∈ B(Yn0 ), then,
−→
Q0,n(F |y−1, xn0 ) is a B(Y−1)⊗B(Xn0 )-measurable

function of (y−1, xn0 ) ∈ Y−1 ×Xn0 .
Moreover, from [30], for any family of conditional distributions

PY n
0 |Y −1,Xn

0
(·|y−1, xn0 ) ≡ P(·|y−1, xn0 )

on Yn0 parametrized by (y−1, xn0 ) ∈ Y−1×Xn0 that satisfies CC there exists a sequence
of stochastic kernels Qt(·|·, ·) ∈ Qt(Yt|Yt−1 × X t0), t ∈ Nn0 , such that P(B0,n|y−1, xn0 )
is defined by the right-hand side of (3.2). We define the set of probability distributions
on Yn0 conditioned on (Y −1, Xn

0 ) = (y−1, xn0 ) ∈ Y−1 ×Xn0 that satisfies CC by

MCC(Yn0 ) ,
{
P
(
·
∣∣y−1, xn0

)
∈M(Yn0 ) : such that CC holds

}
.(3.3)

Thus, for each n ∈ N0,
−→
Q0,n(·|y−1, xn0 ) ∈ MCC(Yn0 ), (y−1, xn0 ) ∈ Y−1 × Xn0 . Given

a P0,n(·) ∈M(Xn0 ), a
−→
Q0,n(·|y−1, xn0 ) ∈MCC(Yn0 ), and a fixed distribution µ(dy−1),

we define the following distributions:
• The joint distribution on Xn0 × Yn0 given Y −1 = y−1 that is defined by

P
−→
Q
(
A0,n ×B0,n

∣∣y−1
)
, (P0,n⊗

−→
Q0,n)

(
×nt=0(At×Bt)

∣∣y−1
)

=

∫

A0

P0(dx0)

∫

B0

Q0

(
dy0

∣∣y−1, x0

)
. . .

∫

An

Pn
(
dxn

∣∣xn−1
0

) ∫

Bn

Qn
(
dyn
∣∣yn−1, xn0

)
.

(3.4)

• The marginal distribution on Yn0 given Y −1 = y−1 that is defined by

Π
−→
Q
0,n

(
B0,n

∣∣y−1
)
,
∫

B0,n

∫

Xn
0

(P0,n ⊗
−→
Q0,n)

(
dxn0 , dy

n
0

∣∣y−1
)

=

∫

B0,n

Π
−→
Q
0

(
dy0

∣∣y−1
)
. . .Π

−→
Q
n

(
dyn
∣∣yn−1

)
.

• The product probability distribution
−→
Π

−→
Q

0,n(·|y−1) : B(Xn0 ) ⊗ B(Yn0 ) 7−→ [0, 1]
conditioned on Y −1 = y−1 is defined by

−→
Π

−→
Q

0,n

(
A0,n ×B0,n

∣∣y−1
)
,
(
P0,n ×Π

−→
Q
0,n

) (
×nt=0(At×Bt)

∣∣y−1
)

=

∫

A0

P0(dx0)

∫

B0

Π
−→
Q
0

(
dy0

∣∣y−1
)
. . .

∫

An

Pn
(
dxn

∣∣xn−1
0

) ∫

Bn

Π
−→
Q
n (dyn|yn−1).

Using the distributions above, we define the relative entropy between the joint

distribution P
−→
Q (dxn0 , dy

n
0 |y−1) and the product distribution

−→
Π

−→
Q

0,n(dxn0 , dy
n
0 |y−1), av-
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eraged over the initial distribution µ(dy−1), as follows:

D
(
P0,n ⊗

−→
Q0,n||

−→
Π

−→
Q

0,n

)
=

∫

Xn
0 ×Yn

log


P0,n(·)⊗

−→
Q0,n(·|y−1, xn0 )

P0,n(·)⊗Π
−→
Q
0,n (·|y−1)

(xn0 , y
n
0 )




× P0,n (dxn0 )⊗
−→
Q0,n

(
dyn0

∣∣y−1, xn0
)
⊗ µ

(
dy−1

)
∈ [0,∞](3.5)

(a)
=

∫

Xn
0 ×Yn

log



−→
Q0,n(·|y−1, xn0 )

Π
−→
Q
0,n(·|y−1)

(yn0 )




× P0,n (dxn0 )⊗
−→
Q0,n

(
dyn0

∣∣y−1, xn0
)
⊗ µ(dy−1)

(b)
=

n∑

t=0

∫

X t
0×Yt

log

(
Qt(·|yt−1, xt0)

Π
−→
Q
t (·|yt−1)

(yt)

)

×Qt
(
dyt|yt−1, xt0

)
⊗ Pt

(
dxt
∣∣xt−1

)
⊗P

−→
Q
(
dxt−1, dyt−1

)

=

n∑

t=0

I
(
Xt;Yt|Y t−1

)
(3.6)

≡ I0,n
(
P0,n,

−→
Q0,n

)
,(3.7)

where (a), (b) are due to the chain rule of relative entropy (see [30]), and I(Xt
0;Yt|Y t−1)

is the conditional mutual information between Xt and Yt, conditioned on Y t−1. In

(3.7) the notation I0,n(·, ·) indicates the functional dependence on {P0,n,
−→
Q0,n} (the

dependence on µ(dy−1) is omitted).
Using the previous formulation, the following functional properties hold:

(P1) By [30, Theorem 5] the set of distributions
−→
Q0,n(·|y−1, xn0 ) ∈ MCC(Yn0 ) is

convex.
(P2) By [30, Theorem 6], I0,n(P0,n, ·) is a convex functional of

−→
Q0,n(·|y−1, xn0 ) ∈

MCC(Yn0 ).
We define the NRDF using the above definition of relative entropy as follows.

Definition 3.1 (NRDF).
(1) Given the distortion function (1.1) of reproducing xt by yt, t = 0, 1, . . . , n,

define the set of reproduction distributions that satisfy the fidelity criterion by

−→
Q0,n(D) ,

{
−→
Q0,n

(
·
∣∣y−1, xn0

)
∈MCC(Yn0 ) :

1

n+ 1
E
−→
Q
µ {d0,n(Xn

0 , Y
n)} ≤ D

}
, D ≥ 0,

where E
−→
Q
µ {·} indicates that the joint distribution is induced by {P0,n(dxn),

−→
Q0,n(dyn0 |y−1, xn), µ(dy−1)} defined by (3.4). The NRDF is defined by

Rna
0,n(D) , inf−→

Q0,n(dyn0 |y−1,xn
0 )∈−→Q0,n(D)

I0,n
(
P0,n,

−→
Q0,n

)
, D ≥ 0.(3.8)

(2) Given the distortion function (1.2), define (similarly to (1)) the fidelity crite-
rion by

−→
Q0,n(D0, D1, . . . , Dn)

,
{−→
Q0,n

(
·
∣∣y−1, xn0

)
∈MCC(Yn0 ) : E

−→
Q
µ

{
dt
(
Xt

0, Y
t
)}
≤ Dt ∀t ∈ Nn0

}
,
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where Dt ∈ [0,∞) ∀t ∈ Nn0 . The NRDF with average distortion at each time is defined
by

Rna
0,n(D0, D1, . . . , Dn) , inf−→

Q0,n(dyn0 |y−1,xn
0 )∈−→Q0,n(D0,D1,...,Dn)

I0,n
(
P0,n,

−→
Q0,n

)
(3.9)

for Dt ∈ [Dmin
t , Dmax

t ] ⊆ [0,∞] for t = 0, . . . , n, similarly as above.

Next, we state some properties of the NRDF in Definition 3.1.

(P3) By (P1) the set
−→
Q0,n(D) is a convex subset of MCC(Yn0 ).

(P4) By (P2) and (P3) the NRDF defined by (3.8) is a convex optimization
problem.

It should be mentioned that sufficient conditions for existence of an optimal re-

production distribution
−→
Q∗0,n(dyn0 |y−1, xn0 ) that achieves the infimum of the NRDF

defined by (3.8) are identified in [14, Theorems III.3, III.4] by means of weak∗-
convergence and compactness of probability measures in appropriate function spaces.
Similar conditions are also identified in [30, Lemma 12, Theorem 14] using weak-
convergence and compactness of probability measures via Prohorov’s theorems.

For completeness, in the next remark we discuss the precise relation between
the NRDF and nonanticipatory ε-entropy [1] and their fundamental differences with
respect to Shannon’s definition of classical RDF [3].

Remark 1 (RDF and nonanticipatory ε-entropy). Consider a distribution P0,n(·)∈
M(Xn0 ) and a reproduction distribution P(dyn0 |y−1, xn0 ) , Qnc

0,n(dyn0 |y−1, xn0 ) ∈
M(Yn0 ), (y−1, xn0 ) ∈ Y−1 × Xn0 which does not satisfy the CC. Then, the condi-
tional distribution on Yn0 given Y −1 = y−1 and the joint distribution on Xn0 ×Yn0 are
introduced as follows:

ΠQnc

0,n

(
dyn0

∣∣y−1
)

=

∫

Xn
0

Qnc
0,n

(
dyn0

∣∣y−1, xn0
)
⊗ P0,n (dxn0 ) ,(3.10)

PQ
nc (

dxn0 , dy
n
0

∣∣y−1
)

= P0,n (dxn0 )⊗Qnc
0,n

(
dyn0

∣∣y−1, xn0
)
.(3.11)

Define the set of conditional distributions that satisfy the fidelity criterion by

Qnc
0,n(D) ,

{
Qnc

0,n

(
dyn0

∣∣y−1, xn0
)
∈M(Yn0 ) :

1

n+ 1
EQ

nc

µ {d0,n(Xn
0 , Y

n)} ≤ D
}
, D ≥ 0.

The classical RDF [3] is defined by

R0,n(D) , inf
Qnc

0,n(dyn0 |y−1,xn
0 )∈Qnc

0,n(D)
I
(
Xn

0 ;Y n0
∣∣Y −1

)
,(3.12)

where I(Xn
0 ;Y n0 |Y −1) is the conditional mutual information defined by

I
(
Xn

0 ;Y n0
∣∣Y −1

)
,
∫

Xn
0 ×Yn

log

(
Qnc

0,n(·|y−1, xn0 )

ΠQnc

0,n (·|y−1)
(yn0 )

)

× P0,n (dxn0 )⊗Qnc
0,n

(
dyn0

∣∣y−1, xn0
)
⊗ µ

(
dy−1

)
(3.13)

≡ Inc
0,n(P0,n, Q

nc
0,n).(3.14)

By Bayes’ rule we have the decomposition Qnc
0,n(dyn0 |y−1, xn0 ) =⊗nt=0Q

nc
t (dyt|yt−1, xn0 ).

Therefore, in general, the solution to the classical RDF cannot be used to construct
causal estimators, because for each t, the reproduction distribution Qnc

t (dyt|yt−1, xn0 )
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depends on futures symbols (xt+1, . . . , xn). In view of this technicality, Gorbunov and
Pinsker in [1] introduced the nonanticipatory ε-entropy, defined as follows:

Rε0,n(D) , inf
Qnc

0,n(D):Qnc
0,t(dy

t
0|y−1,xn

0 )=QGP
0,t (dyt0|y−1,xt

0), t∈Nn
0

I
(
Xn

0 ;Y n0
∣∣Y −1

)
.(3.15)

The extra conditional independence condition Qnc
0,t(dy

t
0|y−1, xn0 ) = QGP0,t (dyt0|y−1, xt0),

t ∈ Nn0 , that is imposed in the definition of classical RDF (3.12) implies CC. This
follows from the following equivalent statements of conditional independence shown
in [31, Lemma 6.2]:

MC1. Qnc
0,n(dyn0 |y−1, xn0 ) =

−→
Q0,n(dyn0 |y−1, xn0 ) = ⊗nt=0Qt(dyt|yt−1, xt0) ∀n ∈ N0;

MC2. Qnc
t (dyt|yt−1, xt0, x

n
t+1) = Qt(dyt|yt−1, xt0) for each t ∈ Nn−1

0 ∀n ∈ N0;

MC3. Pt(dxt+1|xt0, yt) = Pt(dxt+1|xt0) for each t ∈ Nn−1
0 ∀n ∈ N0;

MC4. Qnc
0,t(dy

t
0|y−1, xt0, x

n
t+1) =

−→
Q0,t(dy

t
0|y−1, xt0) for each t ∈ Nn−1

0 ∀n ∈ N0.
Since MC1–MC4 are equivalent statements, then it can be shown that the NRDF
defined by (3.8) is equivalent to the nonanticipatory ε-entropy defined by (3.15), that
is, Rna

0,n(D) = Rε0,n(D).

4. Optimal nonstationary reproduction distribution. In this section, we
describe the form of the optimal nonstationary (time-varying) reproduction distribu-
tion that achieves the infimum in (3.8) (assuming it exists).

First, we introduce the finite-time horizon nonanticipative distortion rate func-
tion, hereinafter denoted by D0,n(Rna), defined as
(4.1)

D0,n(Rna) = inf−→
Q0,n(dyn0 |y−1,xn

0 ): 1
n+1 I0,n(P0,n,

−→
Q0,n)≤Rna

E
−→
Q
µ

{
d0,n(Xn

0 , Y
n)
}
, Rna ∈ [0,∞).

Next, we state certain important properties of Rna
0,n(D) that follow directly from

properties (P3), (P4) (following mutatis mutandis the derivation in [32, Theorem 7.1,
p. 45]), and we do the same for D0,n(Rna).

(P5) Rna
0,n(D) and D0,n(Rna) are nonincreasing functions of D ∈ [0,∞) and Rna ∈

[0,∞), respectively, and the function Rna
0,n(D) is convex in D ∈ [0,∞).

(P6) Rna
0,n(D) is continuous on D ∈ (0,∞), and if Rna

0,n(0) <∞, then it is contin-
uous on D ∈ [0,∞).

Note that (P6) follows from the fact that a bounded and convex function is
continuous; hence by the nonincreasing property in (P5), Rna

0,n(D) is bounded outside
the neighborhood of D = 0 and continuous on (0,∞). Moreover, if Rna

0,n(0) < ∞,
then Rna

0,n(D) is bounded and hence continuous on [0,∞).

Assume an optimal reproduction distribution
−→
Q∗0,n(dyn0 |y−1, xn0 ) that achieves the

infimum of the NRDF defined by (3.8) exists. If, in addition, there exists an interior

point in the set
−→
Q0,n(D), then the NRDF is a convex optimization problem that can

be reformulated using the Lagrange duality theorem [33, Theorem 1, pp. 224–225], as
an unconstrained problem as follows:

Rna
0,n(D) = sup

s≤0
inf−→

Q0,n(·|y−1,xn
0 )∈MCC(Yn

0 ){
I0,n

(
P0,n,

−→
Q0,n

)
− s
(
E
−→
Q
µ {d0,n(Xn

0 , Y
n)} −D(n+ 1)

)}
.

(4.2)

In what follows, we state a theorem that generalizes the result of [14, section IV],
which was developed under the assumption that the optimal reproduction distribu-
tions Q∗t (dyt|yt−1, xt0) = Q∗(dyt|yt−1, xt0) ∀t ∈ Nn0 are identical, or that the joint
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process {(Xt, Yt) : ∀t ∈ Nn0} is stationary. The next theorem computes the elements
Q∗t (dyt|yt−1, xt0) = Q∗(dyt|yt−1, xt0) ∀t ∈ Nn0 recursively moving backward in time.
This result is applied in the subsequent analysis to compute the NRDF, Rna

0,n(D), of
time-varying multidimensional Gauss–Markov processes.

Theorem 4.1 (optimal nonstationary reproduction distributions). Suppose there

exists
−→
Q∗0,n(·|y−1, xn0 ) ∈

−→
Q0,n(D), which solves (3.8) for D ∈ [Dmin, Dmax], iden-

tity (4.2) holds, and I0,n(P0,n,
−→
Q0,n) is Gâteaux differentiable in every direction of

{Qt(·|yt−1, xt0) : t ∈ Nn0} for a fixed P0,n(·) ∈ M(Xn0 ) and µ(dy−1) ∈ M(Y−1). Then
the following hold:

(1) The optimal nonstationary reproduction distributions denoted by

{Q∗t (·|yt−1, xt0) ∈M(Yt) : t ∈ Nn0}

are given by the following recursive equations backward in time.
For t = n,

(4.3) Q∗n
(
dyn
∣∣yn−1, xn0

)
=

esρn(Tnxn
0 ,T

nyn)Π
−→
Q∗
n (dyn|yn−1)

∫
Yn
esρn(Tnxn

0 ,T
nyn)Π

−→
Q∗
n (dyn|yn−1)

.

For t = n− 1, n− 2, . . . , 0,

(4.4) Q∗t
(
dyt
∣∣yt−1, xt0

)
=

esρt(T
txn

0 ,T
tyn)−gt,n(xt

0,y
t)Π
−→
Q∗

t (dyt|yt−1)
∫
Yt
esρt(T

txn
0 ,T

tyn)−gt,n(xt
0,y

t)Π
−→
Q∗
t (dyt|yt−1)

,

where s < 0 is the Lagrange multiplier, and ΠQ∗

t (·|yt−1) ∈M(Yt) and gt,n(xt0, y
t) are

defined by

gn,n(xn0 , y
n) = 0,

gt,n
(
xt0, y

t
)
, −

∫

Xt+1

Pt+1

(
dxt+1

∣∣xt0
)

× log

(∫

Yt+1

esρt+1(T t+1xn
0 ,T

t+1yn)−gt+1,n(xt+1
0 ,yt+1)Π

−→
Q∗

t+1

(
dyt+1

∣∣yt
)
)
.

(2) The NRDF is given by

Rna
0,n(D) = sD(n+ 1)

−
n∑

t=0

∫

X t
0×Yt−1

{∫

Yt

gt,n
(
xt0, y

t
)
Q∗t
(
dyt
∣∣yt−1, xt0

)

+ log

(∫

Yt

esρt(T
txn

0 ,T
tyn)−gt,n(xt

0,y
t)Π
−→
Q∗

t

(
dyt
∣∣yt−1

))}

⊗ Pt
(
dxt
∣∣xt−1

0

)
⊗
(
P0,t−1 ⊗

−→
Q∗0,t−1

) (
dxt−1

0 , dyt−1
0

∣∣y−1
)
⊗ µ

(
dy−1

)
.

(4.5)

(3) If Rna
0,n(D) > 0, then s < 0, and

(4.6)

1

n+ 1

n∑

t=0

∫

X t
0×Yt

ρt
(
T txn0 , T

tyn
) (
P0,t ⊗

−→
Q∗0,t

) (
dxt0, dy

t
0

∣∣y−1
)
⊗ µ

(
dy−1

)
= D.
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Proof. We outline the derivation. The minimization over {Qt(·|yt−1, xt0) : t ∈ Nn0}
in (4.2) is a nested optimization problem. Hence, we apply dynamic programming,
backward in time. Then, we carry out the infimum starting at the last stage over
Qn(·|yn−1, xn0 ) ∈ M(Yn) and sequentially move backward in time to determine
Q∗n(·|yn−1, xn0 ), Q∗n−1(·|yn−2, xn−1

0 ), . . . , Q∗0(·|y−1, x0), by performing the Gâteaux dif-

ferential at each direction of Qn(·|yn−1, xn0 ), Qn−1(·|yn−2, xn−1
0 ), . . . , Q0(·|y−1, x0).

By utilizing Theorem 4.1, then, for a given distribution P0,n(·) ∈M(Xn0 ), we can
identify the dependence of the optimal nonstationary reproduction distribution on
past and present symbols of the information process {Xt : t ∈ Nn0}, called the infor-
mation structures (IS) of the optimal nonstationary reproduction distribution of (3.8).

IS of the optimal nonstationary reproduction distribution:
(IS1) The dependence of Q∗n(dyn|yn−1, xn0 ) on xn ∈ Xn0 is determined by the

dependence of ρn(Tnxn0 , T
nyn) on xn0 ∈ Xn0 as follows:

(IS1.1) If ρt(T
txn0 , T

iyn) = ρ̄(xt, y
t) ∀t ∈ Nn0 , then, at t= n, Q∗n(dyn|yn−1, xn0 ) =

Q∗n(dyn|yn−1, xn), while for t = n−1, n−2, . . . , 0, the dependence of Q∗t (dyt|yt−1, xt0)
on xt0 ∈ X t0 is determined from the dependence of gt,n(xt0, y

t) on xt0 ∈ X t0 .
(IS1.2) If Pt(dxt|xt−1

0 ) = Pt(dxt|xt−1
t−1−L), where L is a nonnegative finite integer,

and ρt(T
txn0 , T

tyn) = ρ̄(xtt−N , yt), where N is a nonnegative finite integer ∀t ∈ Nn0 ,

then, Q∗t (dyt| yt−1, xt0) = QJ,∗t (dyt|yt−1, xtt−J) ∀t ∈ Nn0 , where J = max{N,L}.
If L = N = 1, i.e., ρt(T

txn0 , T
tyn) = ρSLt (xt, yt), ∀t ∈ Nn0 , and the source is

Markov, then Q∗t (dyt|yt−1, xt0) = Q1,∗
t (dyt|yt−1, xt) ∀t ∈ Nn0 , and NRDF is character-

ized by the following optimization problem:

Rna
0,n(D) , inf−→Q1

0,n(D)

E
−→
Q1

µ

{
n∑

t=0

log

(
Q1
t (·|Y t−1, Xt)

Π
−→
Q1

t (·|Y t−1)
(Yt)

)}
(4.7)

≡ inf−→Q1
0,n(D)

n∑

t=0

I
(
Xt;Yt

∣∣Y t−1
)
,(4.8)

where the transition probability distribution of Yt given Y t−1 = yt−1 is given by

Π
−→
Q1

t

(
dyt
∣∣yt−1

)
=

∫

Xt

Q1
t

(
dyt
∣∣yt−1, xt

)
⊗P

−→
Q1 (

dxt
∣∣yt−1

)
∀t ∈ Nn0 ,(4.9)

and the fidelity criterion is defined by
(4.10)

−→
Q1

0,n(D) ,

{
Q1
t

(
dyt
∣∣yt−1, xt

)
, t ∈ Nn0 :

1

n+ 1
E
−→
Q1

µ

{
n∑

t=0

ρSLt (Xt, Yt)

}
≤ D

}
.

(IS2) If gt,n(xt0, y
t) = ĝt,n(xt0, y

t−1),∀t ∈ Nn0 , then, the optimal reproduction
distribution (4.4) reduces to

(4.11) Q∗t
(
dyt
∣∣yt−1, xt0

)
=

esρt(T
txn

0 ,T
tyn)Π

−→
Q∗

t (dyt|yt−1)
∫
Yt
esρt(T

txn
0 ,T

tyn)Π
−→
Q∗
t (dyt|yt−1)

∀t ∈ Nn0 .D
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(IS3) If gt,n(xt0, y
t) = ĝt,n(xt0, y

t−1), ρt(T
txn0 , T

tyn) = ρSLt (xt, yt) ∀t ∈ Nn0 , and
Xn

0 is Markov, i.e., Pt(dxt|xt−1
0 ) = Pt(dxt|xt−1) ∀t ∈ Nn0 , then (4.11) reduces to

(4.12)

Q∗t
(
dyt
∣∣yt−1, xt0

)
= Q1,∗

t

(
dyt
∣∣yt−1, xt

) esρ
SL
t (xt,yt)Π

−→
Q1,∗

t (dyt|yt−1)
∫
Yt
esρ

SL
t (xt,yt)Π

−→
Q1,∗
t (dyt|yt−1)

∀t ∈ Nn0 ,

which is Markov in Xn
0 . Again, we cannot determine from the above characterization,

whether at each t, the optimal reproduction distribution QM,∗
t (dyt|yt−1, xt) depends

on limited memory on past reproductions yt−1.

Remark 2. Note that the discussion of this section holds, even if the average

distortion (1.3) is replaced by (1.4), by simply replacing s 1
n+1 (E

−→
Q
µ {d0,n(Xn

0 , Y
n)} −

D) in (4.2) with
∑n
t=0 st(E

−→
Q
µ {ρt(T tXn

0 , T
tY n)} − Dt), where st are the Lagrange

multipliers for t ∈ Nn0 .

Remark 3. If the σ-algebra generated by the initial state Y −1 is the trivial
σ{Y −1} = {Ω, ∅}, then in Definition 3.1, the payoff is replaced by

n∑

t=0

I
(
Xt

0;Yt
∣∣Y t−1

)
= I(X0;Y0) +

n∑

t=1

I
(
Xt

0;Yt
∣∣Y0, Y1, . . . , Yt−1

)
.(4.13)

Hence, all previous material and subsequent material can be specialized accordingly.

In the next section, we use Theorem 4.1 and the above observations to derive
Rna

0,n(D) for the multidimensional Gauss–Markov processes Xn
0 .

5. NRDF of time-varying multidimensional Gauss–Markov processes.
In this section, we apply Theorem 4.1 to the following time-varying multidimensional
Gauss–Markov process, described in state-space form.

Definition 5.1 (time-varying multidimensional Gauss–Markov process). The
source is a time-varying Rp-valued Gauss–Markov process defined by the recursion

Xt+1 = AtXt +Wt, X0 = x0, ∀t ∈ Nn−1
0 ,(5.1)

where At ∈ Rp×p ∀t ∈ Nn−1
0 is a nonrandom matrix. We assume

(G1) X0 ∈ Rp is Gaussian N (0;KX0);
(G2) {Wt : t ∈ Nn0} is an Rp-valued independent and identically distributed (IID)

Gaussian N (0;KWt
), KWt

∈ Sp×p+ sequence, independent of (X0, Y
−1).

(G3) The distortion function is the sum of squared errors, defined by d0,n(xn0 , y
n)

,
∑n
t=0 ρt(T

txn0 , T
tyn) =

∑n
t=0 ‖xt − yt‖22.

Next, we derive the following results:
(1) the analytical expression of the optimal nonstationary reproduction distribu-

tion that achieves the infimum of the NRDF and the characterization of the NRDF
subject to an MSE distortion;

(2) a universal lower bound on the total or per-letter MSE of any causal estimator
of Gaussian processes;

(3) a realization of the optimal nonstationary reproduction distribution in the
sense of Figure 3 that allows us to obtain the optimal filter.

The characterization of the NRDF is parametric and involves reverse-waterfilling
recursively in time and space. Such a complete characterization is never reported
in the literature, for either of the two average distortions (1.3) and (1.4). Further,
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two algorithms are developed to provide tight upper bounds to the optimal reverse-
waterfilling solution. These are generalizations of the standard reverse-waterfilling
algorithm of the classical RDF of scalar autoregressive Gaussian processes with MSE
(given in [3]) and of the NRDF for scalar-valued Gauss–Markov processes with MSE
(given in [34]).

5.1. The optimal nonstationary reproduction distribution. Note that by
Theorem 4.1 and the Markovian property of (5.1), the optimal nonstationary repro-
duction distribution given by (4.3)–(4.4) is Markov with respect to Xn

0 . Moreover,
from (IS1.2), the characterization of the NRDF is optimized over the reproduction
distributions Q1

t (dyt|yt−1, xt), t ∈ Nn0 . The joint distribution of {Xn
0 , Y

n
0 } for a fixed

Y −1 = y−1 is PQ
1

(dxn0 , y
n
0 |y−1) = P(dx0|y−1)⊗nt=0 (Pt(dxt|xt−1)⊗Q1

t (dyt|yt−1, xt)).
Thus, for a fixed Y −1 = y−1, the characterization Rna

0,n(D) given by (4.7) can be
expressed in terms of relative entropy as in (3.5) and, additionally, the MSE distor-

tion 1
n+1E

Q1

y−1{
∑n
t=0 ‖Xt−Yt‖22} is determined from the covariance matrix {Xn

0 , Y
n
0 }.

On the other hand, for a fixed Y −1 = y−1, once the covariance matrix of {Xn
0 , Y

n
0 }

is specified, and since Xn
0 is Gaussian, by applying [32, Theorem 1.8.6] the payoff∑n

t=0 I(Xt;Yt|Y t−1
0 , y−1) in (4.7) is minimized if the {Xn

0 , Y
n
0 } is jointly Gaussian.

Hence, for a fixed Y −1 = y−1, the infimum in (4.7) over Q1
0,n(D) is achieved if

{Xn
0 , Y

n
0 } is jointly Gaussian. Such jointly Gaussian distributions are induced if the

reproduction distributions are restricted to conditionally Gaussian distributions, de-
noted by Q1

t (·|yt−1, xt) = QGt (·|yt−1, xt), with conditional means that are linear in
(xt, y

t−1), and conditional covariances that are independent of (xt, y
t−1) for ∀t ∈ Nn0 .

Further, on an appropriate probability space (Ω,F , {Ft : t ∈ Nn0},P), we can
construct a jointly Gaussian distribution PG(dxn0 , y

n), induced by the process Xn
0 of

Definition 5.1 and the process Y n0 defined by the recursion

Yt = HtXt + gt
(
Y t−1

)
+ V ct , Y −1 = y−1, t ∈ Nn0 ,(5.2)

gt
(
Y t−1

)
,MtY

t−1, QGt
(
·
∣∣yt−1, xt

)
∼ N

(
Htxt +Mty

t−1;KV c
t

)
,(5.3)

where (Ht,Mt) are nonrandom matrices, and V ct ∼ N (0;KV c
t

),KV c
t
∈ Sp×p+ ∀t ∈ Nn0

is an independent sequence of Gaussian vectors that is independent of {Wt : t ∈ Nn0}
and X0.

It should be noted that the following hold:
(i) the marginal PG(dxn0 ) = ⊗nt=0Pt(dxt|xt−1) is the distribution induced by the

Gauss–Markov process Xn
0 of Definition 5.1;

(ii) conditional independence holds, PG(dxt|xt−1
0 , yt−1) = Pt(dxt|xt−1), t ∈ Nn0 ;

(iii) PG(dyt|yt−1, xt) = QGt (dyt|yt−1, xt), t ∈ Nn0 , is a conditionally Gaussian distri-
bution.

Thus, {(Ht,Mt,KV c
t

) : t ∈ Nn0} is the parametrization of {QGt (·|yt−1, xt) : t ∈ Nn0}.
An alternative approach to show that {QGt (dyt|yt−1, xt) : t ∈ Nn0} achieves the

infimum in (4.7) over
−→
Q1

0,n(D), for fixed Y −1 = y−1, is to verify that the jointly
Gaussian distribution of (Xn

0 , Y
n
0 ) for fixed Y −1 = y−1, induced by (5.1) and (5.2),

satisfies the implicit equations (4.3) and (4.4) of Theorem 4.1. Note that by the
Markov property of Xn

0 and the distortion function, (IS1.2) implies that the repro-
duction distribution is of the form Q1

t (·|yt−1, xt) ∀t ∈ Nn0 . Hence, it is sufficient to
verify that (4.3) and (4.4) are satisfied for the jointly Gaussian process (Xn

0 , Y
n
0 )

defined by (5.1) and (5.2).
Stage n. Since the exponential term ρn(Tnxn0 , T

nyn) , ‖xn − yn‖22 is quadratic

in (xn, yn), and Π
−→
QG

n (dxn|yn−1) =
∫
Xn
QGn (dxn|yn−1, xn) ⊗ P

−→
QG

(dxn|yn−1), where
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P
−→
QG

(dxn|yn−1) is conditionally Gaussian, with nonrandom covariance (by the Kalman
filter equations), then, the right-hand side of (4.3) is of exponential quadratic form in
(xn, y

n−1), and hence the implicit equation (4.3) is satisfied.
Stages t ∈ {n − 1, n − 2, . . . , 1, 0}. By (4.4), evaluated at t = n − 1, then

gn−1,n(xn−1, y
n−1) will include terms of quadratic form in xn−1 and yn−1. Sim-

ilarly to stage n, the right-hand side of (4.4) is of exponential quadratic form in
(xn−1, y

n−2). Hence, the implicit equation (4.4) is satisfied at time t = n − 1. By
induction, we deduce that (4.4) is satisfied for the jointly Gaussian process (Xn

0 , Y
n
0 )

defined by (5.1) and (5.2).
By (5.1) and (5.2), for a fixed Y −1 = y−1, the Gaussian NRDF is characterized

by the following optimization problem:

Rna
0,n(D) , inf−→QG

0,n(D)

EQ
G

y−1

{
n∑

t=0

log

(
QGt (·|Y t−1, Xt)

ΠQG

t (·|Y t−1)
(Yt)

)}
(5.4)

= inf−→QG
0,n(D)

n∑

t=0

I
(
Xt;Yt

∣∣Y t−1
0 , y−1

)
,(5.5)

where

−→
QG0,n(D) ,

{
QGt

(
dyt
∣∣yt−1, xt

)
, t ∈ Nn0 :

1

n+ 1
EQ

G

y−1

{
n∑

t=0

‖Xt − Yt‖22

}
≤ D

}
.

Further, we can express Rna
0,n(D) in terms of the Kalman filter prediction and

correction error as follows. For a fixed Y −1 = y−1, define the conditional expectations

X̂t|t−1 , EQ
G

y−1

{
Xt|σ

{
Y t−1

}}
, Σt|t−1

, EQ
G

y−1

{
(Xt − X̂t|t−1)(Xt − X̂t|t−1)T

∣∣∣σ
{
Y t−1

}}
,

X̂t|t , EQ
G

y−1

{
Xt|σ

{
Y t
}}

, Σt|t

, EQ
G

y−1

{
(Xt − X̂t|t)(Xt − X̂t|t)

T

∣∣∣σ
{
Y t
}}

∀t ∈ Nn0 ,

where σ{Z} denotes the σ-algebra (observable events) generated by an RV Z. Since
the joint process (Xn

0 , Y
n
0 ) is jointly Gaussian generated by (5.1) and (5.2), it fol-

lows from the Kalman filter equations (see [26] with minor modifications) that the
conditional covariances satisfy the recursions

Σt|t−1 = At−1Σt−1|t−1A
T

t−1 +KWt−1
, Σ0|−1 is given, t ∈ Nn1 ,(5.6)

Σt|t = Σt|t−1 − Σt|t−1H
T

t

(
HtΣt|t−1H

T

t +KV c
t

)−1
HtΣt|t−1.(5.7)

Thus, the above conditional covariances are independent of the process Y n and the
function gt(y

t−1) = Mty
t−1, t ∈ Nn0 . That is,

Σt|t−1 = EQ
G

y−1

{
(Xt − X̂t|t−1)(Xt − X̂t|t−1)T

}
,

Σt|t , EQ
G

y−1

{
(Xt − X̂t|t)(Xt − X̂t|t)

}
∀t ∈ Nn0 .

Note that for a fixed Y −1 = y−1, from a property of conditional mutual information,
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3746 STAVROU, CHARALAMBOUS, CHARALAMBOUS, AND LOYKA

the payoff in Rna
0,n(D) satisfies the identity

n∑

t=0

I
(
Xt;Yt

∣∣Y t−1
0 , y−1

)
=

n∑

t=0

EQ
G

y−1



log


 PQ

G

Xt|Y t(·|yt)

PQ
G

Xt|Y t−1(·|yt−1)
(Xt)





(5.8)

=
1

2

n∑

t=0

log max

{
1,
|Σt|t−1|
|Σt|t|

}
,(5.9)

where (5.9) is calculated from I(Xt;Yt|Y t−1
0 , y−1)=H(Xt|Y t−1

0 , y−1)−H(Xt|Y t0 , y−1),
in which H(·|·) denote conditional entropies, and using the fact that Σt|t−1, Σt|t, are
independent of Y t0 , gt(y

t−1), t ∈ Nn0 . The MSE is given by

EQ
G

y−1

{
n∑

t=0

‖Xt − Yt‖22

}

= EQ
G

y−1

{
n∑

t=0

∥∥(I −Ht)Xt − gt
(
Y t−1

)∥∥2

2

}
+

n∑

t=0

trace(KV c
t

)

≥ EQ
G

y−1

{
n∑

t=0

∥∥(I −Ht)Xt − g∗t
(
Y t−1

)∥∥2

2

}∣∣∣∣∣
gt=g∗t

+

n∑

t=0

trace(KV c
t

)

if gt
(
Y t−1

)
= g∗t

(
Y t−1

)
= (I −Ht)X̂t|t−1 ∀t ∈ Nn0 ,

(5.10)

where the inequality holds due to mean-square estimation theory. Since by (5.9) the
payoff in Rna

0,n(D) does not depend on gt(·), t ∈ Nn0 , then gt(Y
t−1) = g∗t (Y t−1), t ∈

Nn0 , is optimal.
In view of the above discussion, we have the following preliminary characterization

of the Gaussian NRDF.

Lemma 5.2 (preliminary characterization of Rna
0,n(D)). Consider the Gauss–

Markov process with MSE distortion given in Definition 5.1. Then, a preliminary
characterization of Rna

0,n(D), for a fixed Y −1 = y−1, is described by the optimization
problem:

Rna
0,n(D) = inf

−→Q
Ht,KV c

t
0,n (D)

n∑

t=0

I
(
Xt;Yt

∣∣Y t−1
0 , y−1

)

= inf
−→Q

Ht,KV c
t

0,n (D)

1

2

n∑

t=0

log max

{
1,
|Σt|t−1|
|Σt|t|

}
,(5.11)

where the average distortion constraint set is given by

−→
Q
Ht,KV c

t
0,n (D) ,

{
(Ht,KV c

t
), t ∈ Nn0 :

1

n+ 1
EQ

G

y−1

{
n∑

t=0

‖(I −Ht)(Xt − X̂t|t−1)‖22

}
≤ D

}
.

Σt|t−1, Σt|t satisfy recursions (5.6), (5.7), and the realization of the reproduction
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distribution is given by

Yt = Ht

(
Xt − X̂t|t−1

)
+ X̂t|t−1 + V ct , Y −1 = y−1, t = 0, . . . , n,(5.12)

QGt
(
·
∣∣yt−1, xt

)
∼ N (Ht(xt − x̂t|t−1) + x̂t|t−1;KV c

t
).

Moreover, the filter is given by the following recursions:

Prediction: X̂t|t−1 = At−1X̂t−1|t−1, X̂0|−1 = given, t = 1, . . . , n,(5.13a)

Correction: X̂t|t = X̂t|t−1 + Σt|t−1H
T

t

(
HtΣt|t−1H

T

t +KV c
t

)−1
K̃t,(5.13b)

Innovations: K̃t , Yt − X̂t|t−1, t ∈ Nn0 .(5.13c)

Proof. The statements of the lemma follow directly from the discussion prior to
the lemma and the Kalman filter equations [26] with minor modifications.

Remark 4. It should be noted that the above characterization implies that
Rna

0,n(D) is an optimization problem over the choices of {(Ht,KV c
t

) : t ∈ Nn0} which
control {Σt|t : t ∈ Nn0}. That is, the optimization is over all choices of joint realizations
of the process (Xn, Y n) such that (i)–(iii) hold.

Next, we derive the main theorem to characterize Rna
0,n(D) parametrically, via

a dynamic reverse-waterfilling optimization, and to determine the structure of the
optimal matrices {(Ht,KV c

t
) : t ∈ Nn0}, and hence of the specific realization of the

process (Xn, Y n) such that (i)–(iii) hold.

Theorem 5.3 (Rna
0,n(D) of multidimensional Gauss–Markov process with MSE

distortion). Consider the Gauss–Markov process with MSE distortion given in Defi-
nition 5.1. Then, the following hold:

(1) The infimum over the reproduction distributions of the characterization of the
Gaussian NRDF (5.4) occurs in the set of Markov distributions in Y n−1, that is,

QGt
(
dyt
∣∣yt−1, xt

)
= QMt (dyt|yt−1, xt), t ∈ Nn0 ,(5.14)

and the characterization of the NRDF for a fixed Y−1 = y−1 is given by

Rna
0,n(D) , inf−→QM

0,n(D)

EQ
M

y−1

{
n∑

t=0

log

(
QMt (·|Yt−1, Xt)

ΠQM

t (·|Yt−1)
(Yt)

)}
(5.15)

= inf−→QM
0,n(D)

{
I(X0;Y0|Y−1 = y−1) +

n∑

t=1

I(Xt;Yt|Yt−1)

}
,(5.16)

where

−→
QM0,n(D) ,

{
QMt (dyt|yt−1, xt), t ∈ Nn0 :

1

n+ 1
EQ

M

y−1

{
n∑

t=0

‖Xt − Yt‖22

}
≤ D

}
.

Moreover, the distribution QGt (dyt|yt−1, xt) = QMt (dyt|yt−1, xt), t ∈ Nn0 , is realized
by

Yt = HtXt + (I −Ht)At−1Yt−1 + V ct , Y−1 = y−1, t ∈ Nn0 ,(5.17)

Ht , I −∆tΛ
−1
t , KV c

t
, ∆tH

T

t � 0,(5.18)

Λt = At−1∆t−1A
T

t−1 +KWt−1
, Λ0 = given,(5.19)

1

n+ 1

n∑

t=0

trace (∆t) ≤ D, trace (∆t) , EQ
M

y−1

{
‖Xt − Yt‖22

}
≡ Dt.(5.20)
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Furthermore, the above realization satisfies

X̂t|t−1 = At−1Yt−1, X̂t|t = Yt.(5.21)

(2) The characterization of the Gaussian NRDF in (1) is equivalent to the fol-
lowing optimization problem:

Rna
0,n(D) = inf

∆t∈Sp×p
+ , t∈Nn

0 :
∑n

t=0 trace(∆t)≤D

1

2

n∑

t=0

log

{
|Λt|
|∆t|

}
(5.22a)

subject to

0 � ∆t � Λt, t ∈ Nn0 ,(5.22b)

Λt = At−1∆t−1A
T

t−1 +KWt−1 , Λ0 = given, t ∈ Nn1 .(5.22c)

For the rest of the statements it is assumed that KWt
∈ Sp×p++ , t ∈ Nn0 .

The Lagrangian functional for the above optimization problem is

L({∆t,Λt}nt=0, θ, {F 1
t , F

2
t }nt=0)

=

(
1

2
log |Λ0| − trace

(
F 2

0 Λ0

))

+

n−1∑

t=0

{
1

2
log |Bt∆t + I| − 1

2
log |∆t|+ trace

([
F 2
t − F 1

t

]
∆t

)

− trace
(
F 2
t+1 (At∆tA

T

t +KWt
)
)

+ θ trace(∆t)

}

− 1

2
log |∆n|+ θ trace(∆n) + trace

([
F 2
n − F 1

n

]
∆n

)
, t ∈ Nn0 ,

(5.23)

where Bt , AT
tK
−1
Wt
At, θ ∈ [0,∞) is a Lagrange multiplier of the MSE constraint,

and F jt ∈ Sn×n+ , j = 1, 2, are the matrix Lagrange multipliers for 0 � ∆t � Λt, t ∈
Nn0 . The necessary and sufficient conditions for ∆∗t ∈ S

p×p
+ , t ∈ Nn0 , to achieve the

minimum are given by the following equations:

(5.24)
∂L({∆t,Λt}nt=0, θ, {F 1

t , F
2
t }nt=0)

∂∆t

∣∣∣∣
∆=∆∗,Λ=Λ∗

= 0, t ∈ Nn0 .

For t = n,

(5.25) ∆∗,−1
n = 2

(
θI − F 1

n + F 2
n

)
.

If ∆∗n � 0, then

(5.26) ∆∗,−1
n = 2

(
θI + F 2

n

)
=⇒ ∆∗n =

1

2

(
θI + F 2

n

)−1
.

For t = n− 1, . . . , 0,

1

2
(I +Bt∆

∗
t )
−1Bt −

1

2
∆∗,−1
t − F 1

t + F 2
t + θI −ATt F 2

t+1At = 0.

If ∆∗t � 0, then

(5.27) (I +Bt∆
∗
t )
−1Bt −∆∗,−1

t + 2
(
θI + F 2

t

)
− 2AT

tF
2
t+1At = 0,
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or equivalently
(
−I

2

)
∆∗t + ∆∗t

(
−I

2

)
−∆∗tBt∆

∗
t + Υ−1

t = 0, t ∈ Nn−1
0 ,(5.28)

Υt , 2
(
θI + F 2

t −ATt F 2
t+1At

)
.(5.29)

The complementary slackness conditions are

θ

(
n∑

t=0

trace(∆∗t )−D(n+ 1)

)
= 0, θ ≥ 0,(5.30a)

n∑

t=0

trace(∆∗t ) ≤ D(n+ 1),(5.30b)

∆∗t � 0,∆∗t − Λ∗t � 0, trace
(
F 1
t ∆∗t

)
= 0, F 2

t (∆∗t − Λ∗t ) = 0, F 1
t � 0, F 2

t � 0,(5.30c)

where t ∈ Nn0 and Λ∗t is given by (5.22c) for ∆∗t .

Proof. See Appendix A.

Remark 5. Note that (5.28) is of the form of a Riccati equation, with a terminal
condition given by (5.26). Thus, it is possible to apply properties of Riccati equations
to analyze the solutions of such an equation.

In the next remark, we apply Theorem 5.3 to independent, time-varying vector-
valued Gaussian sources, with correlated spatial components.

Remark 6 (application of Theorem 5.3). Consider a source described by an inde-
pendent, vector-valued zero mean Gaussian process Xt, i.e., N (0;KXt

),KXt
∈ Sp×p+ ,

t ∈ Nn0 , with correlated spatial components. This is a degenerate version of (5.1) if we
set At = 0. By (5.17), the optimal realization that corresponds to this source process
degenerates to Yt = HtXt + V ct , t ∈ Nn0 , where Ht is given by (5.18), with Λt = KXt .
The optimization problem in (5.22) degenerates to

(5.31a) Rna
0,n(D) = inf

∆t∈Sp×p
+ , t∈Nn

0 :
∑n

t=0 trace(∆t)≤D

1

2

n∑

t=0

log

{
|KXt

|
|∆t|

}
,

subject to

(5.31b) 0 � ∆t � KXt
, t ∈ Nn0 .

By the KKT conditions of Theorem 5.3, then

(5.32) ∆∗,−1
t = 2

(
θI + F 2

t

)
=⇒ ∆∗t =

1

2

(
θI + F 2

t

)−1
,

where F 1
t = 0 because if ∆∗t is singular, then it gives infinite value of mutual infor-

mation. By (5.32), we deduce that ∆∗t and F 2
t have spectral representations with

the same unitary matrix, hence ∆∗tF
2
t = F 2

t ∆∗t , t ∈ Nn0 , i.e., they commute. Let
F 2
t , UΛF 2

t
UT , where ΛF 2

t
is a diagonal matrix with entries the eigenvalues of matrix

F 2
t . Then, ∆∗t can be written as ∆∗t = UΛ∆∗tU

T . Note that unitary matrix U is a de-
sign parameter. Complementary slackness condition (5.30c), i.e., F 2

t (∆∗t −KXt
) = 0,

can be written as

UΛF 2
t
UT

(
UΛ∆∗tU

T −KXt

)
= 0⇔ ΛF 2

t
Λ∆∗t = ΛF 2

t
UTKXt

U.(5.33)
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3750 STAVROU, CHARALAMBOUS, CHARALAMBOUS, AND LOYKA

As it can be seen in (5.33), since U is a design parameter, one can choose unitary
matrix U such that UTKXt

U is diagonal (i.e., if KXt
= V ΛKXt

V T , then U = V T ).
As a result, ∆∗t , KXt

and F 2
t have spectral representations with the same unitary

matrix and commute. Next, we analyze the feasible set of solutions that correspond
to the optimization problem (5.31) if KXt ∈ S

p×p
++ .

(i) 0 ≺ KXt
� ∆t (0 ≺ KXt

≺ ∆t included). In this case, the rate is zero.

(ii) 0 ≺ ∆t ≺ KXt . Since F 2
t , ∆∗t , and KXt commute, then µKXt,i

− µ∆∗t ,i =
µKXt−∆∗t ,i > 0, where µKXt−∆∗t ,i is the ith-eigenvalue of KXt −∆∗t . As a result,

µF 2
t ,i

= 0 and from (5.32) we deduce that ∆∗t = 1
2θ I.

(iii) 0 ≺ ∆t � KXt (0 ≺ KXt ≺ ∆t excluded). Since F 2
t , ∆∗t , and KXt commute,

µKXt,i
− µ∆∗t ,i = µKXt−∆∗t ,i ≥ 0. Hence, if µKXt−∆∗t ,i = 0 (which also implies

that µF 2
t ,i

> 0), µKXt,i
= µ∆∗t ,i. Otherwise, if µKXt−∆∗t ,i > 0 (i.e., µF 2

t ,i
= 0),

then µKXt,i
> µ∆∗t ,i.

(iv) 0 ≺ ∆t � KXt and 0 ≺ KXt � ∆t. In these cases, one can show that there exist
∆t with a lower rate that lies within the other cases.

Using the previous analysis on the complementary slackness conditions, and
(5.32), we observe that µ∆∗t ,i = mini{ 1

2θ , µKXt,i
} for each t and ∀i. Hence, the so-

lution of the optimization problem of (5.31) is precisely the solution of the classical
reverse-waterfilling algorithm, i.e.,

(5.34) Rna
0,n(D) =

n∑

t=0

Rnat (∆∗t ) =
1

2

n∑

t=0

p∑

i=1

log

(
µKXt ,i

µ∆∗t ,i

)
,

where

Rnat (∆∗t ) =
1

2
log

(
|KXt |
|∆∗t |

)
,(5.35)

µ∆∗t ,i =

{
1
2θ if 1

2θ < µKXt ,i,

µKXt ,i
if 1

2θ ≥ µKXt ,i,

at each t and all i,(5.36)

and θ is chosen such that the distortion constraint is satisfied.

In the following example, we consider the optimization problem of (5.31a) in
Remark 6 to derive a closed form solution for Rna0,n when n = 1. To do so, we first
apply the KKT conditions at the last time-step of the optimization problem (5.31a)
and then we move sequentially backward in time.

Example 1 (closed form solution of a memoryless R2-valued time-varying Gaus-
sian process). We consider a memoryless R2-valued time-varying Gaussian correlated
process {Xt : t = 0, 1} with covariance matrix KXt ∈ S2×2

++ , t = 0, 1, given by

KXt
=

[
σ2
Xt,1

σ2
Xt,12

σ2
Xt,12

σ2
Xt,2

]
.(5.37)

Full-rank solution. We consider the case for which ∆∗t ≺ KXt
, t = 0, 1. From

the complementary slackness conditions, this means that µ∆t,i − µKXt ,i
< 06 and

µF 2
t ,i

= 0, for i = 1, 2, t = 0, 1. Upon solving (5.32) we obtain

(5.38) ∆∗t = Ut

[
1
2θ 0
0 1

2θ

]
UT

t ,

6Where µ•,i denotes the ith-eigenvalue of • matrix.
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where Ut ∈ R2×2 is the unitary matrix that diagonalizes ∆∗t . This means that
trace(∆∗t ) = 1

θ , and using the distortion condition we obtain that θ = 1/D. Then,
the objective function, given in (5.31a), becomes

(5.39) Rna
0,1(D) =

1

2

1∑

t=0

2∑

i=1

log

(
2µKXt ,i

D

)

with D ∈ (0, 2 min{µKXt,i
}), i = 1, 2, t = 0, 1.

Rank-deficient solution. In this example, we will consider one of the many possible
cases (other cases can be solved likewise):

at t = 1: µ∆∗1 ,1 − µKX1
,1 < 0, which in turn means µF 2

1 ,1
= 0 and µ∆∗1 ,2 −

µKX1
,2 = 0 which means that µF 2

1 ,2
> 0;

at t = 0: µ∆∗0 ,1 − µKX0
,1 = 0, which in turn means µF 2

0 ,1
> 0 and µ∆∗0 ,2 −

µKX0
,2 = 0 which means that µF 2

0 ,2
> 0.

at t = 1: for this case, we obtain from (5.32) that

∆∗1 = U1

[
1
2θ 0
0 1

2(θ+µ
F2
1 ,2

)

]
UT

1 ,(5.40)

where U1 ∈ R2×2 is the unitary matrix that diagonalizes ∆∗1 and
the eigenvalues of ∆∗1 are given in a decreasing order, i.e., µ∆∗1 ,1 ≥
µ∆∗1 ,2, and then, using the objective function of (5.31a) evaluated
at t = 1, we obtain

Rna
1 (∆∗1)

(b)
=

1

2
log

(
µKX1

,1

1
2θ

)
+

1

2
log


 µKX1

,2

1
2(θ+µ

F2
1 ,2

)




︸ ︷︷ ︸
=0

(c)
=

1

2
log

(
µKX1

,1

1
2θ

)
,

(5.41)

where (b) follows from (5.40) and (c) from the fact that µ∆∗1 ,2 =

µKX1
,2. Therefore, at t = 1, trace(∆∗1) = 1

2θ + µKX1
,2.

at t = 0: for this case, we obtain from (5.32) that

∆∗0 = U ′0




1
2(θ+µ

F2
0 ,1

) 0

0 1
2(θ+µ

F2
0 ,2

)


U ′T0 ,(5.42)

where U ′0 ∈ R2×2 is the unitary matrix that diagonalizes ∆∗0. Since
µ∆∗0 ,i = µKX0

,i, i = 1, 2, Rna
0 (∆∗0) = 0 and trace(∆∗0) = µKX0

,1 +
µKX0

,2.
Overall solution: invoking the distortion constraint, we get

1

2θ
= 2D − (µKX0

,1 + µKX0
,2 + µKX1

,2),(5.43)

and the objective function, given in (5.31a), becomes

Rna
0,1(D) =

1

2
log

(
µKX1

,1

2D − (µKX0
,1 + µKX0

,2 + µKX1
,2)

)
,(5.44)

with 2D ∈ (µKX0
,1+µKX0

,2+µKX1
,2,
∑1
t=0

∑2
i=1 µKXt ,i

}), i = 1, 2,
t = 0, 1.
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Next, we approximate the characterization of the NRDF in (5.22) in terms of a
dynamic time-space reverse-waterfilling.

Proposition 5.4 (upper bound to (5.22)). An upper bound of the solution to
the characterization (5.22) is given by

(5.45) ∆t , min
{

∆†t ,Λt
}
,

where min{∆†t ,Λt} , St diag(min{µ∆†t ,i
, µΛt,i})S−1

t , St ∈ Rp×p is a nonsingular ma-

trix, µ•,i is the ith eigenvalue of matrix •, ∆†t ∈ S
p×p
++ , t ∈ Nn0 is the unique solution

of

(
−I

2

)
∆†t + ∆†t

(
−I

2

)
−∆†tBt∆

†
t +

1

2θ
I = 0 ∀t ∈ Nn−1

0 ,(5.46a)

∆†n =
1

2θ
I,(5.46b)

Λt is given by (5.22c) using ∆t−1, with θ ∈ (0,∞) chosen to satisfy

1

n+ 1

n∑

t=0

trace(∆t) = D.(5.47)

This upper bound gives the optimal solution for the case which ∆t ≺ Λt ∀t ∈ Nn0 .

Proof. See Appendix B.

Based on the solution provided in Proposition 5.4, we propose Algorithm 1 for
solving the problem numerically to a good approximation.

Next, we consider the case in which there is an MSE distortion constraint at each
time. We refer to it as pointwise MSE distortion. It can be shown that the problem
can be treated as a special case of Lemma 5.2 and Theorem 5.3 (where the constraint
is for the total MSE distortion).

Corollary 5.5 (Rna
0,n(D) of multidimensional Gauss–Markov process with

pointwise MSE distortion). Consider the Gauss–Markov process in Definition 5.1,
with the total distortion constraint 1

n+1E
Q
µ {
∑n
t=0 ‖Xt−Yt‖22} ≤ D replaced by a point-

wise MSE distortion constraint defined by

EQµ
{
‖Xt − Yt‖22

}
≤ Dt, Dt ∈ [0,∞), t ∈ Nn0 .

Then, the following hold:
(1) All statements of Lemma 5.2 hold with the characterization of the Gaussian

NRDF denoted by Rna
0,n(D0, . . . , Dn) and the corresponding optimization problem to

be

Rna
0,n(D0, . . . , Dn) = inf

−→Q
Ht,KV c

t
0,n (D0,...,Dn)

n∑

t=0

I
(
Xt;Yt

∣∣Y t−1
)

= inf
−→Q

Ht,KV c
t

0,n (D0,...,Dn)

1

2

n∑

t=0

log max

{
1,
|Λt|
|∆t|

}
,(5.49)D
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Algorithm 1 Dynamic reverse-waterfilling algorithm of Proposition 5.4.

Initialize: number of time-steps n; distortion level D (D ≤ Dmax
0,n ); error tolerance

ε; nominal minimum value θmin ≈ 0; initial variance Λ0 = ΣX0
of the initial state

X0, values of At and KWt of (5.1).
Set θ = 1/2D; flag = 0.
while flag = 0 do

Compute ∆t ∀ t as follows:
for t = 0 : n do

Compute ∆†t according to (5.46a), (5.46b).
Compute ∆t according to (5.45).
if t < n then

Compute Λt+1 according to (5.22c).
end if

end for
if | 1

n+1

∑n
t=0 trace(∆t)−D| ≤ ε then

flag← 1
else

Readjust θ as follows:

θ ← max

{
θmin, θ − γ

(
D − 1

n+ 1

n∑

t=0

trace(∆t)

)}
,(5.48)

where γ ∈ (0, 1] is a proportionality gain; its choice affects the rate of conver-
gence.

end if
end while
Output: ∆t, Λt, for D ∀t ∈ Nn0 .

where

−→
Q
Ht,KV c

t
0,n (D0, . . . , Dn)(5.50)

,
{

(Ht,KV c
t

), t ∈ Nn0 :

EQ
G

µ

{
‖(I −Ht)(Xt − X̂t|t−1)‖22

}
= trace(∆t) ≤ Dt, t ∈ Nn0

}
,

and Λt,∆t, satisfy recursions (5.6), (5.7), (5.12)–(5.13b).

(2) Theorem 5.3(1) holds with
−→
QM0,n(D) replaced by

−→
QM0,n(D0, . . . , Dn), defined by

(5.51)
−→
QM0,n(D0, . . . , Dn) ,

{
QMt (dyt|yt−1, xt), t ∈ Nn0 : EQ

M

µ

{
‖Xt − Yt‖22

}
≤Dt, t ∈ Nn0

}
.

(3) Theorem 5.3(2) holds with Rna
0,n(D) replaced by

(5.52) Rna
0,n(D0, . . . , Dn) = inf

∆t∈Sp×p
+ , trace(∆t)≤Dt, t=0,...,n

1

2

n∑

t=0

log max

{
1,
|Λt|
|∆t|

}

for some Dt ∈ [0,∞), t ∈ Nn0 .
For the rest of the statements it is assumed that KWt

∈ Sp×p++ , t ∈ Nn0 .
Then the analogue of Theorem 5.3(2) holds, as follows.
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The Lagrangian functional for (5.52) is

LLL({∆t,Λt}nt=0, {θt}nt=0, {F 1
t , F

2
t }nt=0)

=

(
1

2
log |Λ0| − trace

(
F 2

0 Λ0

))
−

n∑

t=0

θtDt

+

n−1∑

t=0

{
1

2
log |KWt |+

1

2
log |Bt∆t + I| − 1

2
log |∆t|+ trace(

[
F 2
t − F 1

t

]
∆t)

− trace
(
F 2
t+1 (At∆tA

T

t +KWt
)
)

+ θt trace(∆t)

}

− 1

2
log |∆n|+ θn trace(∆n) + trace

([
F 2
n − F 1

n

]
∆n

)
, Bt , AT

tK
−1
Wt
At,

(5.53)

where θt ∈ [0,∞), t ∈ Nn0 , are the Lagrange multipliers for the MSE constraint, and
F jt ∈ S

p×p
+ , j = 1, 2, are the matrix Lagrange multipliers for 0 � ∆t � Λt, t ∈

Nn0 . The necessary and sufficient conditions for ∆∗t ∈ S
p×p
+ , t ∈ Nn0 , to achieve the

minimum are given by the following equations.
For t = n,

∆∗,−1
n = 2

(
θnI − F 1

n + F 2
n

)
.

If ∆∗n � 0, then

(5.54) ∆∗,−1
n = 2

(
θnI + F 2

n

)
.

For t ∈ Nn−1
0 ,

1

2
(I +Bt∆

∗
t )
−1Bt −

1

2
∆∗,−1
t − F 1

t + F 2
t + θtI −ATt F 2

t+1At = 0.

If ∆∗t � 0, then

(I +Bt∆
∗
t )
−1Bt −∆∗,−1

t + 2
(
θtI + F 2

t

)
− 2AT

tF
2
t+1At = 0.(5.55)

Equations (5.54) and (5.55) are precisely as the ones in (5.26) and (5.27) with θ
replaced by θt, t ∈ Nn0 . In addition, the complementary slackness conditions are

θt (trace(∆∗t )−Dt) = 0, trace(∆∗t ) ≤ Dt, θt ≥ 0, t ∈ Nn0 ,(5.56a)

∆∗t � 0,∆∗t − Λ∗t � 0, F 1
t � 0, F 2

t � 0, trace(F 1
t ∆∗t ) = 0, F 2

t (∆∗t − Λ∗t ) = 0.(5.56b)

Proof. This follows directly from Lemma 5.2 and Theorem 5.3.

Similar to Proposition 5.4, in what follows we approximate the characterization
of the NRDF obtained in (5.52) in terms of a dynamic time-space reverse-waterfilling.

Proposition 5.6 (upper bound on the characterization of (5.52)). The solution

to the characterization (5.52) is given by ∆t of (5.45), where ∆†t ∈ S
p×p
++ , t ∈ Nn0 , is

the unique solution of
(
−I

2

)
∆†t + ∆†t

(
−I

2

)
−∆†tBt∆

†
t +

1

2θt
I = 0 ∀t ∈ Nn−1

0 ,(5.57a)

∆†n =
1

2θn
I,(5.57b)
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Λt is given by (5.22c) using ∆t−1, with θ ∈ (0,∞) chosen to satisfy

trace(∆t) = Dt for each t.(5.58)

This upper bound gives the optimal solution for the case which ∆t ≺ Λt, ∀t ∈ Nn0 .

Proof. The proof is similar to the one of Proposition 5.4, hence we omit it.

Based on the solution provided in Proposition 5.6, we propose Algorithm 2 for
solving the problem numerically to a good approximation.

Algorithm 2 Dynamic reverse-waterfilling algorithm of Proposition 5.6.

Initialize: number of time-steps n; distortion levels D = (D0, . . . , Dt) (Dt ≤
Dmax
t ∀t ∈ Nn0 ); error tolerance ε; nominal minimum value θmin

t ≈ 0 ∀t; initial
variance Λ0 = ΣX0

of the initial state X0, values of At and KWt
of (5.1).

Set θt = 1/2Dt ∀t ∈ Nn0 ;
for t = 0:length(D) do

flag = 0.
while flag = 0 do

Compute ∆t ∀t as follows:
if t < n then

Compute ∆†t according to (5.57a) and ∆t according to (5.45).
Compute Λt+1 according to (5.22c).

else
Compute ∆†n according to (5.57b) and ∆n according to (5.45).

end if
if | trace(∆t)−Dt| ≤ ε then

flag← 1
else

Readjust θt as follows:

θt ← max
{
θmin
t , θt − γt(Dt − trace(∆t))

}
,(5.59)

where γt ∈ (0, 1] ∀t is a proportionality gain; its choice affects the rate of
convergence at each t.

end if
end while

end for
Output: ∆t, Λt for each Dt, t ∈ Nn0 .

The following remark is a direct consequence of Theorem 5.3 and illustrates the
connection between Rna

0,n(D) and D0,n(Rna) given by (4.1).

Remark 7. From Theorem 5.3, the NRDF of the Gaussian process (5.1) with total
MSE distortion is given by

Rna
0,n(D) =

1

2

n∑

t=0

p∑

i=1

log

{
max

(
1,
µΛt,i

µ∆t,i

)}
(a)
≡

n∑

t=0

p∑

i=1

Rna
t,i(µ∆t,i),(5.60)

where (a) follows if we let

Rna
t,i(µ∆t,i) ,

1

2
log

{
max

(
1,
µΛt,i

µ∆t,i

)}
, t ∈ Nn0 , i = 1, . . . , p.(5.61)
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3756 STAVROU, CHARALAMBOUS, CHARALAMBOUS, AND LOYKA

By (5.61) we obtain

µ∆t,i = µΛt,ie
−2Rna

t,i , t ∈ Nn0 , i = 1, . . . , p.(5.62)

Utilizing (5.22a), we have

D =
1

n+ 1

n∑

t=0

µ∆t
=

1

n+ 1

n∑

t=0

p∑

i=1

µ∆t,i, µ∆t
,

p∑

i=1

µ∆t,i.(5.63)

Substituting (5.62) into (5.63) we obtain

D0,n(Rna) =
1

n+ 1

n∑

t=0

µ∆t
=

1

n+ 1

n∑

t=0

p∑

i=1

µΛt,ie
−2Rna

t,i .(5.64)

A similar result to Remark 7 holds when we consider the pointwise MSE distortion.
This is obvious, hence we omit it.

5.2. Universal lower bound on MSE. Next, we utilize the parametric ex-
pressions of the full rank solution of the Gaussian NRDF given in Theorem 5.3(2) to
derive a lower bound on the total and pointwise MSE given in terms of conditional
mutual information I(Xn;Y n0 |Y −1).

Theorem 5.7 (universal lower bound on total MSE). Let {Xt : t ∈ Nn0} be the

multidimensional Gauss–Markov process given by (5.1) and let {Ỹt : t ∈ Nn0} be any
estimator (not necessarily Gaussian) of {Xt : t ∈ Nn0}. The total MSE is bounded
below by

1

n+ 1

n∑

t=0

E
{
‖Xt − Ỹt‖22

}
≥ 1

n+ 1

n∑

t=0

p∑

i=1

µΛt,ie
−2I(Xt,i;Ỹt,i|Ỹt−1,i).(5.65)

Proof. Let D = 1
n+1

∑n
t=0 E{‖Xt − Ỹt‖22}, where

E
{
‖Xt − Ỹt‖22

}
=

p∑

i=1

µ∆t,i with D ∈ [0,∞).

Since, in general, Rna
t,i ≤ I(Xt,i; Ỹt,i|Ỹt−1,i), t ∈ Nn0 , i = 1, . . . , p, then by (5.64), we

obtain

1

n+ 1

n∑

t=0

E
{
‖Xt − Ỹt‖22

}
= D0,n(Rna) =

1

n+ 1

n∑

t=0

p∑

i=1

µΛt,ie
−2Rna

t,i

≥ 1

n+ 1

n∑

t=0

p∑

i=1

µΛt,ie
−2I(Xt,i;Ỹt,i|Ỹt−1,i),(5.66)

which is the desired result. This completes the proof.

In the next corollary, we specialize the result of Theorem 5.7 to pointwise MSE
distortion.

Corollary 5.8 (universal lower bound on pointwise MSE). Let {Xt : t ∈ Nn0}
be the multidimensional Gauss–Markov process given by (5.1) and let {Ỹt : t ∈ Nn0}
be any estimator (not necessarily Gaussian) of {Xt : t ∈ Nn0}. The pointwise MSE
is bounded below by

E
{
‖Xt − Ỹt‖22

}
≥

p∑

i=1

µΛt,ie
−2I(Xt,i;Ỹt,i|Ỹt−1,i) for each t ∈ Nn0 .(5.67)
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Proof. The proof is a special case of the derivation in Theorem 5.7.

It should be noted that if we set Ỹt = X̂t|t−1 = At−1Yt−1 in Theorem 5.7, then
we have the lower bound (5.65).

In the next remark, we relate degenerated versions of the lower bound given by
(5.65) to existing results in the literature.

Remark 8 (relations to existing results).
(a) (See [32, Theorem 5.8.1], [35].) Let X = (X1, . . . , Xp) be an Rp-valued Gaus-

sian vector with distribution X ∼ N (0; ΓX) and let Y = (Y1, . . . , Yp) be its
reproduction vector. Then, for any D > 0,

R(D) , inf
Q(dy|x):E‖X−Y ‖22≤D

I(X;Y ) =
1

2

p∑

i=1

log

{
max

(
1,
λi
ξ

)}
,(5.68)

where {λi : i = 1, . . . , p} are the eigenvalues of ΓX and ξ > 0 is a constant
uniquely determined by

∑p
i=1 min{λi, ξ} = D. Note that the solution of

classical RDF in (5.68) is based on the reverse-waterfilling method (see [32,
Lemma 5.8.2]). The above results are also obtained as a special case of
Remark 6 if we assume an IID sequence {Xt : t ∈ Nn0}.

(b) Assume X ∼ N(0;σ2
X). By [32, Theorem 1.8.7] the following holds:

R(D) = min
Q(dy|x): E‖X−Y ‖22≤D

I(X;Y ) =
1

2
log

{
max

(
1,
σ2
X

D

)}
, D ≥ 0,

D(R) = min
Q(dy|x): I(X;Y )≤R

E
{
‖X − Y ‖22

}
= σ2

Xe
−2R.

The realization scheme to achieve the classical RDF or the distortion rate
function is the following:

Y =

(
1− D

σ2
X

)
X + V c, V c ∼ N

(
0;D

(
1− D

σ2
X

))
.(5.69)

Note that (5.69) is a degenerated version of (5.17) assuming the model of
(5.1) generates IID sequence {Xt : t ∈ Nn0} as in (a), and the connection

to Theorem 5.3 is established by setting Ht = 1 − D
σ2
X

, X̂t|t−1 = 0, and

Ṽ ct ∼ N(0; 1).
(c) (Lower bound on MSE [32, 1.8.8], [28].) Given a Gaussian RV X ∼ N(0;σ2

X),

then for any real-valued RV Ỹ (not necessarily Gaussian) the MSE is bounded
below by

E‖X − Ỹ ‖22 ≥ σ2
Xe
−2I(X;Ȳ ).(5.70)

The RDF of the Gaussian RV X ∼ N (0;σ2
X) and the lower bound in (5.70)

are utilized in [28, 32] to derive optimal coding and decoding schemes for trans-
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System 
(fully-observed)

Filter

AWGN  
Channel

Encoder Decoder

Xt YtKt + Σ
+

Σ+

_
Σ
+

+

V c
t

<latexit sha1_base64="MR1YSxxBTcSwaZrFaRC9qXt3ZwU=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXjxWMG2hjWWz3bRLN5uwOxFK6G/w4kHFq3/Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eCwaZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2glv9nDR9arVN2aOwNZJl5BqlCg0at8dfsJy2KukElqTMdzUwxyqlEwySflbmZ4StmIDnjHUkVjboJ8duyEnFqlT6JE21JIZurviZzGxozj0HbGFIdm0ZuK/3mdDKOrIBcqzZArNl8UZZJgQqafk77QnKEcW0KZFvZWwoZUU4Y2n7INwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAg4Ble4c1Rzovz7nzMW1ecYuYI/sD5/AEYu45h</latexit><latexit sha1_base64="MR1YSxxBTcSwaZrFaRC9qXt3ZwU=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXjxWMG2hjWWz3bRLN5uwOxFK6G/w4kHFq3/Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eCwaZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2glv9nDR9arVN2aOwNZJl5BqlCg0at8dfsJy2KukElqTMdzUwxyqlEwySflbmZ4StmIDnjHUkVjboJ8duyEnFqlT6JE21JIZurviZzGxozj0HbGFIdm0ZuK/3mdDKOrIBcqzZArNl8UZZJgQqafk77QnKEcW0KZFvZWwoZUU4Y2n7INwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAg4Ble4c1Rzovz7nzMW1ecYuYI/sD5/AEYu45h</latexit><latexit sha1_base64="MR1YSxxBTcSwaZrFaRC9qXt3ZwU=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXjxWMG2hjWWz3bRLN5uwOxFK6G/w4kHFq3/Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eCwaZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2glv9nDR9arVN2aOwNZJl5BqlCg0at8dfsJy2KukElqTMdzUwxyqlEwySflbmZ4StmIDnjHUkVjboJ8duyEnFqlT6JE21JIZurviZzGxozj0HbGFIdm0ZuK/3mdDKOrIBcqzZArNl8UZZJgQqafk77QnKEcW0KZFvZWwoZUU4Y2n7INwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAg4Ble4c1Rzovz7nzMW1ecYuYI/sD5/AEYu45h</latexit>

Ht
<latexit sha1_base64="A+oSekdXQKEJDtSwDsvow/R7dmA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXnqsaGyhDWWz3bRLN5uwOxFK6E/w4kHFq//Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eDw0SSZZtxniUx0O6SGS6G4jwIlb6ea0ziUvBWObqd+64lrIxL1gOOUBzEdKBEJRtFK940e9ipVt+bOQJaJV5AqFGj2Kl/dfsKymCtkkhrT8dwUg5xqFEzySbmbGZ5SNqID3rFU0ZibIJ+dOiGnVumTKNG2FJKZ+nsip7Ex4zi0nTHFoVn0puJ/XifD6CrIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nbEPwFl9eJv557brm3l1U6zdFGiU4hhM4Aw8uoQ4NaIIPDAbwDK/w5kjnxXl3PuatK04xcwR/4Hz+AJMUjX4=</latexit><latexit sha1_base64="A+oSekdXQKEJDtSwDsvow/R7dmA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXnqsaGyhDWWz3bRLN5uwOxFK6E/w4kHFq//Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eDw0SSZZtxniUx0O6SGS6G4jwIlb6ea0ziUvBWObqd+64lrIxL1gOOUBzEdKBEJRtFK940e9ipVt+bOQJaJV5AqFGj2Kl/dfsKymCtkkhrT8dwUg5xqFEzySbmbGZ5SNqID3rFU0ZibIJ+dOiGnVumTKNG2FJKZ+nsip7Ex4zi0nTHFoVn0puJ/XifD6CrIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nbEPwFl9eJv557brm3l1U6zdFGiU4hhM4Aw8uoQ4NaIIPDAbwDK/w5kjnxXl3PuatK04xcwR/4Hz+AJMUjX4=</latexit><latexit sha1_base64="A+oSekdXQKEJDtSwDsvow/R7dmA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXnqsaGyhDWWz3bRLN5uwOxFK6E/w4kHFq//Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eDw0SSZZtxniUx0O6SGS6G4jwIlb6ea0ziUvBWObqd+64lrIxL1gOOUBzEdKBEJRtFK940e9ipVt+bOQJaJV5AqFGj2Kl/dfsKymCtkkhrT8dwUg5xqFEzySbmbGZ5SNqID3rFU0ZibIJ+dOiGnVumTKNG2FJKZ+nsip7Ex4zi0nTHFoVn0puJ/XifD6CrIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nbEPwFl9eJv557brm3l1U6zdFGiU4hhM4Aw8uoQ4NaIIPDAbwDK/w5kjnxXl3PuatK04xcwR/4Hz+AJMUjX4=</latexit>

eKt

At�1Yt�1
<latexit sha1_base64="PcoTCE2gXwrvoDjOAHEHFqcdP5o=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZKI4Mep4sVjBWMrbSyb7aZdutmE3YlSQv+HFw8qXv0x3vw3btsctPXBMI/3ZtjZFySCa3Scb6uwsLi0vFJcLa2tb2xulbd37nScKso8GotYNQOimeCSechRsGaiGIkCwRrB4GrsNx6Z0jyWtzhMmB+RnuQhpwSN9HDZyfDIHd1PW6dccarOBPY8cXNSgRz1Tvmr3Y1pGjGJVBCtW66ToJ8RhZwKNiq1U80SQgekx1qGShIx7WeTq0f2gVG6dhgrUxLtifp7IyOR1sMoMJMRwb6e9cbif14rxfDMz7hMUmSSTh8KU2FjbI8jsLtcMYpiaAihiptbbdonilA0QZVMCO7sl+eJd1w9rzo3J5XaRZ5GEfZgHw7BhVOowTXUwQMKCp7hFd6sJ+vFerc+pqMFK9/ZhT+wPn8ADcmRvQ==</latexit><latexit sha1_base64="PcoTCE2gXwrvoDjOAHEHFqcdP5o=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZKI4Mep4sVjBWMrbSyb7aZdutmE3YlSQv+HFw8qXv0x3vw3btsctPXBMI/3ZtjZFySCa3Scb6uwsLi0vFJcLa2tb2xulbd37nScKso8GotYNQOimeCSechRsGaiGIkCwRrB4GrsNx6Z0jyWtzhMmB+RnuQhpwSN9HDZyfDIHd1PW6dccarOBPY8cXNSgRz1Tvmr3Y1pGjGJVBCtW66ToJ8RhZwKNiq1U80SQgekx1qGShIx7WeTq0f2gVG6dhgrUxLtifp7IyOR1sMoMJMRwb6e9cbif14rxfDMz7hMUmSSTh8KU2FjbI8jsLtcMYpiaAihiptbbdonilA0QZVMCO7sl+eJd1w9rzo3J5XaRZ5GEfZgHw7BhVOowTXUwQMKCp7hFd6sJ+vFerc+pqMFK9/ZhT+wPn8ADcmRvQ==</latexit><latexit sha1_base64="PcoTCE2gXwrvoDjOAHEHFqcdP5o=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZKI4Mep4sVjBWMrbSyb7aZdutmE3YlSQv+HFw8qXv0x3vw3btsctPXBMI/3ZtjZFySCa3Scb6uwsLi0vFJcLa2tb2xulbd37nScKso8GotYNQOimeCSechRsGaiGIkCwRrB4GrsNx6Z0jyWtzhMmB+RnuQhpwSN9HDZyfDIHd1PW6dccarOBPY8cXNSgRz1Tvmr3Y1pGjGJVBCtW66ToJ8RhZwKNiq1U80SQgekx1qGShIx7WeTq0f2gVG6dhgrUxLtifp7IyOR1sMoMJMRwb6e9cbif14rxfDMz7hMUmSSTh8KU2FjbI8jsLtcMYpiaAihiptbbdonilA0QZVMCO7sl+eJd1w9rzo3J5XaRZ5GEfZgHw7BhVOowTXUwQMKCp7hFd6sJ+vFerc+pqMFK9/ZhT+wPn8ADcmRvQ==</latexit>

Fig. 3. Realization of the optimal nonstationary reproduction of Rna
0,n(D) given by (5.17) that

corresponds to the time-varying Gauss–Markov model of (5.1) subject to a total or pointwise MSE
distortion.

mitting a Gaussian message θ ∼ N(0;σ2
θ) over an AWGN channel with feedback,

Yt = Xt(θ, Y
t−1) + V ct , t ∈ Nn0 , where {V ct : t ∈ Nn0} is an IID Gaussian process.

Although we do not pursue such problems in this paper, we note that Theorems 5.3
and 5.7 are necessary in order to derive optimal coding schemes for additive Gaussian
channels with memory (including additive Gaussian memoryless channels).

5.3. Realization of (5.17) via an {encoder, channel, decoder}. In this
section, we exemplify the relation between information-based estimation via NRDF
and the fact that the latter can also be seen as a realization of an {encoder, channel,

decoder} processing information optimally with zero-delay.
Realization with feedback. A realization of (5.17) by an {encoder, channel,

decoder} with feedback is shown in Figure 3.
Feedback encoder. This is an innovations encoder which introduces the estimation

error {Kt : t ∈ Nn0}, Kt , Xt − X̂t|t−1, where {Xt : t ∈ Nn0} is the Gaussian source

process and X̂t|t−1 = At−1Yt−1 is the a priori estimate of the filter; {Ht : t ∈ Nn0} is
a scaling matrix to be determined and has the structure of (5.18).

Feedback channel. This is an additive Gaussian noise channel of the form

K̃t = HtKt + V ct , V
c
t ∼ N (0; ∆tH

T

t ), t ∈ Nn0 ,(5.71)

where K̃t is the innovations process given by (5.13c).

Decoder. This is the a posteriori estimate of the filter X̂t|t = Yt, t ∈ Nn0 . Specifi-

cally, the decoder introduces the innovations process {K̃t : t ∈ Nn0} and the a priori

estimate of the filter X̂t|t−1 that both added a result into the a posteriori estimate

X̂t|t which is Yt at each time instant t.
Realization without feedback. A realization of (5.17) by an {encoder, channel,

decoder} without feedback can be derived as well.

5.4. Examples. In this section, we numerically compute the Gaussian NRDF of
the time-varying Gauss–Markov process (5.1), using the reverse-waterfilling solution
of Algorithms 1 and 2 that corresponds to Propositions 5.4 and 5.6. For Algorithm 2
we also give an example where we assume ∆t ≺ Λt ∀t and compare with the numer-
ical solution obtained via SDP in [20, equation (19)]. Moreover, we give the closed
form expression of a memoryless two-dimensional time-varying Gaussian source that
corresponds to the optimization problem of Remark 6.
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1
0

1 2

Time, [n]

10

2

Dimension, [p]

33

20

44

30

Distortion level

Reproduced Information level

Fig. 4. Dynamic reverse-waterfilling subject to a total MSE distortion for n = 3 time units.

Example 2 (nonasymptotic regime subject to total MSE distortion). For this ex-
ample, we choose p = 4, i.e., a four-dimensional source Xt, and a time horizon n = 3
for which we pick random values as entries of matrices {(At,KWt) : t = 0, . . . , 3} in
the range (0, 1), while KWt is chosen to be diagonal. We also choose the initial value
of the covariance matrix of (5.22c) to pick up random values as entries ΣX0

(hence,
Λ0 = ΣX0

). We choose the distortion level D = 1. We run Algorithm 1 for error
tolerance ε = 10−9 and an initial θ = θ0 to start our iterations (a good starting point
is θ0 = 1

2D ). Then, we proceed as follows:

(1) At t = 0, using (5.46a), we evaluate ∆†0. Then, from (5.45) we evaluate ∆0.
Next, from (5.22c), we evaluate Λ1 = A0∆0A

T
0 +KW0

.

(2) At t = 1, using (5.46a), we evaluate ∆†1 and subsequently, ∆1 and Λ2.
(3) Similarly, the procedure is repeated until t = n = 3. At n = 3 we evaluate

∆†3 using (5.46b).
(4) At the end, for the given value of θ, we check if | 1

n+1

∑n
t=0 trace(∆t)−D| ≤ ε.

If it does, we stop the iterations and the last evaluated value of θ is used to
find the solution of ∆t’s and subsequently Λt’s that when diagonalized give
the desired waterlevels.

(5) If the approximation criterion | 1
n+1

∑n
t=0 trace(∆t)−D| ≤ ε is not satisfied,

we update θ using (5.48); in this example we set γ = 0.1. We repeat the
previous procedure (steps (1)–(4)) with the new value of θ ∀t.

The final value of the reverse-waterfilling solution is found after 362 iterations and it
is shown in Figure 4. Then, the solution of (5.22) obtained via Algorithm 1 gives

1

4
Rna

0,3(D) =
1

2

1

4

3∑

t=0

log
|Λt|
|∆t|

= 4.8983 bits.

Example 3 (nonasymptotic regime subject to pointwise MSE distortion). For this
example, we choose p = 3, i.e., a three-dimensional source Xt, and a time horizon
n = 3 for which we pick random values as entries of matrices {(At,KWt

) : t = 0, . . . , 3}
in the range (0, 1) with KWt

being diagonal. We also choose the initial value of the
covariance matrix of (5.22c) to pick up random values as the entry of ΣX0

(hence,
Λ0 = ΣX0). We choose distortion levels (D0, D1, D2, D3) = (0.4, 1.3, 0.1, 0.4). We run
Algorithm 2 for error tolerance ε = 10−9 and initial θt = θt0 , t = 0, . . . , 3, to start
our iterations (a good starting point is θ0 = 1

2Dt
t = 0, . . . , 3). Then, we proceed as

follows:
(1) At t = 0, using (5.57a), we evaluate ∆†0. Then, from (5.45) we compute ∆0

and from (5.22c) we evaluate Λ1 = A0∆0A
T
0 +KW0

.
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0
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Dimension, [p]

2 2

Time, [n]

1

33
4

1.5

Distortion level
Reproduced Information level

Fig. 5. Dynamic reverse-waterfilling subject to a pointwise MSE distortion in time-domain for
n = 3 time units.

(2) At t = 1, using (5.57a), we evaluate ∆†1, and subsequently, ∆1 and Λ2.

(3) Similarly, the procedure is repeated until t = n = 3, where we compute ∆†3
from (5.57b).

(4) At the end, for each t and for the given value of θt, we check if | trace(∆t)−
Dt| ≤ ε. If it does, we stop the iterations to find that particular θt; the last
evaluated value of θt is then used to find the solution of matrix ∆t via (5.57a)
and (5.57b) for each t, which in turn when diagonalized gives the desired
waterlevels.

(5) If the approximation criterion | trace(∆t)−Dt| ≤ ε is not satisfied, we update
θt using (5.59); in this example we choose (γ0, γ1, γ2, γ3) = (0.3, 0.1, 0.95, 0.4).
We repeat the previous procedure (steps (1)–(4)) with the new value of θt for
the specific t. This procedure is repeated ∀t.

The final value of the reverse-waterfilling solution is found after (t = 0, t = 1, t =
2, t = 3) = (540, 543, 2715, 431) iterations and it is shown in Figure 5. Then, the
solution of (5.52) obtained via Algorithm 2 gives

1

4
Rna

0,3(D0, D1, D2, D3) =
1

2

1

4

3∑

t=0

log
|Λt|
|∆t|

= 3.5066 bits.

Example 4 (comparison of Algorithm 2 to SDP solution when ∆t ≺ Λt). Consider
the time-invariant version of (5.1), i.e., At ≡ A, ΣWt

≡ ΣW , X0 ∼ N (0; ΣX0
), and

distortion levels (D0, D1, D2, D3) = (1, 0.2, 2, 0.5), and we choose

(A,ΣW ) =

([
0.5 0.3
1 2

]
,

[
1 0
0 1

])
.

We run Algorithm 2 following the procedure described in Example 3, for n = 2,
error tolerance ε = 10−9, and an initial θ = 1

2Dt
, t = 0, 1, 2, 3. Then, we use the

same parameters (A,ΣW ) in the SDP algorithm of [20, section IV, equation (19)]
that provides the optimal numerical solution for Rna

0,3(D0, D1, D2, D3). In Figure 6 we
illustrate a comparison between Algorithm 2 and the SDP for each Rt(Dt) at each
t = 0, 1, 2, 3. According to this, the computation via Algorithm 2 gives precisely the
same numerical result as the one obtained via SDP for each Dt. Then, the solution
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Fig. 6. Comparison of Algorithm 2 to the optimal solution obtained via SDP for ∆t ≺ Λt ∀t.

of (5.52) obtained via Algorithm 2 gives

1

4
Rna

0,3(D0, D1, D2, D3) =
1

2

1

4

3∑

t=0

log
|Λt|
|∆t|

= 2.2086 bits.

6. Conclusions and future directions. In this paper, we derived information-
based causal filters via nonanticipative rate distortion theory in the finite-time hori-
zon. Unlike classical Kalman filters, the new information-based causal filters are
characterized by a time-space reverse-waterfilling algorithm. We developed iterative
algorithms to compute the dynamic reverse-waterfilling optimization problem subject
to a total and per-letter MSE distortion constraint. These algorithms provide tight
upper bounds to the optimal solution, although in some cases these perform opti-
mally. Further, we established a universal lower bound on the total and pointwise
MSE of any estimator of a Gaussian random process. Our theoretical framework is
demonstrated via several numerical experiments.

Future directions and open problems include the following:
(1) Remove the condition that KWt

is full rank.
(2) Analyze the per unit time limit limn−→∞ 1

n+1R
na
0,n(D).

(3) Compute closed-form expressions of Rna
0,n(D) for specific examples.

(4) Characterize Rna
0,n(D) for autoregressive Gaussian models with memory K,

such as

Xt =

K∑

j=1

At,jXt−j +Wt,(6.1)

and to Gaussian sources governed by partially observed processes.
(5) Develop schemes to compute optimally the resulting time-space reverse-water-

filling optimization problems of Theorem 5.3 and Corollary 5.5.
(6) Generalize the results to controlled systems.

Appendix A. Proof of Theorem 5.3. (1) The realization is given in [9,
Theorem 5] without determining the optimal structure of matrices (Ht,KV c

t
). One

may recognize that the choice of (Ht,KV c
t

) given in (5.18) ensures that the dynamics of
∆t are decoupled from the dynamics of Λt, since the Kalman filter gain in Lemma 5.2,
(5.13), satisfies ΛtH

T
t (HtΛtH

T
t +KV c

t
)−1 = I. This can be used to show an achievable

lower bound, when the reproduction distribution satisfies (5.14).
(2) Equation (5.22) follows directly from (1) by evaluating the NRDF. For the

rest, we apply the KKT conditions [36, Chapter 5.5.3] to the optimization problem
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(5.22). Define the augmented Lagrange functional as follows:

L({∆t,Λt}nt=0, θ, {F 1
t , F

2
t }nt=0)

=
1

2

n∑

t=0

log
|Λt|
|∆t|

+ θ

(
n∑

t=0

trace(∆t)−D(n+ 1)

)
−

n∑

t=0

trace
(
F 1
t ∆t

)
+

n∑

t=0

trace
(
F 2
t (∆t − Λt)

)
,

(A.1)

where θ ∈ [0,∞) is a Lagrange multiplier for the distortion constraint
∑n
t=0 trace(∆t)

≤ D(n+1), and F jt ∈ S
p×p
+ , j = 1, 2, are the Lagrange multiplier matrices responsible

for ∆t ∈ Sp×p+ ,Λt � ∆t, t ∈ Nn0 . We write the first right-hand-side term of (A.1) as
follows:

1

2

n∑

t=0

log
|Λt|
|∆t|

=
1

2

n∑

t=0

(log |Λt| − log |∆t|)

=
1

2
log |Λ0|+

1

2

n∑

t=1

log
∣∣At−1∆t−1A

T

t−1 +KWt−1

∣∣− 1

2

n∑

t=0

log |∆t|

=
1

2





log |Λ0|︸ ︷︷ ︸
initial step

+

n−1∑

t=0

log
|At∆tA

T
t +KWt

|
|∆t|

− log |∆n|︸ ︷︷ ︸
final step




.(A.2)

Also, we write the last right-hand-side term of (A.1) as follows:

n∑

t=0

trace
(
F 2
t (∆t − Λt)

)

= trace
(
F 2

0 (∆0 − Λ0)
)

+

n∑

t=1

trace
(
F 2
t

(
∆t −At−1∆t−1A

T

t−1 −KWt−1

))

=

n∑

t=0

trace
(
F 2
t ∆t

)
− trace

(
F 2

0 Λ0

)
−

n∑

t=1

trace
(
F 2
t

(
At−1∆t−1A

T

t−1 +KWt−1

))

= − trace
(
F 2

0 Λ0

)
+ trace(F 2

n∆n) +

n−1∑

t=0

trace
(
F 2
t ∆t

)

−
n−1∑

t=0

trace
(
F 2
t+1 (At∆tA

T

t +KWt)
)
.

(A.3)

Hence, using (A.2) and (A.3), the augmented Lagrange functional can be reformulated
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as follows:

L({∆t,Λt}nt=0, θ, {F 1
t , F

2
t }nt=0)(A.4)

=

(
1

2
log |Λ0| − trace(F 2

0 Λ0)

)

− 1

2
log |∆n|+ θ trace(∆n) + trace(

[
F 2
n − F 1

n

]
∆n)− θ(n+ 1)D

+

n−1∑

t=0

{
1

2
log
|At∆tA

T
t +KWt

|
|∆t|

+ trace(
[
F 2
t − F 1

t

]
∆t)

− trace
(
F 2
t+1 (At∆tA

T

t +KWt)
)

+ θ trace(∆t)

}
.(A.5)

Recall by assumption KWt ∈ Sp×p++ , and define Bt , AT
tK
−1
Wt
At. Then,

log
|At∆tA

T
t +KWt |
|∆t| in (A.5) is expressed as follows:

log
|At∆tA

T
t +KWt

|
|∆t|

= log
∣∣KWt

(
K−1
Wt
At∆tA

T

t + I
)∣∣− log |∆t|

= log |KWt |+ log
∣∣K−1

Wt
At∆tA

T

t + I
∣∣− log |∆t|

(a)
= log |KWt

|+ log
∣∣AT

tK
−1
Wt
At∆t + I

∣∣− log |∆t|
= log |KWt |+ log |Bt∆t + I| − log |∆t|,

(A.6)

where (a) is due to Sylvester’s determinant identity [37, Corollary 18.1.2]. Substituting
(A.6) into (A.5), the Lagrange functional is given by (5.23).

By the KKT conditions, ∆t
∗ ∈ Sp×p+ , t ∈ Nn0 , achieves the minimum if (5.24)–

(5.30b) hold.
We remark that the terms in (5.30a) are the complementary slackness condi-

tions, the terms in (5.30c) are the primal feasibility conditions, and the terms in
(5.30b) are the dual feasibility conditions. Note that the affine (linear) constraints∑n
t=0 trace(∆t) ≤ D(n+ 1) and ∆t −Λt � 0 satisfy Slater’s conditions (see, e.g., [36,

Chapter 5.5.3]) and since the problem is convex it turns out that the KKT conditions
are necessary and sufficient conditions for global optimality.

By (5.24), performing the derivative of the Lagrangian (5.23), we obtain (5.25)–
(5.27). Since the problem is convex the MSE (5.30b) is satisfied with equality, hence
θ > 0, because F 1

t , F
2
t are positive semidefinite, and thus, if θ = 0, then ∆t

∗ is not
full rank, and |∆t

∗| = 0, t ∈ Nn0 , which gives infinite rate. Thus, for any D > 0,
then ∆t

∗ ∈ Sp×p++ , which implies F 1
t = 0, while F 2

t ∈ S
p×p
+ . This completes the

proof.

Appendix B. Proof of Proposition 5.4. In the solution of the Riccati
equation (5.28), we omit F 2

t and F 2
t+1 and, hence, this corresponds to the optimal so-

lution when ∆t ≺ Λt and therefore, based on the complementary slackness conditions
F 2
t = 0 ∀t ∈ Nn0 . However, for the cases for which ∆t ≺ Λt does not hold, this solution

is not necessarily the optimal one, and as a result, it serves as an upper bound. This
completes the proof.
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