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The Operational Capacity of Compound
Uniformly-Ergodic Fading Channels

Sergey Loyka, Charalambos D. Charalambous

Abstract—The impact of distribution uncertainty on the per-
formance of compound fading channels is studied. To this end,
a new class of fading channels, termed ”uniformly-ergodic”, is
introduced and several of its equivalent (easy-to-use) characteri-
zations and examples are presented. A single-letter expression for
the operational capacity of this class of channels is obtained under
the full Rx CSI using the recent general formula for compound
channel capacity and the information spectrum approach. The
saddle-point property is established, whereby the compound
channel capacity is the same as the worst-case capacity so that
the full knowledge of the fading distribution at the transmitter
does not increase the capacity of this class of channels.

I. I NTRODUCTION

The impact of channel uncertainty on its capacity and
system design has been extensively studied since late 1950s,
see [1] for an extensive literature review up to late 1990s
and [2] for a more recent albeit brief review. A widely-
accepted approach to the channel uncertainty problem is via
the compound channel model, where the channel is assumed to
be unknown but is known to belong to a certain class (set) of
channels [1]. Since channel estimation is done at the receiver
(Rx) and then send back to the transmitter (Tx) via a limited
feedback link, many studies concentrate on limited channel
state information (CSI) available at the Tx end and assume
full CSI at the Rx end.

Fading represents one of the most significant obstacles
to reliable wireless communications and respective system
design, affecting its performance in a dramatic way [3]. It
also makes channel estimation a challenging problem, due
to significant channel dynamics, low SNR, limitations of a
feedback link etc. In this context, incomplete CSI can also
be modelled by assuming that the channel is not known but
its distribution is known, the so-called channel distribution
information (CDI) [3]. However, complete knowledge of the
CDI, which is essential for capacity evaluation and system
design, can be questioned on the same grounds as complete
CSI: when only a limited sample set is available (always a
practicality), the CDI can be obtained with limited accuracy
only (especially at the distribution tails); limited feedback link
dictates quantization of the estimated CDI before transmission,
thus introducing the quantization noise; presence of noiseand
channel dynamics makes any estimate inaccurate to a certain
degree. This motivates us to study the impact of inaccurate
CDI on system performance and design.

For quasi-static (and hence non-ergodic) fading channels,
the key performance metrics are outage probability/capacity
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[3]. The impact of CDI uncertainty on these metrics was
studied in [5]. In particular, it was shown that the CDI
uncertainty induces an error floor effect: increasing the SNR
over a certain threshold does not reduce the outage probability
and the error floor is determined by the size of the uncertainty
set.

For ergodic-fading channels (where the fading process is
allowed to have memory provided it is still ergodic), a single-
letter capacity expression has been established in [4] under
complete CDI at the Tx end and full CSI at the Rx end.
However, the standard results on ergodic capacity [3][4] donot
apply when only incomplete CDI is available and hence certain
performance has to be demonstrated for the whole class of
fading distributions, not just for a single one, and, in addition,
the Tx does not know the true fading distribution and hence
cannot design a codebook using this knowledge (as was done
in [3][4]).

The information capacity of ergodic-fading channels under
CDI uncertainty, formally defined via the standard max-min
expression (of ergodic mutual information), has been stud-
ied in [6]. However, its operational meaning as the largest
achievable rate subject to the reliability criterion has not been
established so it is not clear whether this quantity has practical
relevance (while the max-min MI is often the compound
channel capacity, it is not always the case [1]). The main
difficulty was the lack of general-enough tools for compound
channels that would allow one to incorporate CDI uncertainty.
Such tools have been recently presented in [7], which are
based on the information spectrum approach of Verdu and
Han [8][9]. Using these tools, we prove here that the above
”max-min” information capacity has the operational meaning
of maximum achievable rate under the CDI uncertainty. This
is accomplished by introducing a new concept of ”uniformly-
ergodic compound channel” and applying the general formula
for compound channel capacity in [7] to such channel, which
results in a compact single-letter expression for the capacity
of uniformly-ergodic compound channels, subject to the sets
of feasible input and fading distributions being convex but
otherwise arbitrary. To facilitate applications, we develop sev-
eral equivalent and easy-to-use criteria for compound channels
to be uniformly-ergodic and give some practically-relevant
examples. Apart from the single-letter capacity expression, the
key contribution of this paper is the recognition of importance
of uniform ergodicity for compound fading channels.

II. CHANNEL MODEL

To isolate and study the impact of CDI uncertainty, we adopt
the conditionally-memoryless channel model of [4], where the
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channel is memoryless conditioned on its state sequencesn:

p(yn|xn, sn) =

n∏

i=1

p(yi|xi, si) (1)

wherex, y, s are the input, output and state;n is the block-
length, xn = {x1, .., xn} and likewise foryn, sn; capitals
denote random variables while lower-case letters - their re-
alizations or arguments. The random state sequenceSn =
{S1, .., Sn} represents the fading process and is assumed to
be stationary and ergodic but not necessarily memoryless -
it can have memory provided that the ergodicity assumption
still holds, so that a correlated fading process is allowed (see
Section III for details). Assuming that the receiver has the
full CSI, i.e. the state sequencesn, but the Tx knows only
the fading distribution (i.e. the full Tx CDI, see e.g. [3] for a
detailed motivation of this assumption), a single-letter ergodic
capacity C[f ] was obtained in [4] for this ergodic-fading
channel:

C[f ] = sup
p(x)

I(X ; Y |f) (2)

where I(X ; Y |f) is the ergodic mutual information under
fading distributionf(s) and i.i.d. input:

I(X ; Y |f) =
∑

s

f(s)I(X ; Y |s) (3)

andI(X ; Y |s) is the MI under channel states, and where all
alphabets are assumed to be discrete and finite; under some
regularity assumptions, this can also be extended to infinite
and continuous alphabets. The optimal input is i.i.d. [4]. The
maximization over the input distributionp(x) is subject to a
suitable constraint, e.g. maximum or average power, and is
independent of channel states (due to no Tx CSI) but may
depend on the fading distributionf . We emphasize, for future
use, that the ergodic MII(X ; Y |f) as well as the capacity
C[f ] also depend on the fading distribution. Note that even
though the fading process is allowed to have memory (i.e. does
not have to be i.i.d.), the ergodic MI as well as the capacity
depend only on the marginal fading distributionf(s), not on
the joint one (which is ultimately due to the conditionally-
memoryless nature of the channel). This makes the analysis
much simpler.

Ergodic channel model is suitable in scenarios with sig-
nificant channel dynamics so that a single codeword spans
many different channel realizations and an encoder can take
advantage of it [3]. However, in many practical scenarios,
complete knowledge off(s) may be not available at the
transmitter, due to e.g.

• inaccuracy in estimatingf(s) at the receiver (due to finite
sample size or estimation noise);

• limited/quantized feedback link (quantization noise);
• outdated estimate,

so that the true fading distributionf differs from its esti-
mate f0 available at the transmitter. To model this fading
distribution uncertainty (inaccuracy), we consider the scenario
where the transmitter has only partial CDI. Namely, it knows
that f ∈ F1, where F1 is the uncertainty set known to
the Tx, which is further assumed to be convex; the state

sequenceSn is not available to the Tx, while the Rx has
the full CSI, i.e. the sequenceSn. This forms a compound
channel model where the fading distributionf is a (meta)
state. Its respective compound channel capacity is defined in
the standard way as the maximum achievable rate subject to
the reliability criterion, where the error probability converges
to zero uniformly over the whole uncertainty set and where
the codebooks are independent of the actual channel states
or its fading distributionf (see e.g. [1] for more details and
formal definitions).

The following section presents key definitions and proper-
ties of ergodic-fading channels in the compound setting, i.e.
when the fading distribution is not known exactly.

III. C OMPOUND ERGODIC-FADING CHANNELS

In order to simplify notations, we usef to refer to marginal
f(s) as well as joint distributionf(sn), which should be clear
from the context. If{s1, s2, ...} is an ergodic process, we call
the joint distributionf(sn) ergodic as well, with understanding
that ergodicity reveals itself asn → ∞. F denotes a set of
joint distributions whileF1 – a set of respective marginal
distributions. Since the joint fading distribution completely
characterises fading channel (in combination with (1)), wewill
refer toF as ”channels” as well.E{·} denotes expectation over
relevant random variables.

We begin with a standard definition of an ergodic (discrete-
time) random process [11]-[14].

Definition 1. A stationary random process{S1, S2, ...} is
(mean-) ergodic if, for anyg(s) such thatE{|g(S)|} < ∞,

1

n

n∑

i=1

g(Si) → E{g(S)} (4)

as n → ∞, where the convergence is either in mean-square,
or in probability, or with probability 1.

A few modifications to this definition are in order to
accommodate the compound channel setting here: (i) we need
to consider a class of distributionsF rather than a single
distribution f , (ii) there is no need to consider all absolute-
integrable/summable functionsg(s); instead, we need to con-
sider only the mutual informationI(X ; Y |s) under channel
states and i.i.d. input as a function of interest; (iii) we will
use convergence in the mean-square sense (since it is needed
in the proof of coding theorem); this implies convergence in
probability but the converse is not true in general; however,
whenI(X ; Y |s) is uniformly bounded (e.g. when either input
or output alphabet is of finite cardinality), they are equivalent.

The following definition extends the standard definition of
ergodic channels to the compound setting.

Definition 2. A class of stationary fading channelsF is
uniformly (mean-) ergodic if it is ergodic for eachf ∈ F
under i.i.d. input, i.e. asn → ∞,

1

n

n∑

i=1

I(X ; Y |Si) → I(X ; Y |f) (5)
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where the convergence is in the mean-square sense, and, in
addition, it is uniform over the whole classF , i.e. ∀δ > 0
∃n0(δ) such that∀n > n0(δ)

σ2
nf , E





(
1

n

n∑

i=1

I(X ; Y |Si) − I(X ; Y |f)

)2


 < δ (6)

wheren0 depends onδ but notf ; δ is also independent off .

It is straightforward to verify that (6) is equivalent to

lim
n→∞

sup
f∈F

σ2
nf = 0 (7)

(note that lim and sup cannot be swapped). It should be
emphasized that the uniform ergodicity property in (5), (6)
as well as the ergodicity property in (4) depend on the joint
distribution f(sn), not just marginalf(s), even though the
limits depend only on the marginal.

To facilitate applications, we give equivalent criteria ofthe
uniform ergodicity and provide several examples. To simplify
notations, letIsi = I(X ; Y |Si) andIf = I(X ; Y |f) (all under
i.i.d. inputs) and letcijf be the covariance ofIsi andIsj under
fading distributionf ,

cijf , E{(Isi − If )(Isj − If )} (8)

Since the channel is stationary,cijf depends only oni − j:
cijf = c(i−j)f . We assume below that the variance is uni-
formly bounded:

c0f ≤ A < ∞ ∀f ∈ F (9)

(note thatA is independent off ), which is equivalent to
supf∈F c0f < ∞. This is the case when e.g. the alphabets
are discrete (see e.g. [9]) and also holds in many cases for
continuous alphabets as well (e.g. Gaussian).

The following proposition is an extension of Slutsky’s
Theorem (see e.g. [11][13][14]) to the compound setting here.

Proposition 1. A compound stationary-fading channel is uni-
formly mean-ergodic iff

lim
n→∞

sup
f∈F

1

n

n−1∑

l=0

(
1 − l

n

)
clf = 0 (10)

Equivalently,

lim
n→∞

sup
f∈F

∣∣∣∣∣
1

n

n−1∑

l=0

clf

∣∣∣∣∣ = 0 (11)

Proof. See Appendix.

The following condition, which follows from (11), is easier
to verify in many cases.

Corollary 1.1. The condition in(11)holds ifclf → 0 for each
f as l → ∞ and the convergence is uniform over the setF :

lim
l→∞

sup
f∈F

|clf | = 0 (12)

This condition essentially means that the channel is asymp-
totically uncorrelated for any possible fading distribution and
also uniformly so over the uncertainty setF .

Many special cases can be derived from (12).

1. Assume that the fading process is i.i.d. for eachf , in
which caseclf = 0 for any l 6= 0 so that (12) holds if the
variance is uniformly bounded:c0f ≤ A < ∞ ∀f ∈ F . The
condition of i.i.d. process is trivially extended to a broader
condition of uncorrelated fading process.

2. An extension of the previous case is a finite-memory
process:clf = 0 for any |l| > Lf , whereLf is the memory
under fading distributionf , which is uniformly bounded:Lf ≤
L < ∞ for any f ∈ F .

3. Infinite-memory processes are also allowed provided
that the correlation decays to zero asymptotically, e.g. an
exponential correlation model:clf = c0fr

|l|
f , whererf is the

correlation coefficient under distributionf and0 ≤ rf ≤ B <
1 for eachf ∈ F (i.e. uniformly bounded away from unity),
in addition to the standard requirementc0f ≤ A < ∞.

4. Condition (12) is satisfied if the fading process is uni-
formly, asymptotically independent:

lim
l→∞

sup
f∈F

sup
s1,sl

∣∣∣∣
f(s1, sl)

f(s1)f(sl)
− 1

∣∣∣∣ = 0 (13)

i.e. f(s1, sl) → f(s1)f(sl) uniformly over s1, sl, f ∈ F ,
which is equivalent tof(sl|s1) → f(sl) so that the process
forgets its past asymptotically (and uniformly).

5. Cases whenclf does not decay to zero can be included
too, e.g.clf = (−1)l.

6. Any compound fading channel where eachf ∈ F
is ergodic andF is of finite cardinality is automatically
uniformly-ergodic.

One can also construct examples whereby the channel is
not uniformly ergodic while being ergodic for eachf ∈ F .
Let 1 ≤ k < ∞ be an integer index specifying an ergodic
distributionf from the uncertainty setF and consider example
2 with Lf = k andclf = c0f > 0 for any|l| ≤ Lf , or example
3 with rf = 1 − 1/k. In both cases, the uniform convergence
condition is broken and the corresponding compound channels
are not uniformly ergodic while being ergodic for eachf ∈ F .

IV. T HE CAPACITY OF UNIFORMLY-ERGODIC CHANNELS

Let C be the information capacity of the compound ergodic-
fading channel above:

C , sup
p(x)

inf
f∈F1

I(X ; Y |f) (14)

Note that suchsup − inf expression appears often in the theory
of compound channels and is, in many cases, the operational
capacity. However, this is not the case in general [1]. It
is the purpose of this section to show that this is indeed
the case for the uniformly-ergodic compound channel above.
First, we establish the following saddle-point property ofthe
information capacity.

Proposition 2. Consider the compound ergodic-fading chan-
nel in (1)–(3), wheref ∈ F1. Assume that the set of feasible
input distributionsp(x) is convex (e.g. average or maximum
power constraint) and thatF1 is convex. The information
capacityC of this compound ergodic-fading channel satisfies
the saddle-point property,

C = sup
p(x)

inf
f∈F1

I(X ; Y |f) = inf
f∈F1

sup
p(x)

I(X ; Y |f) = Cw (15)
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whereCw is the capacity of worst-case channel in the uncer-
tainty set, i.e. the information capacity equals to the worst-case
channel capacityCw. If the inf and sup are achieved, then
the following saddle-point inequalities holds for any feasible
p(x) and f(s),

I(X ; Y |f∗) ≤ C = I(X∗; Y |f∗) ≤ I(X∗; Y |f) (16)

where X∗ denotes the input under its optimal distribution
p∗(x) and (p∗, f∗) is a saddle point.

Proof. The saddle point property follows from the fact that
I(X ; Y |f) is concave inp(x) and linear (and thus convex)
in f ; since the sets of feasiblef and p(x) are convex, von
Neumann mini-max Theorem [10] guarantees the existence of
a saddle point. The saddle-point inequalities in (16) follow
from 2nd equality in (15).

The inequalities in (16) have a well-known game-theoretic
interpretation: the Tx choosesp∗(x) and the adversary (nature)
choosesf∗; neither player can deviate from this optimal
strategy without incurring a penalty.

In the rest of this section, we demonstrate that the informa-
tion capacityC of the compound ergodic-fading channel has
the operational meaning of a maximum achievable rate i.e.
the compound channel capacityCc for the class of uniformly-
ergodic fading channels defined above.

Our approach applies to any convex uncertainty setF1 and
also to any convex set of possible input distributions (which
may also include a power constraint).

Theorem 1. Consider a compound uniformly-ergodic fading
channel. LetF1 be a convex set of its marginal fading
distributions andF be a set of its joint fading distributions.
Assume that the Rx has the full CSI (i.e. the state sequence
sn) while the Tx has only partial CDI: it knowsF and hence
F1 but neithersn nor its fading distributionf . Let the set of
feasible input distributionsp(x) be convex. The operational
capacityCc of this compound channel is

Cc = sup
p(x)

inf
f∈F1

I(X ; Y |f) = C = Cw (17)

i.e. the same as the worst-case channel capacityCw in (15).

Proof. See Appendix.

Note that, from this Theorem, (i) full knowledge of the
fading distribution at the Tx does not increase the capacity,
and (ii) a code designed for the worst-case fading distribution
also works for the whole class of distributions (and hence
much smaller amount of feedback is needed).

We remark that this result cannot be established using Theo-
rem 3.3.5 in [9] and considering fading distribution as a meta-
state since there are uncountably many possible distributions
in F1 (since this set is continuous) while Theorem 3.3.5
requires the number of states to be finite - see [7] for details.
It should also be noted that while the definition of uniform
ergodic channels and the respective uncertainty setF as well
as the error probability depend on the joint fading distribution
f(sn), the capacity depends only on the marginal distribution
f(s) and its uncertainty setF1. This fact, which results in

the single-letter capacity expression, cannot be inferredfrom
Theorem 3.3.5 either. In the proof, we make use of the general
formula for compound channel capacity in [7], which does not
have the restrictions of Theorem 3.3.5, by applying it to the
ergodic scenario of the present paper.

It can be further shown, using Fano’s inequality, that the
first two equalities in (17) do hold even ifF1 is not convex
[15]1. However, the saddle point property and hence the last
equality do not need to hold in this case.

V. A PPENDIX

Proof of Proposition 1: It is straightforward to verify (by
direct computations) that

σ2
nf =

1

n

n−1∑

l=1−n

(
1 − |l|

n

)
clf =

2

n

n−1∑

l=0

(
1 − l

n

)
clf − 1

n
c0f

(sincec(−l)f = clf ) and thatlimn→∞ supf∈F σ2
nf = 0 if and

only if (10) holds provided thatc0f is uniformly bounded:
c0f ≤ A < ∞ ∀f ∈ F .

To establish (11), observe that
∣∣∣∣∣
1

n

n−1∑

l=0

clf

∣∣∣∣∣ =

∣∣∣∣∣E
{(

1

n

n∑

l=1

Isl
− If

)
(Is1 − If )

}∣∣∣∣∣
≤ σnf

√
c0f (18)

where the inequality follows from Cauchy-Schwartz inequal-
ity, so that (11) follows provided thatc0f is uniformly
bounded. This establishes the ”only if” part.

To establish the ”if” part of (11), let

znf =
1

n

n−1∑

l=0

(
1 − l

n

)
clf =

1

n2

n−1∑

l=0

n−l∑

i=1

clf =
1

n2

n∑

i=1

n−i∑

l=0

clf

Observe that (11) implies that for anyδ > 0 there exists such
n0(δ) that for anyn ≥ n0(δ)∣∣∣∣∣

1

n

n−1∑

l=0

clf

∣∣∣∣∣ ≤ δ ∀f ∈ F (19)

Setn ≥ n2
0(δ) and letLn = n−√

n (round off if not integer)
so that

znf =
1

n2

Ln∑

i=1

n−i∑

l=0

clf +
1

n2

n∑

i=Ln+1

n−i∑

l=0

clf

≤ 1

n

Ln∑

i=1

∣∣∣∣∣
1

n − i

n−i∑

l=0

clf

∣∣∣∣∣+
1

n2

n∑

i=Ln+1

n−i∑

l=0

c0f (20)

≤ 1

n

Ln∑

i=1

δ +
(n − Ln)2

n2
c0f ≤ δ +

c0f

n

where 1st inequality is fromclf ≤ c0f and 2nd one is from
n − i ≥ n − Ln ≥ n0(δ). Sinceδ > 0 is arbitrary,znf ≥ 0
andc0f is uniformly bounded, the ”if” part follows by taking
limn→∞ supf∈F :

0 ≤ lim
n→∞

sup
f∈F

znf ≤ δ ∀δ > 0 (21)

1The authors greatly appreciate the very insightful comments by an anony-
mous reviewer.
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Proof of Theorem 1: Let Xn = {X1...Xn}, X = {Xn}∞
n=1

and likewise forY . Following Theorem 5 in [7], the ca-
pacity of general compound channels (e.g. not necessarily
information-stable and where the uncertainty set can be ar-
bitrary) with full Rx CSI but no Tx CSI is given by

Cc = sup
X

I(X;Y ) (22)

where the supremum is over all sequences of finite-
dimensional input distributions andI(X;Y ) is the compound
inf-information rate,

I(X ;Y ) = sup
R

{
R : lim

n→∞
sup
s∈S

Pr {Zns ≤ R} = 0

}
(23)

whereZns = n−1i(Xn; Y n|s) is the normalized information
density under channel states; S is the (arbitrary) uncertainty
set.

To prove (17), first observe thatCc ≤ Cw holds in full
generality2 and, using (15),

Cc ≤ Cw = C = sup
p(x)

inf
f∈F1

I(X ; Y |f) (24)

It remains to show that the inequality is actually equality.To
this end, apply the general formula in (22) by considering
the fading distributionf as a (meta) states, and restrict the
optimization to i.i.d. inputsX̃ to obtain a lower bound

Cc ≥ sup
X̃

I(X̃; Ỹ ) (25)

where Ỹ is the output under i.i.d. input̃X. The following
propositions evaluateI(X̃ ; Ỹ ).

Proposition 3. The compound inf-information rateI(X̃ ; Ỹ )
can be upper bounded as follows:

I(X̃ , Ỹ ) ≤ inf
f∈F1

I(X ; Y |f) (26)

whereX has the same distribution as the marginals ofX̃ .

Proof. Let If = I(X ; Y |f), ik = i(Xk; Yk|Sk), Isk
=

EX,Y {ik}, zn = n−1
∑n

k=1 ik. From Proposition 1 in [7],

I(X̃ , Ỹ ) ≤ inf
f∈F

I(X̃, Ỹ |f) (27)

whereI(X̃, Ỹ |f) is the inf-information rate under (meta) state
f :

I(X̃; Ỹ |f) = sup
R

{
R : lim

n→∞
Pr {zn ≤ R} = 0

}
(28)

Note thatE {ik} = If and

E
{

|zn − If |2
}

=
1

n2

∑

k,l

E{(Isk
− If )(Isl

− If )} = σ2
nf

where 1st equality follows from the fact that(Xi, Yi) and
(Xj , Yj) are independent of each other (i 6= j) given the state
sequence{s1, s2, ...}, so that, from Chebychev inequality,

Pr {|zn − If | ≥ δ} ≤ σ2
nf/δ2 → 0 ∀ f ∈ F (29)

2the compound capacity never exceeds the worst-case one since a code
that works for the whole uncertainty set has also to work on the worst-case
channel in the set [1].

for any δ > 0 as n → ∞ since, due to (7),limn→∞ σnf =
0. Therefore,zn = n−1

∑n
k=1 ik → If in probability, from

which it follows that

I(X̃ , Ỹ |f) = I(X ; Y |f) (30)

Combining this with (27), one obtains (26).

Proposition 4. The compound inf-information rateI(X̃ ; Ỹ )
can be lower bounded as follows:

I(X̃, Ỹ ) ≥ inf
f∈F1

I(X ; Y |f) (31)

Proof. Observe that, for eachδ > 0,

Pr

{
zn ≤ inf

f∈F1

If − δ

}
≤ Pr {|zn − If | ≥ δ} ≤

σ2
nf

δ2

Applying lim − sup and using (7), one obtains

lim
n→∞

sup
f∈F

Pr

{
zn ≤ inf

f∈F1

If − δ

}
= 0 (32)

i.e. I(X̃, Ỹ ) ≥ inff∈F1 If −δ. Since this holds for anyδ > 0,
(31) follows.

Combining Propositions 3 and 4,

I(X̃, Ỹ ) = inf
f∈F1

I(X ; Y |f) (33)

for any i.i.d. input. ApplyingsupX̃ to this equality in combi-
nation with (24) and (25), one obtains the desired result.
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