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The Operational Capacity of Compound
Uniformly-Ergodic Fading Channels

Sergey Loyka, Charalambos D. Charalambous

Abstract—The impact of distribution uncertainty on the per- [3]. The impact of CDI uncertainty on these metrics was
formance of compo_und fading channels is st_udied. To thi_s e_nd studied in [5]. In particular, it was shown that the CDI
a new class of fading channels, termed "uniformly-ergodicy is  ncertainty induces an error floor effect: increasing theRSN

introduced and several of its equivalent (easy-to-use) chacteri- . . .
zations and examples are presented. A single-letter exprgion for  OVer & certain threshold does not reduce the outage praabil

the operational capacity of this class of channels is obtagd under  @nd the error floor is determined by the size of the uncestaint
the full Rx CSI using the recent general formula for compound set.
channel capacity and the information spectrum approach. Tle For ergodic-fading channels (where the fading process i

saddle-point property is established, whereby the compouh . L . . .
channel capacity is the same as the worst-case capacity sath allowed to have memory provided it is still ergodic), a segl

the full knowledge of the fading distribution at the transmitter ~ letter capacity expression has been established in [4] rund:
does not increase the capacity of this class of channels. complete CDI at the Tx end and full CSI at the Rx end.

However, the standard results on ergodic capacity [3][4falD
apply when only incomplete CDI is available and hence certai
performance has to be demonstrated for the whole class 1
The impact of channel uncertainty on its capacity anidding distributions, not just for a single one, and, in &iddi,
system design has been extensively studied since late 19%0s Tx does not know the true fading distribution and hence
see [1] for an extensive literature review up to late 199@annot design a codebook using this knowledge (as was doi
and [2] for a more recent albeit brief review. A widely-n [3][4]).
accepted approach to the channel uncertainty problem is Vviarhe information capacity of ergodic-fading channels undel
the compound channel model, where the channel is assumegf§) uncertainty, formally defined via the standard max-min
be unknown but is known to belong to a certain class (set) &pression (of ergodic mutual information), has been stud
channels [1]. Since channel estimation is done at the receijeq in [6]. However, its operational meaning as the larges
(Rx) and then send back to the transmitter (Tx) via a limitegchievable rate subject to the reliability criterion has ineen
feedback link, many studies concentrate on limited channgiaplished so it is not clear whether this quantity hastioalc
state information (CSI) available at the Tx end and assuri§levance (while the max-min Ml is often the compound
full CSI at the Rx end. channel capacity, it is not always the case [1]). The mair
Fading represents one of the most significant obstacigiculty was the lack of general-enough tools for compound
to reliable wireless communications and respective systefRannels that would allow one to incorporate CDI uncenaint
design, affecting its performance in a dramatic way [3]. Kuch tools have been recently presented in [7], which ar
also makes channel estimation a challenging problem, dggsed on the information spectrum approach of Verdu an
to significant channel dynamics, low SNR, limitations of gjan [8][9]. Using these tools, we prove here that the above
feedback link etc. In this context, incomplete CSI can alsghax-min” information capacity has the operational meanin
be modelled by assuming that the channel is not known kst maximum achievable rate under the CDI uncertainty. This
itS diStribUtiOn iS knOWn, the SO'Ca”ed Channel dIStI’ib[]t iS accomplished by introducing a new Concept Of ”uniformly_
information (CDI) [3]. However, complete knowledge of thesrgodic compound channel” and applying the general formul:
CDI, which is essential for capacity evaluation and systef§r compound channel capacity in [7] to such channel, whict
design, can be questioned on the same grounds as complgégiits in a compact single-letter expression for the dgpac
CSI: when only a limited sample set is available (always g uniformly-ergodic compound channels, subject to the set
practicality), the CDI can be obtained with limited accyracof feasible input and fading distributions being convex but
only (especially at the distribution tails); limited feeatik link  otherwise arbitrary. To facilitate applications, we deyesev-
dictates quantization of the estimated CDI before transions grg| equivalent and easy-to-use criteria for compound mwblan
thus introducing the quantization noise; presence of naige o pe uniformly-ergodic and give some practically-relévan
channel dynamics makes any estimate inaccurate to a cer@(gmpbs_ Apart from the single-letter capacity expressioe
degree. This motivates us to study the impact of inaccura{gy contribution of this paper is the recognition of impoxte

CDI on system performance and design. of uniform ergodicity for compound fading channels.
For quasi-static (and hence non-ergodic) fading channels,

the key performance metrics are outage probability/capaci

I. INTRODUCTION

II. CHANNEL MODEL

S. Loyka is with the School of EECS, University of Ottawa, @da,

sergey.loyka@ieee.org . . . }
C.D. Charalambous is with the ECE Department, UniversityCgprus, To isolate and study the impact of CDI uncertainty, we adop

Cyprus, chadcha@ucy.ac.cy the conditionally-memoryless channel model of [4], whére t
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channel is memoryless conditioned on its state sequethce sequenceS™ is not available to the Tx, while the Rx has

n the full CSlI, i.e. the sequencg™. This forms a compound
p(y"|z", s") = Hp(ymi,si) (1) channel model where the fading distributighis a (meta)

i=1 state. Its respective compound channel capacity is defimed

wherez, y, s are the input, output and state;is the block- the sta}nd_a_rd way as the maximum achievable__rate subject

length, 2 = {a1,..,2,} and likewise fory”,s"; capitals the rellab|||.ty criterion, where the error prqbabmty o@rges

denote random variables while lower-case letters - their i@ zero uniformly over the whole uncertainty set and where

alizations or arguments. The random state sequefice= the codebooks are independent of the actual channel state

{S1,..,S,} represents the fading process and is assumedOfoits fading distributionf (see e.g. [1] for more details and

be stationary and ergodic but not necessarily memorylesotmal definitions).

it can have memory provided that the ergodicity assumption The following section presents key definitions and proper.

still holds, so that a correlated fading process is allownsz ( ties of ergodic-fading channels in the compound settirgy, i.

Section 11l for details). Assuming that the receiver has th&hen the fading distribution is not known exactly.

full CSl, i.e. the state sequenc&, but the Tx knows only

the fading distribution (i.e. the full Tx CDI, see e.g. [3]rfa [1l. CoMPOUND ERGODIC-FADING CHANNELS

detailed motivation of this assumption), a single-letteyoelic

capacity C[f] was obtained in [4] for this ergodic-fading In order to simplify notations, we usgto refer to marginal

f(s) as well as joint distributiorf (s™), which should be clear

channel: . .
from the context. If{s1, s2, ...} is an ergodic process, we call
C[f] =sup I(X;Y|f) (2) the joint distributionf (s™) ergodic as well, with understanding
p(@) that ergodicity reveals itself as — co. F denotes a set of
where I(X;Y|f) is the ergodic mutual information underjoint distributions while 7; — a set of respective marginal
fading distributionf(s) and i.i.d. input: distributions. Since the joint fading distribution comielly
characterises fading channel (in combination with (1)) wile
I(X;Y\f) = Z F($)I(X;Y]s) () refer toF as "channels” as welE{-} denotes expectation over

relevant random variables.
and(X;Ys) is the MI under channel statg and where all e begin with a standard definition of an ergodic (discrete-
alphabets are assumed to be discrete and finite; under sqi®) random process [11]-[14].
regularity assumptions, this can also be extended to iefinit ) )
and continuous alphabets. The optimal input is i.i.d. [4jeT Definition 1. A stationary random proces$s;, S, ...} is
maximization over the input distributiop(z) is subject to a (Mean-) ergodic if, for any(s) such thati{|g(5)[} < oo,

suitable constraint, e.g. maximum or average power, and is n
independent of channel state(due to no Tx CSI) but may 1 Zg(gi) — E{g(S)} (4)
depend on the fading distributioh We emphasize, for future ne4

use, that the ergodic MI(X;Y|f) as well as the capacity o )
Clf] also depend on the fading distribution. Note that evéft * — o°. Where the convergence is either in mean-square
though the fading process is allowed to have memory (i.es dd¥ In Probability, or with probability 1.
not have to be i.i.d.), the ergodic MI as well as the capacity A few modifications to this definition are in order to
depend only on the marginal fading distributigiis), not on  accommodate the compound channel setting here: (i) we ne
the joint one (which is ultimately due to the conditionallytg consider a class of distribution® rather than a single
memoryless nature of the channel). This makes the analygistribution f, (ii) there is no need to consider all absolute-
much simpler. integrable/summable functiongs); instead, we need to con-
Ergodic channel model is suitable in scenarios with Si%‘ider On|y the mutual informatiom(X;Y‘S) under channel
nificant channel dynamics so that a single codeword spagigtes and i.i.d. input as a function of interest; (jii) we will
many different channel realizations and an encoder can takg convergence in the mean-square sense (since it is neec
advantage of it [3]. However, in many practical scenariof, the proof of coding theorem); this implies convergence in
complete knowledge off (s) may be not available at the propability but the converse is not true in general; however

transmitter, due to e.g. whenI(X;Y|s) is uniformly bounded (e.g. when either input
« inaccuracy in estimating(s) at the receiver (due to finite or output alphabet is of finite cardinality), they are eqléwa
sample size or estimation noise); The following definition extends the standard definition of

« limited/quantized feedback link (quantization noise); ergodic channels to the compound setting.
« outdated estimate,
so that the true fading distributiorf differs from its esti-
mate f, available at the transmitter. To model this fadin
distribution uncertainty (inaccuracy), we consider thersgio
where the transmitter has only partial CDI. Namely, it knows 1
that f € Fi, where F; is the uncertainty set known to —ZI(X;Y\SZ-) = I(X;Y|f) (5)
the Tx, which is further assumed to be convex; the state i

Definition 2. A class of stationary fading channelg is
niformly (mean-) ergodic if it is ergodic for each € F
nder i.i.d. input, i.e. as% — oo,
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where the convergence is in the mean-square sense, and, ii. Assume that the fading process is i.i.d. for egchin
addition, it is uniform over the whole clasg, i.e. Vé > 0 which casec;y = 0 for any! # 0 so that (12) holds if the
JIng(d) such thatvn > ny(d) variance is uniformly boundedj; < A < oo Vf € F. The
condition of i.i.d. process is trivially extended to a bread
condition of uncorrelated fading process.

2. An extension of the previous case is a finite-memory
processi;y = 0 for any || > Ly, whereL; is the memory
wheren, depends om but not f; § is also independent of.  under fading distributiorf, which is uniformly boundedt ; <
L < o forany f € F.

3. Infinite-memory processes are also allowed providet
lim sup aif =0 (7) that the correlation decays to zero asymptotically, e.g. a
nT e exponential correlation modet;; = cofrl”, wherer; is the

(note thatlim and sup cannot be swapped). It should becorrelation coefficient under distributiohand0 < r; < B <
emphasized that the uniform ergodicity property in (5), (6) for eachf € F (i.e. uniformly bounded away from unity),
as well as the ergodicity property in (4) depend on the joii addition to the standard requiremenf < A < co.
distribution f(s™), not just marginalf(s), even though the 4. Condition (12) is satisfied if the fading process is uni-

n 2
o = E (%ZI(X;YSZ-)—I(X;YIJ”)) <d (6)
=1

It is straightforward to verify that (6) is equivalent to

limits depend only on the marginal. formly, asymptotically independent:

To facilitate applications, we give equivalent criteriatbé . F(s1, 1)
uniform ergodicity and provide several examples. To sifgpli llgglo sup sup W -1=0 (13)
notations, letl,, = I(X;Y|S;) andl; = I(X;Y|f) (all under FeFsns [ AL
i.i.d. inputs) and let;;; be the covariance df,, and/, under 1-€. f(s1,s1) — f(s1)f(s1) uniformly over sy, s;, f € F,
fading distributionf, which is equivalent tof (s;|s1) — f(s;) so that the process

a forgets its past asymptotically (and uniformly).
cijf = B{(Ls; = I5)(Ls; = I5)} (8) 5. Cases when;; does not decay to zero can be included

Since the channel is stationary,; depends only oni — j: 100, €.g.ciy = (=1)". _
Cijf = iy We assume below that the variance is unj- 8- Any compound fading channel where eaghe
formly bounded: is ergodic andF is of finite cardinality is automatically

uniformly-ergodic.
cf A< VfeF %) One can also construct examples whereby the channel
not uniformly ergodic while being ergodic for eaghe F.

(note that A is independent off), which is equivalent to ?et 1 < k < oo be an integer index specifying an ergodic

supsercof < oo. This is the case when e.g. the alphabe

are discrete (see e.g. [9]) and also holds in many cases

continuous alphabets as well (e.g. Gaussian). with L = k ande;; = coy > 0 for any|l| < Ly, or example
The following proposition is an extension of Slutsky’53 with ry =1 —1/k. In both cases, the uniform convergence

Th a. 111111317141 to th ttineh I;:ondition is broken and the corresponding compound channe
eorem (see e.g. [L1J[13]{14]) to the compound setting eare not uniformly ergodic while being ergodic for eatke F.

Proposition 1. A compound stationary-fading channel is uni-

&tributionf from the uncertainty sef and consider example

formly mean-ergodic iff IV. THE CAPACITY OF UNIFORMLY-ERGODIC CHANNELS
el Let C be the information capacity of the compound ergodic-
lim sup 1 Z (1 — i) =0 (10) fading channel above:
n—o0 n n
7= C2sup inf I(X;Y|f) (14)
Equivalently, p(z) F€F1
| el Note that suckup — inf expression appears often in the theory
lim sup |~ ar| =0 (11) of compound channels and is, in many cases, the operation
N feF |5 capacity. However, this is not the case in general [1]. It
Proof. See Appendix.  Is the purpose of this section to show that this is indeet

_ N _ _ ~ the case for the uniformly-ergodic compound channel above
The following condition, which follows from (11), is easierFirst, we establish the following saddle-point propertytioé
to verify in many cases. information capacity.

Corollary 1.1. The condition in(11)holds ifc;; — 0 for each Proposition 2. Consider the compound ergodic-fading chan-
f asl — oo and the convergence is uniform over the et nel in (1)~(3), where f € F,. Assume that the set of feasible
(12) input distributionsp(z) is convex (e.g. average or maximum
power constraint) and thatF; is convex. The information
pacityC' of this compound ergodic-fading channel satisfies
the saddle-point property,

lim sup |ef| =0
l— 00 feF ’

This condition essentially means that the channel is asy
totically uncorrelated for any possible fading distrilutiand
also uniformly so over the uncertainty sét C=sup inf I(X;Y]|f)= inf supI(X;Y|f)=C, (15)

Many special cases can be derived from (12). p(x) [€F1 FE71 p(a)
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whereC,, is the capacity of worst-case channel in the uncethe single-letter capacity expression, cannot be infefreah
tainty set, i.e. the information capacity equals to the woemse Theorem 3.3.5 either. In the proof, we make use of the gener.
channel capacityC,,. If the inf and sup are achieved, then formula for compound channel capacity in [7], which does not
the following saddle-point inequalities holds for any fiéées have the restrictions of Theorem 3.3.5, by applying it to the
p(z) and f(s), ergodic scenario of the present paper.
. . . . It can be further shown, using Fano’s inequality, that the
IXGY]f7) < C=I(X5Y[f7) < (X5 Y f) (16)  first two equalities in (17) do hold even J; is not convex

where X* denotes the input under its optimal distributior15}'- However, the saddle point property and hence the las
p*(z) and (p*, f*) is a saddle point. equality do not need to hold in this case.

Proof. The saddle point property follows from the fact that V. APPENDIX

_I(X;Y_|f) IS concave |np(x)_ and linear (and thus convex)  proqf of Proposition 11t is straightforward to verify (by
in f; since t_hg sets of feasiblg and p(z) are convex, Von giact computations) that

Neumann mini-max Theorem [10] guarantees the existence of

a saddle point. The saddle-point inequalities in (16) fello 1= |1] 2 l 1
from 2nd equality in (15). o 97f 75 > (1 - Z) “ar=4 > (1 B _> = cof

I=1—n =0
The inequalities in (16) have a well-known game-theoret'tgincec(il)f = ci7) and thatlim,, o Sup e 5 02, = 0 if and

interpretation: the Tx choose$(z) and the adversary (nature)omy if (10) holds provided that; is uniformly bounded:

choosesf*'; nenher p!ayer can deviate from this optlmakof <A<ooVfeF.
strategy without incurring a penalty. To establish (11), observe that
In the rest of this section, we demonstrate that the informa- . Lo
tion capacityC' of the compound ergodic-fading channel has 1 . 1 _ B
the operational meaning of a maximum achievable rate i.e. |n ZZ;C” E{(n ;IS" If) (L, If)}‘
the compound channel capacity for the class of uniformly-
ergodic fading channels defined above. < anf/eos (18)
Our approach applies to any convex uncertaintySeand Wwhere the inequality follows from Cauchy-Schwartz inegqual
also to any convex set of possible input distributions (Whidty, so that (11) follows provided thaty; is uniformly
may also include a power constraint). bounded. This establishes the "only if” part.
. . . . To establish the "if” part of (11), let
Theorem 1. Consider a compound uniformly-ergodic fading

channel. LetF, be a convex set of its marginal fading 1= ! 1 1 &
distributions andF be a set of its joint fading distributions. “»f = }; > (1 B g) ar=,z > ar= ) > ay
Assume that the Rx has the full CSI (i.e. the state sequence 1=0 1=0i=1 =11=0

s™) while the Tx has only partial CDI: it know# and hence Observe that (11) implies that for ady> 0 there exists such
F; but neithers™ nor its fading distributionf. Let the set of no(d) that for anyn > no(d)

feasible input distributiong(z) be convex. The operational =
capacityC, of this compound channel is '— Z af| <ovVfeF (19)
n
=0
C.=sup inf I(X;Y|f)=C=0C, 17 . .
p(gg feF ( /) (17) Setn > n(§) and letL,, = n— /n (round off if not integer)
i.e. the same as the worst-case channel capatCityin (15). so that . ) )
. 1 n N—1 1 n n—1i
Proof. See Appendix. O Znf = 3 Z cf + o) Z Z cf
i=1 =0 i=Ly,+1 =0
Note that, from this Theorem, (i) full knowledge of the L i i o on—i
ina distributi i i 1| 1 1
fadlng distribution gt the Tx does not increase the.c.alpacny <z Z : s+ = Z ZCOf (20)
and (ii) a code designed for the worst-case fading distiobut il Kl e ne =0
also works for the whole class of distributions (and hence L. )
much smaller amount of feedback is needed). < 1 5+ (n = Ln) cof <O+ Gr
We remark that this result cannot be established using Theo- Coni n? - n

rem 3'3'5 in r[]g] and consideringbflading distribu_tti;lnn 3_3 a_':;e_twhere 1st inequality is frone;; < coy and 2nd one is from
state since there are uncountably many possible distoisiti . > n— Ly > no(6). Sinces > 0 is arbitrary,z,; > 0

in 73 (since this set is continuous) while Theorem 3.3.34 . i uniformly bounded, the "if" part follows by taking
requires the number of states to be finite - see [7] for detai $1 SUD o 5t

It should also be noted that while the definition of uniform ">~ /&7

ergodic channels and the respective uncertainty/sas well 0< lim sup zpr <6 V6 >0 (21)
as the error probability depend on the joint fading distiiu T fer

f(sn)' the_capacity d_epends only (_)n the marginal diStribl_"tioanhe authors greatly appreciate the very insightful commégtan anony-
f(s) and its uncertainty sef;. This fact, which results in mous reviewer.
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O foranyd > 0 asn — oo since, due to (7)imy, o ony =

Proof of Theoremdlet X™ = {X;..X,,}, X = {X"}>2, 0. Therefore,z,, = n=* > }'_,ix — I; in probability, from
and likewise forY. Following Theorem 5 in [7], the ca- which it follows that

pacity of general compound channels (e.g. not necessarily

information-stable and where the uncertainty set can be ar- I(X,Y|f) = 1(X;Yf) (30)
bitrary) with full Rx CSI but no Tx CSl is given by Combining this with (27), one obtains (26). O
C.= S;pi(X;Y) (22)  Proposition 4. The compound inf-information rat§ X;Y)

) ~_can be lower bounded as follows:
where the supremum is over all sequences of finite-

dimensional input distributions ank{ X ; Y) is the compound I(X,)Y)> fien;1 I(X;Yf) (31)

inf-information rate,
Proof. Observe that, for each > 0,

I(X;Y)=sup {R : lim supPr{Z,s <R} = 0} (23) o2

h R oo ses Pr{zng inf If—6}§Pr{\zn—If\Z6}§L2f
where Z,,s = n~1i(X"™;Y"|s) is the normalized information e 0
density under channel state S is the (arbitrary) uncertainty Applying lim —sup and using (7), one obtains

set.
To prove (17), first observe that. < C, holds in full r}l_?;o sup Pr{zn < fien]ff Iy = 5} =0 (32)
generality and, using (15), ez 1
o< Cy = C = sup inf I(X:Y|f) (24) i.e.[(X,Y) > infsecr Iy —46. Since this holds for any > 0,

p(z) JEF (31) follows. 0

It remains to show that the inequality is actually equaliiy. Combining Propositions 3 and 4,

this end, apply the general formula in (22) by considering - - . .
the fading distributionf as a (meta) state, and restrict the I(X,Y) = f1€n£1 I(X3Y1S) (33)

optimization to i.i.d. inputsX to obtain a lower bound for any i.i.d. input. Applyingsup to this equality in combi-

C.>supl(X;Y) (25) nation with (24) and (25), one obtains the desired result.
P
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