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The Secrecy Capacity of Gaussian MIMO Wiretap
Channels Under Interference Constraints

Limeng Dong, Sergey Loyka, and Yong Li

Abstract— Secure signaling over multiple-input multiple-
output (MIMO) wiretap channel (WTC) is studied under
interference and transmit power constraints. The classical MIMO
WTC model is extended to interference-limited scenarios, so that
interference to other users does not exceed a given threshold while
ensuring simultaneously no information leakage to an eaves-
dropper. The operational secrecy capacity of the Gaussian MIMO
WTC under interference and transmit power constraints is rigor-
ously established in two forms (a non-convex max problem and a
convex–concave max–min problem), to which per-antenna power
constraints can be added as well. Optimal signaling directions
are characterized in the general case, from which (tight) upper
bounds to the rank of optimal transmit covariance matrix are
derived. A sufficient condition for the optimality of beamforming
and a necessary condition for optimal full-rank signaling are
given. Closed-form rank-1 and high-rank solutions are obtained
in the case of zero interference constraints. Sufficient and neces-
sary conditions for non-zero secrecy capacity are established.
The results are extended to multi-user scenarios. A sufficient
and necessary condition for the unbounded growth of the secrecy
capacity with transmit power is obtained. The interplay between
transmit and interference power constraints is studied, and its
significant impact on optimal signaling is demonstrated (so that
neither constraint can be absorbed into the other one in general,
as was sometimes suggested in the literature). Overall, these
results provide insights into fundamental information-theoretic
limits and optimal signaling strategies for secure communications
under interference constraints.

Index Terms— MIMO, wiretap channel, secrecy capacity,
interference, cognitive radio.

I. INTRODUCTION

THE ever-growing number of wireless devices and
users, explosive demand for higher data rates and

quality-of-service are among the key factors of exten-
sive efforts by academia and industry to develop 5G
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systems [1], [2]. Since the development of such systems
are facing a number of challenges, several key technologies
have been identified to address them: network densifica-
tion, massive MIMO, millimeter waves and non-orthogonal
multiple access (NOMA) [1], [2]. Some of these key tech-
nologies are expected to generate significant interference,
which, if not managed properly, may significantly diminish
performance gains [3], [4]. In particular, network densi-
fication via small cells with aggressive frequency re-use
(to improve spectral efficiency) is capable of generating a
significant amount of co-channel interference, which is also
the case for the NOMA or heterogeneous networks (HetNet)
re-using the same spectrum (e.g. cellular/WiFi, macro/femto
cells, lisensed/unlisensed etc.) [6], [7]. Additional chal-
lenges are posed by device-to-device (D2D), vehicle-to-vehicle
(V2V) or machine-to-machine communications (M2M) due
to their large numbers as well as decentralized nature of
communications [1], [5].

All these factors call for careful interference manage-
ment (avoidance/cancellation/control) and appropriate signal
processing techniques [1]–[4], which is one of the issues
addressed in this paper. Since the underlying scenarios, models
of interference and related problems in 5G are somewhat
similar to those in cognitive radio (CR) systems [8], [9],
it is expected that the CR approach will play a role in 5G
systems [1], [10]. In particular, the CR paradigm offers
new opportunities in overcoming spectrum scarcity by more
efficient utilization of the available spectrum in a hybrid
(licensed/unlisenced) way [8]. When combined with MIMO
techniques, the CR approach allows primary and secondary
systems to use the same frequency bands and hence improves
significantly the overall spectral efficiency [11]–[13], which
is conceptually similar to the approaches to increase spectral
efficiency in 5G (e.g. NOMA, HetNet, licensed/unlicesed
usage of the spectrum).

Due to the broadcast nature of wireless channels, wireless
systems are especially vulnerable to various security threads.
This is especially true for unlicensed or hybrid (e.g. CR)
systems due to their open architecture and shared use of
the same spectrum by many users. A number of possible
threads have been identified and studied, including primary
user emulation, spectrum sensing data falsification, jamming
and eavesdropping [14]. In this respect, physical-layer secu-
rity approach has emerged as a valuable complement to
cryptography-based approaches [15], [16]. In this approach,
the secrecy of communications is ensured at the physical
layer by exploiting the properties of wireless channels to
“hide” transmitted information from eavesdropping. Using this
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approach in combination with multi-antenna (MIMO) systems
offers significant opportunities for enhancing the secrecy
of wireless communications. The wiretap MIMO channel
has emerged as a popular model to establish information-
theoretic limits to secure communications [17]–[20]. The key
performance metric is the secrecy capacity, defined opera-
tionally as the maximum achievable rate subject to reliability
(low error probability) and secrecy (low information leakage)
criteria [15], which is a counterpart of the regular channel
capacity (without the secrecy criterion). The secrecy capacity
of the AWGN MIMO wiretap channel (WTC) has been
established in [17]–[19] under the full channel state informa-
tion (CSI) assumption, where in particular the optimality of
Gaussian signaling has been shown, and an optimal transmit
covariance matrix has been found for a number of special
cases in e.g. [21]–[24], while the general case still remains an
open problem. An algorithm with provable convergence for
global maximization of secrecy rates in the general case was
proposed in [25].

In the present paper, we address the two key issues
discussed above, interference and secrecy of communications,
by extending the classical AWGN MIMO WTC model to
interference-constrained scenarios (e.g. CR, NOMA, HetNet)
and adding interference constraints so that any feasible
signalling must ensure that the interference generated to other
users (e.g. primary receivers (PR) in the CR context) does not
exceed a ceratin threshold, which we term here “CR MIMO
WTC”. This significantly changes the problem as the feasible
set (of admissible transmit covariance matrices) is not isotropic
anymore, so that known results (e.g. [17]–[24]) do not apply.
It is not even clear whether Gaussian signaling is optimal
in such setting (recall that it was far from trivial in [18]
and [19] to establish the optimality of Gaussian signalling and
some key steps in the proofs exploited the isotropic nature of
the feasible set).

The main contributions of this paper are two-fold. First,
we establish in Section III the operational secrecy capacity
of the Gaussian MIMO wiretap channel under interference
constraints in a rigorous way and demonstrate that Gaussian
signalling is still optimal, all under the full CSI assumption.
We emphasize that the secrecy capacity here is defined oper-
ationally as the maximum achievable secrecy rate (subject to
reliability and secrecy constraints, in addition to the transmit
and interference power constraints, TPC and IPC), rather
than formally as the difference of certain mutual information
terms without demonstrating their operational significance,
as sometimes done in the literature (e.g. in [26]). The oper-
ational secrecy capacity of Gaussian CR MISO (i.e. single-
antenna receivers) WTC was established earlier in [27] and
expressed as a quasi-convex optimization problem, which can
be solved as a sequence of convex feasibility problems, and
was subsequently re-formulated as a convex problem, for
which no closed-form solution is known. The present paper
considers the full MIMO case and establishes its secrecy
capacity in two alternative forms (a non-convex max problem
and a convex-concave max-min problem) under the TPC and
IPC, to which per-antenna power constraints (PAC) can be
added as well.

Second, we characterise optimal signaling directions in the
general case in Section IV and obtain (tight) bounds
on the rank of optimal transmit (Tx) covariance matrix,
giving sufficient conditions for beamforming (rank-1) to
be optimal, which generalizes the respective result in [27]
to the full MIMO case, and necessary conditions for
full-rank optimal covariance. Motivated by the popularity
of linear zero-forcing (ZF) precoding techniques for 5G
applications as a balanced approach between performance
and complexity [1], [4], we consider zero-IPC constraints
in Section V and obtain high-rank and rank-one (beam-
forming) solutions for optimal Tx covariance matrix, which,
when combined together, completely solve the case of 2
Tx antennas. Surprisingly, the characterization of optimal
signaling directions under the IPC is the same as without
the IPC, i.e. optimal signaling is on the positive directions
of the difference channel, regardless of what the PR channel
is (provided it is of full-rank for non-zero IPC). Contrary
to [35] and [36], we do not impose any ad-hoc (sub-optimal)
transmission strategies with unknown gap to the capacity, but
rather establish the secrecy capacity and characterize optimal
(i.e. capacity-achieving) signaling strategies.

Sufficient and necessary conditions for non-zero secrecy
capacity are also established in Section IV, which take a
different form depending on whether the interference power
constraint is zero or not. This partially characterises the
scenarios where the physical-layer secrecy approach is feasible
under interference constraints. The above results are further
extended to a multi-user scenario in Section VI. While
the secrecy capacity may saturate as the transmit power
increases (with or without interference constraints), a sufficient
and necessary condition for the unbounded growth of the
secrecy capacity under interference constraint is obtained
in Section VII, thus characterizing the scenarios where high
secrecy capacity is achievable. Since this condition is simul-
taneously necessary and sufficient, no more general sufficient
condition exists.

The interplay between transmit and interference power
constraints is studied in Section VIII and its significant impact
on optimal signaling is demonstrated, so that neither constraint
can be absorbed into the other one in general, contrary to
what was sometimes suggested in the literature [11]. While
the secrecy capacity still saturates at high SNR, the IPC
affects significantly its behaviour compared to the no-IPC
case: it lowers the saturation level, which is attained at much
lower SNR, and it makes the saturation hard rather than soft.
Contrary to the standard water-filling policy, uniform power
allocation is not optimal at high SNR under interference
constraints, while the low-SNR behaviour is not affected.

Our approach to establish the operational secrecy capacity
is based on the method in [17] and [18] and extends it to
the interference-constrained settings. In particular, while it
is rather straightforward to show that the lower and upper
bounds to the secrecy capacity in [18] still hold, it is far more
challenging to show that the key saddle-point property in [18]
still holds under the interference constraints (which make the
feasible set non-isotropic) so that the upper and lower bounds
to the secrecy capacity coincide at the saddle point, hence
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Fig. 1. An example of a network setting where the basestation (BS) is a
transmitter that sends a signal to user 1 (Rx) while limiting interference to
user 2 (PR) and user 3 (Ev) eavesdrops the transmission.

establishing the operational secrecy capacity. A significant
advantage of this approach is that the secrecy capacity is
established not only as a non-convex maximization problem
but also as a max-min problem which is convex-concave in the
right way, so that a globally-optimal numerical algorithm with
provable convergence can be developed using the method
in [25] and adding interference constraints. This is hardly
possible for the non-convex maximization problem (in partic-
ular, a provable global convergence is out of reach), for which
no closed-form solution is known in the general case either.
The established saddle-point in the max-min problem has a
game-theoretic interpretation as a minimax game between the
transmitter (who selects the input covariance) and nature (who
selects the noise covariance); neither player can deviate from
the optimal strategy without incurring a penalty.

Notations: bold lower-case letters (a) and capitals (A)
denote vectors and matrices respectively; A+ is Hermitian
conjugate of A, A ≥ 0 means positive semi-definite; E {·}
is statistical expectation, N (A) is the null space of A:
N (A) = {x : Ax = 0} while R(A) denotes the range
of A; dimN is the dimensionality of N ; λi(A) denotes
eigenvalues of A, which are in decreasing order unless
indicated otherwise, i.e. λ1 ≥ λ2..; r(A) denotes the rank
of A while r+(−)(A) is the number of strictly positive
(negative) eigenvalues; |A| and trA are determinant and
trace; I is an identity matrix of appropriate size.

II. CHANNEL MODEL

Let us consider a network setting as in Fig. 1, where base
station (BS) is a transmitter (Tx) that sends confidential infor-
mation to user 1 (a receiver, Rx) while limiting interference to
user 2 (PR) and user 3 is an eavesdropper (Ev) that intercepts
the transmission. The objective is to ensure reliable commu-
nications between the Tx and Rx (the reliability criterion)
while keeping the Ev ignorant about transmitted information
(the secrecy criterion) and limiting the interference to the PR
(user 2) so that its performance is not degraded. The respective
wiretap channel model under interference constraint is shown
in Fig. 2. For this model, the key performance metric is the

Fig. 2. A block diagram of the Gaussian MIMO wiretap channel under
interference constraint. H1, H2 and H3 are the channel matrices to the Rx,
Ev and PR respectively; x is the Tx signal; y1, y2 and y3 are the received
signal at the Rx, Ev and PR respectively; ξ1, ξ2 and ξ3 are respective noise
components.

secrecy capacity, i.e. the largest transmission rate subject to the
reliability and secrecy criteria [15], to which power constraints
can also be added.

In the discrete-time channel model, the signals received by
the Rx and the Ev are

y1 = H1x + ξ1, y2 = H2x + ξ2 (1)

where y1(2) are the respective received signals at the Rx and
Ev, x is the transmitted signal, ξ1(2) represent zero-mean unit-
variance i.i.d. noise at Rx (Ev) end (so that signal power is also
the SNR); H1(2) are the channel matrices collecting channel
gains from all Tx to all Rx(Ev) antennas. In addition to this
and following the interference-limited scenario (e.g. cognitive
radio, multi-user heterogeneous network or D2D system etc.)
there is another user, known as a primary receiver (PR) in the
CR setting, and its received signal y3 is

y3 = H3x + ξ3 (2)

where H3 and ξ3 are the channel matrix and zero-mean
unit-variance i.i.d. noise of the PR. We assume that the full
channel state information (CSI) is available at the Tx, Rx
and Ev links; m, n1, n2, n3 are the numbers of antennas
at the Tx, Rx, Ev and PR respectively. For future use, let
Wk = H+

k Hk, k = 1, 2, 3, and note that Wk ≥ 0. While the
full CSI assumption is justified when an eavesdropper is just
another user in the system (and hence shares its CSI with the
base station) and is standard in the literature [15]–[27], there
are a number of scenarios where this does not hold, in which
case one has to consider the compound channel model as
in e.g. [37], [38] to account for channel uncertainty. This is
beyond the scope of the present paper.

In an interference-limited setting, the transmission is subject
to an interference power constraint (IPC), in addition to to the
total transmit power constraint (TPC), so that any feasible Tx
covariance matrix R = E {xx+} must be in the following
feasible set SR:

SR = {R : trR ≤ PT , trW3R ≤ PI , R ≥ 0} (3)

where PT , PI are the maximum allowed Tx and interfer-
ence powers respectively. The interference power constraint
trW3R ≤ PI ensures that the total interference power
E{|H3x|2} = trH3RH+

3 = trW3R at the PR (another user)
does not exceed the threshold PI so that its performance is not
degraded. The secrecy capacity of the wiretap channel under
interference constraint is defined operationally as the largest



DONG et al.: SECRECY CAPACITY OF GAUSSIAN MIMO WTCs UNDER INTERFERENCE CONSTRAINTS 707

achievable rate subject to the power, reliability, secrecy, and
interference constraints simultaneously.

Without the IPC (i.e. when W3 = 0), the secrecy
capacity Cs of the Gaussian MIMO WTC has been established
in [17]–[19]:

Cs = max
R≥0

C(R) s.t. trR ≤ PT (4)

where C(R) is an achievable secrecy rate (C(R) < 0 is
interpreted as zero rate),

C(R) = ln |I + W1R| − ln |I + W2R|. (5)

It is the purpose of this paper is to extend this result and to
establish the secrecy capacity of the (cognitive radio) Gaussian
MIMO wiretap channel under interference constraint, which
we term here CR MIMO WTC. This task is complicated by
the fact that the interference constraint in (3) makes the set
SR non-isotropic in general while the feasible set in (4) is
always isotropic and this isotropy was exploited in [18], [19]
while establishing the secrecy capacity. In particular, this is
critical while establishing a saddle-point and other properties
in [18] and subsequently the tight upper and lower bounds
which coincide at this saddle point.

III. THE SECRECY CAPACITY OF GAUSSIAN

CR MIMO WTC

In this section, we establish the operational secrecy capacity
of the Gaussian CR MIMO WTC above. To this end, let SK

be a set of covariance matrices of the form

SK �
{
K : K =

[
I N

N+ I

]
, K ≥ 0

}
, (6)

where N = E
{
ξ1ξ

+
2

}
and

f(R,K) � ln |I + H+K−1HR| − ln |I + W2R|, (7)

where H = [H+
1 ,H+

2 ]+ is an extended channel. It will be seen
later that K is the covariance matrix of noise ξ = [ξ+

1 , ξ+
2 ]+

in the extended channel and N is the covariance matrix of ξ1

and ξ2 for an equivalent degraded channel (where these noise
vectors are allowed to be correlated with each other).

Theorem 1: The operational secrecy capacity of CR
Gaussian MIMO WTC in (1)-(3) is

Cs = max
R∈SR

C(R) = max
R∈SR

min
K∈SK

f(R,K) (8)

Furthermore, the following saddle-point property holds:

max
R∈SR

min
K∈SK

f(R,K) = min
K∈SK

max
R∈SR

f(R,K) (9)

so that

f(R,K′) ≤ Cs = f(R′,K′) ≤ f(R′,K) (10)

for any feasible R and K, where (R′,K′) is a saddle-point
of f(R,K).

Proof: This result is obtained by establishing tight lower
and upper bounds to the secrecy capacity and demonstrating
that they coincide provided that R and K are selected in an
optimal way (i.e. at the saddle point). Since the feasible set SR

is not isotropic1 anymore (due to the IPC), some key steps of
the proofs in [17]–[19] do not hold anymore and new approach
is necessary. See Appendix for details. �

A few remarks are in order.
Remark 1: While the first equality in (8) can also be

established using the approach of [20], the max-min char-
acterization in (8) as well as the saddle point properties
in (9) and (10) cannot be established via that approach. The
importance of the max-min characterization comes from the
fact that the original max problem in (8) (1st equality) is not
convex (unless the channel is degraded) so that all powerful
tools of convex optimization cannot be used, while the max-
min problem in (8) is convex-concave in the right way2 and
its optimal point is a saddle point. Hence, the Karush-Kuhn-
Tucker (KKT) conditions are sufficient for global optimality.
Furthermore, numerical algorithms with guaranteed global
convergence can be constructed using the method of [25]
by incorporating the extra interference constraints. This is
impossible for maxR∈SR C(R) due to its non-convex nature,
where global convergence cannot be established, and for which
no closed-form solution is known in the general case either.

Remark 2: We emphasize that Theorem 1 characterizes
the operational secrecy capacity, defined operationally as the
largest achievable secrecy rate, see e.g. [15]- [19]. This is
in contrast to other studies where an information capacity
is defined formally via the difference of respective mutual
information terms without demonstrating their operational
significance or where an achievable secrecy rate with unknown
gap to the operational capacity is considered, as sometimes
done in the literature, see e.g. [26], [35], [36]. The opera-
tional characterization of Theorem 1 extends the earlier result
established for the CR MISO WTC in [27] to the full MIMO
setting.

Remark 3: While max
R∈SR

C(R) and max
R∈SR

min
K∈SK

f(R,K) are

always the same as (8) indicates, R′ may not be a maximizer
of C(R) if the TPC is inactive and W3 is singular, so that

C(R′) < max
R∈SR

C(R) = f(R′,K′) = Cs (11)

is possible, in which case an optimal transmit covariance
R∗ = argmaxR∈SR

C(R) (i.e. one maximizing the achiev-
able secrecy rate C(R)) is not the same as R′ and can only be
found from max

R∈SR

C(R); see also an example in Section IX.

However,

C(R′) = max
R∈SR

C(R) = Cs (12)

if either the TPC is active or/and W3 is non-singular, so that
R′ = R∗ in this case. This is also the case without the IPC
(W3 = 0), as in [18], where the TPC is always active.

Remark 4: The saddle-point property in (10) has a well-
known game-theoretic interpretation as a minimax game
between the transmitter and the nature: neither the transmitter,
who controls transmit covariance R, nor the nature, who

1A set SR is isotropic if R ∈ SR implies URU+ ∈ SR for any unitary
U, i.e. eigenvectors of R are not constrained in any way, only its eigenvalues.
This is the case under the TPC only, but not under the IPC in general.

2i.e. f(R, K) is concave in R for any fixed K and convex in K for any
fixed R.
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controls noise covariance K, can deviate from the optimal
strategy (R′,K′) without incurring a penalty.

Theorem 1 can be further extended to the case of multiple
primary receivers (users) of the form

y3k = H3kx + ξ3k, k = 1..K (13)

where K is the number of PRs (users) and H3k, ξ3k are the
channel matrix and noise for k-th PR. The feasible set of Tx
covariance matrices is in this case

S′
R = {R ≥ 0 : trR ≤ PT , trW3kR ≤ PIk, k = 1 . . .K}

(14)

where PIk is the interference constraint power of k-th PR.
Theorem 1 applies with S′

R in place of SR.
Using this approach, one can also include per-antenna power

constraints (PAC) of the form rii ≤ Pi, where rii is i-th
diagonal entry of R (i.e. power radiated by i-th antenna)
and Pi is the i-th antenna constraint power. Specifically, let
W3i be all-zero matrix except for 1 in i-th diagonal entry,
so that trW3iR = rii ≤ Pi. This can be done in addition to
the TPC and IPC.

IV. CHARACTERIZATION OF OPTIMAL

SIGNALING DIRECTIONS

Unfortunately, no closed-form solution is known for the
problem in (8) in the general MIMO case. The MISO case
(all receivers are equipped with single antennas) was consid-
ered in [27], where the respective optimization problem was
shown to be quasi-convex, which can be solved numerically as
a sequence of convex feasibility problems. It was subsequently
transformed into a single convex optimization problem, for
which no closed-form solution is known either. The optimal
signalling strategy was shown to be beamforming (rank-1).

A closed-form full-rank solution for the problem in (8)
under certain conditions was reported in [39] and some
unusual properties were discussed, i.e. (i) full-rank solu-
tion is not necessarily unique, (ii) strict degradedness
(W1 − W2 > 0) is not necessary for a full-rank optimal
covariance, and (iii) the TPC can be inactive, which are in stark
contrast to the no-IPC case, see e.g. [24].

In this section, we characterize the optimal signaling direc-
tions for this problem in the general MIMO case, obtain
a (sharp) upper bound for the rank of optimal covariance
and establish the optimality of beamforming under certain
conditions.

Proposition 1: Let U+ be a semi-unitary matrix of active
eigenvectors (corresponding to strictly positive eigenvalues) of
optimal covariance matrix R∗ = argmaxR∈SR

C(R) in (8).
Then,

U+
+(W1 − W2)U+ ≥ 0 (15)

and the inequality is strict if the TPC is active or/and if W3

is of full rank. In particular,

x+(W1 − W2)x ≥ 0 (16)

for any x ∈ R(U+) = R(R∗) and the inequality is strict
under the stated conditions.

Proof: See Appendix. �
Note that, from Proposition 1, the optimal signaling is over

non-negative directions of the difference channel W1 − W2

and this holds for any W3 and any PI . When W3 > 0
or/and the TPC is active, this characterization coincides with
that in [24] obtained without any interference constraints at
all, i.e. the latter has no effect on this characterization (but
does affect an optimal covariance matrix and the secrecy
capacity).

Proposition 1 can be used to establish an upper bound for
the rank of optimal covariance R∗. To this end, let r+(−)(W)
be the number of positive(negative) eigenvalues of Hermitian
matrix W.

Proposition 2: The rank r(R∗) of optimal covariance R∗

can be upper-bounded as follows:

r(R∗) ≤ m − r−(W1 − W2) (17)

in the general case, and

r(R∗) ≤ r+(W1 − W2) ≤ m − r−(W1 − W2) (18)

when either the TPC is active or/and W3 is of full rank.
Proof: See Appendix. �

It is remarkable that these bounds are not affected
by W3 or PI . Intuitively, this can be understood in the
same way as Proposition 1: signaling over negative directions
of W1 − W2 provides more information to the Ev and
hence cannot ensure secrecy, regardless of the interference
constraint, and thus is avoided. The rank bounds follow from
the dimensionality of the respective sets. It follows from (18)
that

r(R∗) ≤ min(m, n1),

regardless of n2 and n3.
Note that 1st inequality in (18) is sharper than (17), since

2nd inequality in (18) can be strict. Indeed, let r0(W) be the
number of zero eigenvalues of W, so that

r+(W) + r−(W) + r0(W) = m

and hence

r+(W1 − W2) = m − r−(W1 − W2) − r0(W1 − W2)
< m − r−(W1 − W2) (19)

when r0(W1 − W2) > 0, i.e. if W1 − W2 is singular.
Optimality of Beamforming: It follows from Proposition 2

that beamforming is optimal, i.e. r(R∗) = 1, if

r−(W1 − W2) = m − 1 or r+(W1 − W2) = 1

and either W3 > 0 or/and the TPC is active. When the Rx
has single antenna, then r+(W1 −W2) = 1 (unless Cs = 0)
so that beamforming is optimal, for any number of antennas
at the Ev and PR. This extends Corollary 2 in [27] to the
case of multi-antenna PR. Note that this rank condition is
sufficient but not necessary, i.e. beamforming can sometimes
be optimal even when the condition does not hold, e.g. at
low SNR.

It also follows from Proposition 2 that W1 > W2, i.e. the
channel be strictly degraded, is a necessary condition for the
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optimal covariance to be of full rank if W3 > 0 (but it is not
sufficient, as can be shown by examples). This does not hold
anymore if W3 is rank-deficient.

Next, we establish sufficient and necessary conditions
for non-zero secrecy capacity, thus characterizing the
scenarios where the physical-layer security approach is
feasible under the interference constraints (see Appendix for
a proof).

Proposition 3: The secrecy capacity of the Gaussian MIMO
WTC under the interference constraint is non-zero if and only
if one of the following holds:

1. PI > 0 and r+(W1 − W2) ≥ 1. Equivalently, Cs = 0
iff W1 ≤ W2 under non-zero IPC PI > 0.

2. PI = 0, W3 is rank-deficient, i.e. |W3| = 0,
and r+(U+

0 (W1−W2)U0) ≥ 1, where the columns of semi-
unitary matrix U0 form an orthonormal basis of N (W3);
they may be taken to be the inactive eigenvectors of W3

(corresponding to its zero eigenvalues).
It follows from this proposition that Cs = 0 if W1 ≤ W2,

regardless of W3 and PI . However, W1 � W2 is not
sufficient for Cs > 0, unless PI > 0.

V. OPTIMAL SECURE SIGNALING UNDER ZERO

INTERFERENCE CONSTRAINT

While Theorem 1 provides a characterization of the secrecy
capacity via optimization problems, no closed-form solution
is known in the general case. Even in the MISO case, where
optimal covariance is known to be rank-1 [27], no closed-form
solution is known either, so that one has to resort to numerical
algorithms, which limit insights significantly.

To address this issue and motivated by the popularity of
linear ZF precoding techniques for 5G applications [1], [4],
we consider here the case of zero-IPC, PI = 0, so that
the Tx is not allowed to induce any interference power at
the PR, and obtain a number of closed-form solutions and
related properties. Obviously, this is the most conservative
scenario and it provides the largest possible protection to the
PR. The respective secrecy capacity will also serve as a lower
bound to that of the PI > 0 case.

The following Lemma is needed for further analysis and
gives equivalent characterizations of the IPC in this case
(see Appendix for a proof).

Lemma 1: The zero interference power constraint
trH3RH+

3 = trW3R = 0 can be equivalently expressed as
H3R = 0 or W3R = 0.

It is remarkable that the single (scalar) equality
tr(H3RH+

3 ) = 0 is equivalent to the system of equalities
in H3R = 0. Note further that H3R = 0 represents
ZF transmission, which became popular for regular multi-
user MIMO systems (no Ev) [28] as well as in the 5G
context [1], [4]. It is straightforward to see that Cs = 0
unless W3 is singular, which we assume below.

Using (8) and Lemma 1, the respective secrecy capacity can
be expressed as the following problem (P1):

(P1) : C1 = max
R∈SR

C(R) (20)

where the feasible set SR is

SR = {R : R ≥ 0, trR ≤ PT , H3R = 0}. (21)

Its operational meaning follows from Theorem 1.
Due to the ZF constraint H3R = 0, all columns or eigen-

vectors of R are in N (H3). Let U30 be a semi-unitary
matrix whose columns are the right singular vectors of H3

(or, equivalently, eigenvectors of W3) responsible for zero
singular values; they form a basis for N (H3) [32]. Let P3

be a projection matrix on N (H3), so that

P3 = U30(U+
30U30)−1U+

30 = U30U+
30 (22)

from which the following property is obtained.
Lemma 2: Let R∗ be an optimal input covariance of

Problem P1. Then,

R∗ = P3R∗P3 (23)
Using this Lemma, we are now in a position to estab-

lish an equivalence between the ZF-constrained problem
P1 in (20) and an unconstrained but projected problem, where
all matrices are projected on the orthogonal basis of N (H3).
To this end, let

W̃k = U+
30WkU30, k = 1, 2 (24)

and consider the following “projected” problem (P2):

(P2) : C2 = max
R̃∈S̃R

ln |I + W̃1R̃| − ln |I + W̃2R̃| (25)

where the feasible S̃R set is

S̃R = {R̃ : R̃ ≥ 0, trR̃ ≤ PT } (26)

Let r3 = r(H3) so that dimN (H3) = m − r3, and R̃, W̃k

are (m − r3) × (m − r3) matrices. Note that P2 is of lower
dimensionality (and hence simpler to solve numerically) than
P1 and does not have the ZF constraint anymore. Nevertheless,
the following equivalence holds.

Proposition 4: The problems (P1) in (20) and (P2) in (25)
are equivalent, so that C1 = C2 and

R∗ = U30R̃∗U+
30. (27)

where R∗ and R̃∗ are the corresponding optimal input covari-
ance matrices.

Proof: See Appendix. �
With this equivalence in mind, a number of solutions

and results related to the problem P1 can be established.
The following Theorem gives a closed-form solution for
the optimal covariance matrix when the projected channel
is strictly degraded. To this end, let μi be i-th eigenvalue
of (W̃−1

2 − W̃−1
1 )−1, λmin be the minimum eigenvalue

of W̃1, and α = (μ1 + λmin)/λ2
min; Ũ be a unitary matrix

of eigenvectors of (W̃−1
2 − W̃−1

1 ).
Theorem 2: Let the projected channel be strictly

degraded, i.e.

U+
30(W1 − W2)U30 > 0 (28)

and PT > PT0, where PT0 is a threshold power given by

PT0 = 2α

m−r3∑
i=1

(
√

1 + 4μiα + 1)−1 − tr(W̃−1
1 ) (29)
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where r3 = r(W3). Then, r(R∗) = m − r3 and

R∗ = U30(ŨΛ̃1Ũ+ − W̃−1
1 )U+

30 (30)

where Λ̃1 = {λ1i} > 0 is a diagonal matrix with

λ1i =
2
λ

(√
1 +

4μi

λ
+ 1

)−1

(31)

and λ > 0 is found as a unique solution of the following
equation:

m−r3∑
i=1

λ1i = PT + tr(W̃−1
1 ). (32)

Proof: See Appendix. �
Theorem 2 gives a closed-form analytical solution for an

optimal Tx covariance matrix of high-rank (equal to m − r3,
highest possible under zero-IPC) as well as sufficient condi-
tions for this to be the case, i.e. when the SNR exceeds
a threshold and the projected channel is strictly degraded.
The latter requirement is also necessary for the optimal covari-
ance to be of this high rank, as Proposition 6 below shows.
There is no requirement here for the unprojected channel
to be degraded (it can be non-degraded, as can be shown
by examples). Furthermore, there is no requirement here for
SNR → ∞ either, so this is a finite-SNR case. In fact, PT0

can be quite small in some scenarios.
It should be pointed out that the solution in Theorem 2

is not a projected version of the full-rank solution in [24]
without the IPC, i.e. using a no-IPC solution and projecting
it orthogonally to H3 to enforce zero-IPC constraint is not
optimal. Furthermore, the no-IPC solution in [24] does not
apply if the channel is not strictly degraded while the solution
in Theorem 2 does apply for a non-degraded channel provided
that W̃1 − W̃2 > 0.

Using the problem equivalence established in Proposition 4,
the following characterization of the optimal signalling direc-
tions can be established under zero IPC.

Proposition 5: Let U+ be a semi-unitary matrix whose
columns are the active eigenvectors {ui+} of R∗, then

U+
+(W1 − W2)U+ > 0 (33)

so that x+(W1 − W2)x > 0 ∀x ∈ R(R∗) = R(U+), i.e.
optimal signalling is on the positive directions of W1 −W2.

Proof: See Appendix. �
Note that, unlike Proposition 1, there is no requirement here

for W3 > 0 (in fact, W3 > 0 implies Cs = 0 under zero IPC
so that Cs > 0 requires W3 to be singular). Furthermore, this
characterization is completely independent of the interference
constraint (i.e. W3 or PI ) and coincides with that without
the IPC in [24], even though the IPC makes the feasible
set here non-isotropic (note also that all matrices in (33) are
unprojected, as if there were no IPC at all).

Using Proposition 5, the following rank inequality can be
established under zero IPC.

Proposition 6: The optimal covariance rank r(R∗) can be
bounded as follows:

r(R∗) ≤ r+(U+
30(W1 − W2)U30)

≤ min{r+(W1 − W2), m − r3}

where r+(W) is the number of strictly positive eigenvalues
of W.

This Proposition allows one to establish a closed-form
beamforming solution for R∗ when

r+(U+
30(W1 − W2)U30) = 1,

as the next Corollary shows (see Appendix for a proof).
A practical importance of this is due to low-complexity
mobile units using single antennas (so that the channel rank
is automatically 1).

Corollary 1: Let r+(U+
30(W1 − W2)U30) = 1, then

r(R∗) = 1 for the problem P1 in (20), and

R∗ = PT U30u1u+
1 U+

30 (34)

where u1 is the eigenvector corresponding to the largest
eigenvalue of (I+PT W̃2)−1(I+PT W̃1), so that beamforming
along U30u1 is optimal.

Note that Theorem 2 and Corollary 1, when combined
together, completely solve the case of m − r3 ≤ 2
(e.g. if m ≤ 2), where either r(R∗) = 1, so that Corol-
lary 1 applies, or R̃∗ is full-rank, so that Theorem 2 applies.
The general case with m− r3 > 2 remains an open problem.
Similarly to the high-rank solution in Theorem 2, the rank-1
solution in (34) is not a projected version of the no-IPC
rank-1 solution (see e.g. [17], [23]) and the former applies
even if r+(W1 − W2) > 1 (unlike the latter) provided that
r+(U+

30(W1 − W2)U30) = 1.
Next, we consider the case of R(W2) ∈ R(W3), i.e. when

the PR can “see” in all the directions where the Ev can.
Proposition 7: Let R(W2) ∈ R(W3). Then, the optimal

covariance is

R∗ = U30(μ−1I − W̃−1
1 )+U+

30 (35)

where μ > 0 is found from the total power constraint
trR∗ = tr(μ−1I− W̃−1

1 )+ = PT and (A)+ denotes positive
eigenmodes (corresponding to strictly positive eigenvalues) of
Hermitian matrix A. The secrecy capacity is

Cs = C(R∗) =
∑

i:λi(W̃1)>μ

ln(λi(W̃1)μ−1) (36)

Proof: See Appendix. �
Finally, we note that these results can also be extended to

the case of multiple PRs (users), for which there are multiple
zero-IPCs of the form trW3kR = 0, k = 1..K , equivalent to
H3kR = 0 (as established in Lemma 1), by aggregating their
respective channel matrices H3k into the single matrix H3,

H3 = [H+
31,H

+
32, . . . ,H

+
3K ]+ (37)

and using the results above with the new H3 or equivalently
with W3 =

∑
k W3k.

VI. AN EXTENSION TO MULTI-USER SCENARIOS

The results of the previous sections can also be extended
to some multi-user scenarios, as in Fig. 3, where there
are multiple Evs and PRs with respective channel matrices
H21, . . . ,H2N and H31, . . . ,H2K , where N and K are
the numbers of Evs and PRs respectively. In this scenario,



DONG et al.: SECRECY CAPACITY OF GAUSSIAN MIMO WTCs UNDER INTERFERENCE CONSTRAINTS 711

Fig. 3. A block diagram of multi-user Gaussian MIMO wiretap channel
under interference constraints. H1, H2k and H3k are the channel matrices
to the Rx, k-th Ev and PR respectively. Secrecy and interference constraints
are to be satisfied for each Ev and PR respectively.

the secrecy criterion has to be satisfied for each Ev and the
IPC - for each PR, i.e. we consider the case of non-cooperating
Evs and non-cooperating PRs.

Proposition 8: Consider the non-cooperative multi-Ev
multi-PR scenario as in Fig. 3. Assume that there are a
dominant Ev and a dominant PR, i.e.

W21 ≥ W2k, W31 ≥ W3k, ∀k (38)

Then, the secrecy capacity under the interference constraints
trW3kR ≤ PI ∀k is as in Theorem 1 with W2 =
W21, W3 = W31.

Proof: See Appendix. �
It follows from this Proposition that if there are a domi-

nant Ev and a dominant PR in the multi-user setting, then
a single-user solution (optimal signaling or wiretap code)
also works in the multi-user setting, which is a practically-
useful robustness property. The dominance condition in (38)
essentially means that 1st Ev and 1st PR enjoy the most
favorable propagation conditions (e.g. are located closer to the
Tx while all others are further away).

The case of cooperating Evs can also be considered
in a similar way. Specifically, let H21 . . .H2N represent the
respective Ev channels and aggregate all of them into the
single matrix: H2 = [H+

21, . . . ,H
+
2N ]+. Then, Proposition 8

applies with the single aggregate Ev W2 = H+
2 H2 =∑

k W2k under the second condition in (38). It is straight-
forward to see that the secrecy capacity for the cooperating
Evs never exceeds that for the non-cooperating one, so that
this can serve as a lower bound to the secrecy capacity in the
latter case (no need for a dominant Ev to exist).

VII. ON UNBOUNDED GROWTH

OF THE SECRECY CAPACITY

While Proposition 3 above characterises the scenarios where
the physical-layer security approach is feasible under inter-
ference constraints, it does not tell us whether high secrecy
capacity is achievable, which is important for 5G systems. It is
well-known that the capacity of the regular Gaussian MIMO
channel (no Ev, no PR) grows unbounded as the Tx power
increases (even though the growth slows down at high SNR),
so that any high capacity can be attained given enough power

budget. The behavior changes dramatically for the WTC: the
secrecy capacity of Gaussian MIMO WTC may saturate, i.e.
stay bounded, Cs < ∞, even if PT → ∞: for example,

Cs → ln
|W1|
|W2| < ∞ as PT → ∞ (39)

if W1 ≥ W2 > 0 [18], [24], see Fig. 7, – a dramatic
difference to the regular MIMO channel, so that arbitrary large
capacity cannot be attained, even with unlimited power budget.
Sufficient conditions for unbounded growth of the secrecy
capacity in Gaussian MIMO WTC have been given in [22]
for m = 2 or when the optimal covariance is of rank 1.
In the following, we consider the general case (not limited
to m = 2 or r(R∗) = 1) and give sufficient and necessary
condition for the unbounded growth of the secrecy capacity,
which can be further extended to the interference-constrained
setting.

Proposition 9: Consider the Gaussian MIMO WTC (no PR)
under the Tx power constraint. Its secrecy capacity grows
unbounded as the power increases, i.e. Cs → ∞ as PT → ∞,
if and only if

N (W2) /∈ N (W1) (40)
Proof: see Appendix. �

Note that the condition in (40) cannot be satisfied if
W2 > 0, since N (W2) = ∅ in this case, so that W2 > 0
ensures that the secrecy capacity saturates. All other special
cases considered in [22] can also be derived from (40).
No more general condition for the unbounded growth of the
secrecy capacity exists since (40) is also necessary.

The following sufficient condition follows directly
from (40).

Corollary 2: A sufficient condition for the unbounded
growth of the secrecy capacity of the Gaussian MIMO WTC
is that r(W1) > r(W2).

Proof: Note that r(Wk) = m − dimN (Wk) so that
r(W1) > r(W2) implies dimN (W1) < dimN (W2) and
hence (40). �

While this last condition is sufficient, it is not necessary
(this can be shown by examples).

As the above results show, the secrecy capacity of
the Gaussian MIMO WTC may grow unbounded. One
may wonder whether this is still the case under the
interference constraint and, if so, under what conditions.
The following establishes sufficient and necessary condition
for the unbounded growth of the secrecy capacity for the CR
MIMO WTC.

Proposition 10: Consider the Gaussian CR MIMO WTC
under the TPC and IPC. Its secrecy capacity grows unbounded
as the Tx power PT increases and PI stays bounded if and
only if

N (W2) ∩N (W3) /∈ N (W1) (41)

On the other hand, if PT , PI → ∞ simultaneously, then (40)
is both sufficient and necessary for Cs → ∞.

Proof: see Appendix. �
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It can be further shown that, under the condition in (41),
the secrecy capacity can be lower bounded as follows:

Cs ≥ max
U

ln |I + PT U+W1U/r(U)|

≥
d−1∑
i=0

ln(1 + PT λr1−i(W1)/d) (42)

where U is any semi-unitary matrix whose columns are a part
of an orthonormal basis of S,

S = N (W2) ∩ N (W3) ∩R(W1) (43)

d = dimS ≥ r(U), r1 = r(W1) and hence λr1(W1) > 0 is
the minimum non-zero eigenvalue of W1. The lower bound
is achieved by a ZF transmission of the form

R = d−1PTUdU+
d (44)

where semi-unitary matrix Ud = [ur1−d+1, ..,ur1 ] collects
the eigenvectors of W1 corresponding to its d smallest non-
zero eigenvalues. This is also an isotropic signaling over the
subspace S.

Equivalently, the sufficient and necessary condition for the
secrecy capacity to saturate is that

N (W2) ∩ N (W3) ∈ N (W1) (45)

which automatically holds if N (W2) ∩ N (W3) = ∅, e.g. if
either W2 or W3 are full-rank.

These results can also be extended to the case of multi-PR
scenario, where W31 . . .W3K represent multiple PRs: (41)
extends to

N (W2) ∩ N (W31).. ∩ N (W3K) /∈ N (W1) (46)

Equivalently, one can define W3 = [W+
31, . . . ,W

+
3K ]+ and

use (41) with the new (aggregated) W3. We remark that, under
this condition, unbounded growth of the secrecy capacity can
be achieved with ZF transmission.

VIII. ON THE ACTIVITY OF CONSTRAINTS

In the scalar case (m = 1), one constraint always dominates
and hence only one constraint is active, unless the thresholds
are precisely adjusted so that both constraints become identical
(a trivial case). A question arises as to whether this is still the
case with m > 1, or two constraints can be simultaneously
active in a non-trivial way? The following example gives a
positive answer to this question:

W1 = I, W2 = 0.5I, W3 = diag{1, 2} (47)

It can be shown that the optimal covariance is also diagonal
in this case, R∗ = diag{p1, p2}. Fig. 4 shows the PT − PI

plane and the regions where the TPC, IPC or both are active.
Clearly, both constraints can be active in a non-trivial way and
at least one constraint is always active. The respective regions
and power allocations are:

Region 1: only the TPC is active if PI > 1.5PT , and p1 =
p2 = PT /2, i.e. isotropic signaling is optimal.

Region 2: both the TPC and the IPC are active simultane-
ously if

max(PT , f(PT )) ≤ PI ≤ 1.5PT ,

Fig. 4. PT − PI plane and the activity regions of the TPC and the IPC
for the channel in (47). Both constraint can be active simultaneously in a
non-trivial way as in Region 2.

Fig. 5. Optimal power allocation (p1, p2) versus PT for PI = 1. Only
the TPC is active if PT < 0.67. Both the TPC and the IPC are active if
0.67 < PT < 0.87. Only the IPC is active when PT > 0.87. Different
regions correspond to significantly different power allocations. In particular,
uniform power allocation is optimal only if PT < 0.67 and sub-optimal
otherwise - stark difference to the classical water-filling algorithm, where
uniform power allocation becomes optimal at high SNR.

where f(x) =
√

2(x + 3)2 + 0.25 − 4.5, and p1 = 2PT −
PI , p2 = PI −PT . Note that optimal signaling is not isotropic
anymore and both constraints are active simultaneously in a
non-trivial way (in the scalar case of m = 1 they would be
active simultaneously only if PT = aPI , i.e. over a line rather
than a region as in Fig. 4).

Region 3: only the IPC is active if PI < max(PT , f(PT ))
so that p1 = PI , p2 = 0 if PT ≥ f(PT ), or

p1 = (
√

1 + 4/g−1(PI) − 3)/2,

p2 = (
√

1 + 2/g−1(PI) − 3)/2 (48)

if f(PT ) ≥ PT , where g−1(·) is the inverse function of

g(x) = (
√

1 + 4/x + 2
√

1 + 2/x − 9)/2. (49)

Fig. 5 and 6 show optimal power allocation versus PT

and PI respectively for this channel. Clearly, the presence of
the extra constraint makes the behavior of the optimal power
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Fig. 6. Optimal power allocation (p1, p2) versus PI for PT = 1. Only
the IPC is active if PI < 1.18. Both the TPC and the IPC are active if
1.18 < PI < 1.5. Only the TPC is active if PI > 1.5, in which case
optimal signaling is isotropic.

Fig. 7. Secrecy capacity of the channel in (47) vs. the SNR. Note significant
loss in the capacity due to the IPC and that the upper f(R, K) and lower
C(R) bounds coincide at the saddle-point (R′,K′) (found via extensive
Monte-Carlo simulations), as established in Theorem 1 (see also Remark 3).

allocation more complicated, with different regions behaving
is a different way, depending on which constraint is active.
Note that, in Fig. 5, uniform power allocation is optimal only
if PT < 0.67 (inactive IPC) and sub-optimal otherwise -
a stark difference to the classical water-filling algorithm,
where the uniform power allocation becomes optimal at high
power (SNR). This tendency is also observed in Fig. 6, where
the uniform power allocation (which corresponds to isotropic
signaling) is optimal only if PI ≥ 1.5 (inactive IPC) and sub-
optimal otherwise.

Fig. 7 illustrates the secrecy capacity dependence on the
SNR (= PT ) for the channel in (47). Note that there is a
significant capacity loss due to the IPC as compared to the
no-IPC case (IPC = ∞) at high SNR (> −2(8) dB for PI =
0(10) dB respectively) and that the capacity saturates in this
regime in both cases. However, there is a significant difference:
in the IPC case, the saturation starts earlier, it is at a lower level
and it is hard rather than soft in the no-IPC case: no increase
at all after about −2 dB for PI = 0 dB and after 8 dB for

Fig. 8. Secrecy capacity of the channel in (50) vs. the SNR. Note the same
tendencies as in Fig. 7. While the high-SNR behaviour is significantly affected
by the IPC, there is no change in the low-SNR behaviour.

PI = 10 dB, which is due to the inactive TPC and this is
impossible in the no-IPC case, where the increase becomes
smaller with SNR, but never stops completely, approaching
the limit at significantly higher SNR of about 25 dB.

IX. EXAMPLES

Extensive numerical experiments have been carried out
to validate the analytical results above and no difference
had been found between the theory and the simulations.
To further illustrate the analytical results, we consider the
following representative example with the channel matrices
W1,W2,W3 set as(

0.2 0.1
0.1 1.2

)
,

(
0.5 0.9
0.9 1.8

)
,

(
0.6 0.5
0.5 1.0

)
(50)

respectively for which the results are shown in Fig. 8. Note that
this channel is not degraded (the eigenvalues of W1−W2 are
0.4 and −1.3) and that the general tendencies are the same as
in Fig. 7, even though here channel matrices are not diagonal.
Similar tendencies were observed for a large number of cases
in our experiments.

To illustrate that C(R′) < f(R′,K′) is possible at saddle-
point for singular W3 and hence R∗ 	= R′, we consider the
following example:

H1 = diag{1, 0}, H2 = diag{0, 1}, W3 = diag{1, 0}
(51)

as illustrated in Fig. 9 for PI = 1. It is straightforward to see
that the saddle-point is

K′ = I, R′ = diag{min(PT , PI), a} (52)

where 0 ≤ a ≤ (PT −PI)+, i.e. R′ is not unique if PT > PI ,
and the optimal covariance R∗ = argmaxR∈SR

C(R) is

R∗ = diag{min(PT , PI), 0} (53)

Thus, R∗ 	= R′ (unless a = 0) and

Cs = f(R′,K′) = ln(1 + min(PT , PI)) (54)
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Fig. 9. Secrecy capacity/rate of the channel in (51) vs. PT ; PI = 1. Note that
C(R′) < f(R′,K′) when PT > PI while f(R′,K′) = maxR C(R) =
C(R∗) for any PT , so that R′ �= R∗ is possible, unlike that in [18].

Fig. 10. Unbounded growth of the secrecy capacity for the channel in (56)
with PT ; PI = 1. While W3a bounds the capacity growth, W3b does not,
as expected from Proposition 10.

for any a. However, if one sets a = (PT − PI)+, then

C(R′) = ln
1 + min(PT , PI)
1 + (PT − PI)+

< Cs = C(R∗) (55)

where the inequality holds if PT > PI , as Fig. 9 shows
(negative C(R′) is interpreted as zero rate). Hence, R′ is
not an optimal transmit covariance (i.e. one maximizing the
secrecy rate C(R)) and the latter can only be found from
maxR∈SR C(R) and not from maxR∈SR minK∈SK f(R,K)
in this case, even though both problems have the same value.
This does not happen without the IPC or if W3 is non-singular,
i.e. both problems have the same optimal covariance, which is
also the case in [18]. Note that C(R′) = f(R′,K′) and R′ =
R∗ is unique and optimal when PT ≤ PI in this example, i.e.
when the TPC is active, as expected from Proposition 16.

The next example demonstrates that while unbounded grows
of Cs with PT is possible without the IPC, this may be dras-
tically changed when the IPC is introduced. Let us consider

the following channel:

W1 =
(

0.6 0.2
0.2 0.5

)
, W2 =

(
0.4 −0.4
−0.4 0.4

)
,

W3a =
(

0.1 0.1
0.1 0.1

)
, W3b =

(
0.1 −0.1
−0.1 0.1

)
(56)

for which the secrecy capacity is shown in Fig. 10. While the
capacity growths unbounded with PT without the IPC (since
r(W2) = 1 while r(W1) = 2, so that (40) is satisfied),
it saturates with the IPC matrix W3a but not with W3b.
Hence, the introduction of the IPC may have a dramatic impact
on the high-SNR behaviour of the secrecy capacity and this
also depends significantly on the specifics of the IPC matrix,
including the phases of its off-diagonal terms. Note also that
the low-SNR behaviour is not affected by the IPC while the
high-SNR behaviour may or may not be affected, depending
on W3.

X. CONCLUSION

The Gaussian MIMO wiretap channel was studied under
interference constraints. Its operational secrecy capacity has
been established in two equivalent forms, as a non-convex
max problem and a convex-concave max-min problem. While
no closed-form solution is known to any of these problems
in the general case (even without interference constraints),
rank-1 and high-rank solutions have been obtained under zero-
interference constraints. Optimal signaling directions have
been characterized in the general case, from which tight
bounds to the rank of optimal covariance were obtained. Suffi-
cient condition for the optimality of beamforming as well as
necessary condition for full-rank optimal signaling were given.
The results are extended to a multi-user scenario. Sufficient
and necessary conditions for non-zero secrecy capacity and its
unbounded growth under interference constraints were given.
The interplay between total transmit and interference power
constraints was shown to affect the optimal signaling in a
significant way, especially in the high-SNR regime. Overall,
these results provide insights into fundamental information-
theoretic limits as well as optimal signaling strategies for
secure communications under interference constraints.

APPENDIX

A. Proof of Theorem 1

The proof is via the sequence of Propositions below and is
based on the method of [17], [18] by properly extending it to
incorporate the interference constraint. First, lower and upper
bounds to the secrecy capacity are established as follows.

Proposition 11: Let px be a probability distribution of
input x. The secrecy capacity Cs of the CR MIMO WTC can
be bounded as follows:

max
px∈P

[I(x;y1) − I(x;y2)] ≤ Cs ≤ max
px∈P

I(x;y1|y2) (57)

where I(x;y1(2)) is the mutual information between x
and y1(2), and I(x;y1|y2) is the conditional mutual informa-
tion when ξ1 and ξ2 are jointly Gaussian and the covariance
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of [ξ+
1 , ξ+

2 ]+ is K (as in (6)); P is the set of all input
distributions px that satisfy the TPC and IPC:

P = {px : E
{|x|2} ≤ PT , E

{|H3x|2
} ≤ PI}. (58)

Proof: The upper bound in (57) is obtained via a genie-
aided channel in which the Rx observes y2 in addition to y1.
Such channel has in general a larger or equal capacity to that
of the original channel and it is degraded at the same time,
making the analysis much simpler (since the original Wyner’s
construction of the converse applies). Furthermore, one can
always choose the noises ξ1, ξ2 to be jointly Gaussian and
correlated with each other (since the secrecy capacity depends
on the marginal distributions, not the joint one [15]) and
select their cross-covariance as to minimize the upper bound
as in [17]. The details follow below.

To establish the upper bound, consider a (2nR, n) code
for the channel, where n is the blocklength and R is the
rate, so that a message w is uniformly distributed over the
set

{
1, 2, . . . , 2nR

}
. An encoder maps the message w to the

transmitted vector sequence {x(t)}n
t=1, and a decoder maps

the received sequence {y(t)}n
t=1 to a message estimate ŵ.

Let

Xn = [x(1),x(2), . . . ,x(n)],
Yn

i = [yi(1),yi(2), . . . ,yi(n)], i = 1, 2

denote the transmitted and received sequence matrix from time
1 to n respectively. The reliability and secrecy criteria are as
follows: for every ε > 0 and n sufficiently large,

Pr(w 	= ŵ) ≤ ε, n−1I(w;Yn
2 ) ≤ ε, (59)

while the TPC and IPC are

1
n

n∑
i=1

E
{|x(i)|2} ≤ PT , (60)

1
n

n∑
i=1

E
{|H3x(i)|2} ≤ PI . (61)

Note that (59) implies, from Fano’s inequality, that

n−1I(w;Yn
1 ) � R − εF (62)

where εF → 0 as ε → 0. By combining (59) and (62),
we obtain, for any ε′ = εF + ε > 0,

R − ε′ � n−1[I(w;Yn
1 ) − I(w;Yn

2 )]
� n−1[h(Yn

1 |Yn
2 ) − h(Yn

1 |Yn
2 , w,Xn)] (63)

� n−1
n∑

i=1

I(x(i);y1(i)|y2(i)) (64)

� I(x̄q; ȳ1q|ȳ2q) (65)

≤ max
px∈P

I(x;y1|y2) (66)

where (63)-(66) are obtained via the same steps as in [17,
Appendix I]. In (65), q = 1, 2, . . . , n is a time-sharing random
variable with uniform distribution: pq = 1/n, and x̄q is the
composite (time-shared) random input whose distribution is
the average of those of x(1), ..,x(n):

px̄q
= n−1

n∑
i=1

px(i). (67)

To prove (66), note that since {x(1), . . . ,x(n)} satisfy the
power and interference constrained in (60) and (61), so is x̄q ,
since

n−1
n∑

i=1

E
{|x(i)|2} =

n∑
i=1

p(q = i)E
{|xq|2|q = i

}

= Ex|q
{|xq|2|q

}
= E

{|x̄q|2
}

≤ PT , (68)

n−1
n∑

i=1

E
{|H3x(i)|2} =

n∑
i=1

p(q = i)E
{|H3xq|2|q = i

}

= Ex|q
{|H3xq|2|q

}
= E

{|H3x̄q|2
}

≤ PI (69)

holds. Thus, the desired upper bound in (66) follows. Since
this holds for any ε′ > 0, the upper bound in (57) follows.

To establish the lower bound in (57), note that it is
an achievable rate, which follows from the Csiszar-Korner
formula (see e.g. [15], [17]) by setting u = x and using an
input subject to the constraints in (60) and (61), where where u
is the auxiliary random variable in the Csiszar-Korner formula.

�
Note that this proposition does not require x to be

Gaussian. The following proposition establishes the optimality
of Gaussian inputs.

Proposition 12: For each K > 0, the distribution of x
maximizing I(x;y1|y2) in (57) is Gaussian.

Proof: I(x;y1|y2) can be expressed as

I(x;y1|y2) = h(y1|y2) − h(y1|y2,x)
= h(y1|y2) − h(H1x + ξ1|H2x + ξ2,x)
= h(y1|y2) − h(ξ1|ξ2,x)
= h(y1|y2) − h(ξ1|ξ2) (70)

Since the second term in (70) is independent of x, it suffices
to establish that h(y1|y2) is maximized when x is Gaussian.
While Gaussian distribution maximises the differential entropy
under covariance constraint, it is not necessarily so for
conditional entropy, since it is a difference of 2 differential
entropies. To this end, we need the following Lemma of
Thomas [29].

Lemma 3: Let z1, .., zk be a set of arbitrary zero-mean
random variables with covariance matrix R. Let S be any
subset of {1, 2, . . . , k} and S̄ be its complement. Then

h(zS |zS̄) ≤ h(z∗S |z∗̄S) (71)

where (z∗1 , .., z∗k) ∼ N(0,R), i.e. Gaussian with the same
mean and covariance.

Since R in this Lemma is arbitrary, the TPC and IPC can
be accommodated by properly restricting the choice of R.
Applying this inequality to h(y1|y2) and maximizing the
upper bound over R ∈ SR, one concludes that Gaussian input
achieves the upper bound in (57), since, under such input,
y1,y2 are also Gaussian. �
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Since Gaussian input maximizes the upper bound,
I(x;y1|y2) under such input can be expressed as

I(x;y1|y2) = h(y1|y2) − h(y1|x,y2)
= h(y1|y2) − h(x,y1,y2) + h(x,y2)
= h(y1,y2) − h(y2) − h(y1,y2|x) + h(y2|x)
= ln |I + K−1HRH+| − ln |I + H2RH+

2 |
= f(R,K) (72)

Gaussian input can also be used for the lower bound
and maxpx can be replaced by maxR on the both sides of (57)
(still preserving the inequalities), giving

max
R

C(R) ≤ Cs ≤ max
R

f(R,K) (73)

which holds for any K and hence

max
R

C(R) ≤ Cs ≤ min
K

max
R

f(R,K) (74)

We further establish the existence of a saddle-point in the
minimax problem above, which is essential to establish Propo-
sitions 14 and 15 below, on which Proposition 16 depends.

Proposition 13: The max-min problem in (8) has a saddle
point solution (R′,K′) as in (9) and (10).

Proof: It was shown in [18] that f(R,K) is concave in R
for any fixed K and convex in K for any fixed R. Since the
feasible set SR in (3) and SK are convex (as an intersection
of convex sets representing each constraint individually), von
Neumann mini-max theorem applies (see e.g. [30]), from
which (9) and hence (10) follow. �

Armed with the saddle-point solution, we further estab-
lish that it also solves the following entropy maximization
problem.

Proposition 14: Let h(y) be the differential entropy
of y and let Z′

12 be the optimal minimum mean square
error (MMSE) weight matrix to estimate y1 from y2 at saddle-
point (R′,K′):

Z′
12 = (N′ + H1R′H+

2 )(I + H2R′H+
2 )−1 (75)

Then,

arg max
R∈SR

h(y1 − Z′
12y2) = arg max

R∈SR

f(R,K′) (76)

where h(·) is evaluated under K = K′.
Proof: First, we note that one cannot use the respective

result from [18] directly since our feasible set SR is different
from that in [18] (in particular, it is not isotropic) so that
the respective KKT conditions are different and this affects
a number of key steps in [18]. Nevertheless, we demon-
strate below that this important property does hold under the
extra IPC.

After some manipulations, h(y1−Z′
12y2) can be expressed

as follows:

h(y1 − Z′
12y2)

= ln |E {
(y1 − Z′

12y2)(y1 − Z′
12y2)+

} | + n1 ln(2πe)
= ln |I + B1 + B2RB+

2 | + n1 ln(2πe) (77)

where

B1 = Z′
12Z

′+
12 − Z′

12N
′+ − N′Z′+

12 , B2 = H1 − Z′
12H2

and where the last term in (77) can be neglected in optimiza-
tion. Note that h(y1 −Z′

12y2) is concave in R, since log-det
is a concave function and I + B1 + B2RB+

2 is affine in R.
Since h(y1 − Z′

12y2) is concave in R, the feasible set SR

is convex and Slater’s condition holds, the KKT conditions
are both necessary and sufficient for optimality of the LHS
of (76), which take the following form:

B+
2 [I + B1 + B2RB+

2 ]−1B2+M1−λI−λ3W3 =0 (78)

λ(trR − PT ) = 0, λ3(trW3R − PI) = 0, (79)

M1R = 0, M1 ≥ 0, λ ≥ 0, λ3 ≥ 0 (80)

where M1 is a Lagrange multiplier responsible for the positive
semi-definite constraints R ≥ 0, λ and λ3 are Lagrange
multiplier responsible for the total power trR ≤ PT and
interference trW3R ≤ PI constraints.

Likewise, since f(R,K′) is concave in R, the KKT condi-
tions are both necessary and sufficient for the optimality of
the RHS of (76). After some manipulations (using matrix
inversion Lemma etc.), they take the following form:

B+
2 A−1

12 B2 + M2 − μI− μ3W3 = 0, (81)

μ(trR − PT ) = 0, μ3(trW3R − PI) = 0, (82)

M2R = 0, M2 ≥ 0, μ ≥ 0, μ3 ≥ 0 (83)

where M2, μ, μ3 are Lagrange multipliers and

A12 = I + H1RH+
1 − Z12(N′+ + H2RH+

1 ), (84)

Z12 = (N′ + H1RH+
2 )(I + H2RH+

2 )−1. (85)

Note that A12 can be further expressed as

A12 = I + H1RH+
1 − Z12(N′+ + H2RH+

1 )
− (N′ + H1RH+

2 )Z+
12 + Z12(I + H2RH+

2 )Z+
12

= I + Z12Z+
12 − Z12N′+ − N′Z+

12

+ (H1 − Z12H2)R(H1 − Z12H2)+

= I + B1 + B2RB+
2 . (86)

so that the condition in (81) takes the form:

B+
2 (I + B1+B2RB+

2 )−1B2+M2 − μI − μ3W3 =0 (87)

By comparing (78)-(80) to (82), (83) and (87), it is clear that
any solution of the 1st set of KKT conditions also solves the
2nd one and hence optimal R are the same, as desired. �

Next, we consider the case when either the TPC is active
or/and W3 is non-singular, so that Wμ = μI + μ3W3 > 0,
and deal with the singular case later on. Using Proposition 14,
we establish the following property of the saddle-point under
the stated conditions, which is needed to prove Proposition 16.

Proposition 15: If either the TPC is active or/and W3

is non-singular, and H1 	= Z′
12H2, then the saddle point

(R′,K′) satisfies

(N′+H1 − H2)S′ = 0 (88)

for a full column-rank matrix S′ such that R′ = S′S′+

(the rank factorization; the columns of S′ are the scaled eigen-
vectors of R′ corresponding to strictly-positive eigenvalues,
r(R′) = r(S′)).
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Proof: Following 2nd inequality in (10) and the steps of
the proof in [18, Lemma 3], one obtains

B2S′S′+(N′+H1 − H2)+ = 0 (89)

Using Proposition 14,

R′ = argmax
R∈SR

f(R,K′)

= argmax
R∈SR

h(y1 − Z′
12y2)

= argmax
R∈SR

ln |I + HeRH+
e | (90)

where He = (I+B1)−1/2B2. At this point, we note that [18,
Lemma 4] cannot be used to complete the proof since its proof
makes use of the isotropy of the feasible set in [18], which is
not the case here due to the IPC. Hence, a new line of attack
is necessary. We proceed as follows.

Note that the equality in (90) is the following optimization
problem (P1):

(P1) : max
R

ln |I + WeR|,
s.t. R ≥ 0, trR ≤ PT , tr(W3R) ≤ PI . (91)

where We = H+
e He, for which the KKT conditions are

(I + WeR)Wμ = We + M, (92)

MR = 0, μ(trR − PT ) = 0,

μ3(tr(W3R) − PI) = 0, (93)

trR ≤ PT , tr(W3R) ≤ PI , R ≥ 0, M ≥ 0,

μ ≥ 0, μ3 ≥ 0 (94)

where μ, μ3, M ≥ 0 are Lagrangian multipliers responsible
for trR ≤ PT , tr(W3R) ≤ PI , R ≥ 0 respectively and
where Wμ = μI + μ3W3. Multiplying both sides of (92)

by W− 1
2

μ from the left and the right, one obtains

λ̃(I + W̃eR̃) = W̃e + M̃ (95)

where λ̃ = 1, W̃e = W− 1
2

μ WeW
− 1

2
μ , R̃ = W

1
2
μ RW

1
2
μ , M̃ =

W− 1
2

μ MW− 1
2

μ , and hence

M̃R̃ = 0, R̃ ≥ 0, M̃ ≥ 0 (96)

Define P ′
T = tr(W

1
2
μ R′W

1
2
μ ). Then, (95)-(96), in combination

with

λ̃(trR̃ − P ′
T ) = 0 (97)

are just the KKT conditions of the following problem (P2):

(P2) : max
R̃

ln |I + W̃eR̃|,
s.t. R̃ ≥ 0, trR̃ ≤ P ′

T . (98)

so that any solution of (P1) is also a solution of (P2) (since
both (P1) and (P2) are convex problems and Slater’s condition
holds, their KKT conditions are sufficient and necessary for
optimality [30]). However, the feasible set of (P2) is isotropic
(unlike that of (P1)) and hence [18, Lemma 4] applies to
(P2) so that H̃eS̃′ is full column-rank matrix3, where H̃e =

3This can also be seen using the standard WF solution for (P2).

HeW
− 1

2
μ and R̃′ = S̃′S̃′+ is a solution of (P2) with S̃′ being

full-column rank. Further note that

H̃eS̃′ = HeW
− 1

2
μ W

1
2
μS′

= HeS′

= (I + B1)−1/2B2S′ (99)

and hence B2S′ is of full column-rank so that

S′+(N′+H1 − H2)+ = 0 (100)

according to (89), from which (88) follows. �
The final step is to show that the upper bound and lower

bounds in (74) coincide.
Proposition 16: If either the TPC is active or/and W3 is

non-singular, the saddle point solution (R′,K′) satisfies

f(R′,K′) = C(R′) (101)
Proof: We consider 1st the case of H1 	= Z′

12H2. To this
end, take Gaussian x and use the chain rule to obtain

f(R′,K′) = I(x;y1|y2) = C(R′) + I(x;y2|y1) (102)

Using (70), one can express I(x;y2|y1) as

I(x,y2|y1) = h(y2 − Z21y1) − ln |I− N′+N′|
−n2 ln(2πe) (103)

where

Z21 = (N′+ + H2R′H+
1 )(I + H1R′H+

1 )−1 (104)

denotes the MMSE matrix of estimating y2 from y1 and N+

also represents the MMSE matrix of estimating ξ2 from ξ1.
At a saddle point (R′,K′), one obtains:

h(y2 − Z21y1) − n2 ln(2πe)
= ln |I + H2R′H+

2 − Z21(N′ + H1R′H+
2 )|

= ln |I + H2R′H+
2 − N′+(I + H1S′S′+H+

1 )N′| (105)

= ln |I + N′+H1S′S′+H+
1 N′

−N′+(I + H1S′S′+H+
1 )N′|

= ln |I − N′+N′| (106)

where (105) and (106) are obtained via N′+H1S′ = H2S′

from Proposition 15. Therefore, using (102) and (103),

I(x,y2|y1) = f(R′,K′) − C(R′) = 0. (107)

Thus, f(R′,K′) = C(R′) as desired.
Finally, we show that f(R′,K′) = 0 if H1 = Z′

12H2.
To this end, note that

y1 − Z′
12y2 = ξ1 − Z′

12ξ2. (108)

so that

f(R′,K′) = h(ξ1 − Z′
12ξ2) − h(ξ1 − N′ξ2). (109)

Substituting H1 = Z′
12H2 into (75) and after some manipu-

lations, one obtains

Z′
12(I + H2R′H+

2 ) = (N′ + Z′
12H2R′H+

2 ). (110)

so that Z′
12 = N′ and hence f(R′,K′) = 0. But C(R′) ≤

f(R′,K′), so that C(R′) = 0, as desired. �
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Note that, from (101), R′ is also a maximizer of C(R)
when Wμ is not singular, R∗ = R′, which is not necessarily
true for a singular Wμ.

Combining (74) and (101), Theorem 1 follows. While we
considered here the case of non-singular K only, the singular
case can be established in a similar way with somewhat more
lengthy arguments (using pseudo-inverse instead of the inverse
and related projection on the active sub-space only).

Since Proposition 15 was established for non-singular Wμ

only, i.e. when either the TPC is active or/and W3 is non-
singular, the above result is limited to this case only (in fact,
it can be shown, by examples, that it does not hold in the
singular case). Let us now consider the case of singular Wμ.
Note that a singular Wμ implies μ = 0 (inactive TPC) and
singular W3. We deal with it using the standard continuity
argument: let W3 → W3ε = W3 +εI for some ε > 0, so that

Wμ = μ3(W3 + εI) > 0 (111)

and observe that Proposition 15 and hence Proposition 16 now
apply for any ε > 0. Next, we need the following continuity
properties, which are straightforward to prove (using the
continuity of the objective functions and compactness of the
feasible sets).

Lemma 4: Consider the following “regularized” problems

Cε = max
R∈SRε

C(R), (112)

fε = max
R∈SRε

min
K

f(R,K) (113)

where SRε = {R ≥ 0 : trR ≤ PT , tr(W3εR) ≤ PI}. Then,

lim
ε→0

Cε = max
R∈SR

C(R) (114)

lim
ε→0

fε = max
R∈SR

min
K

f(R,K) = f(R′,K′) (115)

Now observe that

Cε = fε ∀ε > 0 (116)

due to Proposition 16, and take the limit ε → 0 to establish

max
R∈SR

C(R) = max
R∈SR

min
K

f(R,K) = f(R′,K′) (117)

in the singular case. We remark that C(R′) does not have
to be equal to f(R′,K′) in the singular case, i.e. R′ is not
necessarily a maximizer of C(R) if Wμ is singular.

B. Proof of Proposition 1

The KKT conditions for 1st problem in (8) are

(I + W1R)−1W1 − W2(I+RW2)−1 + M=Wμ (118)

μ(trR − PT ) = 0, μ3(trW3R − PI) = 0,

RM = 0 (119)

μ, μ3 ≥ 0, R,M ≥ 0 (120)

trR ≤ PT , trW3R ≤ PI (121)

where μ, μ3 ≥ 0 are Lagrange multipliers responsible for the
TPC and IPC respectively; M ≥ 0 is a (matrix) Lagrange
multiplier responsible for the positive semi-definite constraint
R ≥ 0; Wμ = μI + μ3W3; (118) is the stationarity
condition, (119) are the complementary slackness conditions,

(120) and (121) are primal and dual feasibility conditions.
While these conditions are not sufficient for optimality in the
general (non-degraded) case, they are necessary, since the
(affine) constraints trR ≤ PT , trW3R ≤ PI , R ≥ 0
clearly satisfy the Slater condition and since the maximum
is achievable (since the constraint set is compact and the
objective function is continuous) [31]. (118) can be expressed
as

W1 − W2 + M = (I + W1R)Wμ(I + RW2) (122)

Using R = QQ+, where Q = U+Λ1/2
+ and Λ+ is a diagonal

matrix of strictly positive eigenvalues of R, and multiplying
both sides of (122) by Q+ from the left and by Q from the
right, one obtains

Q+(W1 − W2)Q = (I + W′
1)W

′
μ(I + W′

2) (123)

where W′
k = Q+WkQ. Further note that I + W′

k >
0, W′

μ ≥ 0. We further need the following technical
Lemma (see [24] for a proof).

Lemma 5: Let A,B,C ≥ 0 be positive semi-definite
matrices and let ABC be Hermitian. Then ABC ≥ 0 and
the inequality is strict when all matrices are full-rank.

Applying this Lemma to (123), one concludes

Q+(W1 − W2)Q ≥ 0 (124)

from which (15) follows (since Λ+ > 0). When either the
TPC is active or/and W3 > 0, then Wμ > 0 and the strict
inequality follows by taking the determinant of both sides
of (123).

C. Proof of Proposition 2

We need the following technical Lemma, which is a direct
consequence of Corollary 4.5.11 in [32].

Lemma 6: Let A be Hermitian and r+(A) be its number
of positive eigenvalues. Then r+(S+AS) ≤ r+(A), where S
is any matrix of appropriate size.

To prove (18), note that when either TPC is active
or/and W3 > 0, then Wμ > 0 and hence, form (122),
W1 − W2 + M is full-rank, so that

r(R∗) = r(Q(W1 − W2 + M)Q+)
= r+(Q(W1 − W2)Q+)
≤ r+(W1 − W2) (125)

as required, where R∗ = QQ+. 2nd inequality in (18) follows
from r+(W) + r−(W) ≤ m.

To prove (17), note that, from (122),

W1 − W2 + M ≥ 0 (126)

in general. Expanding

W1 − W2 = W+ − W−, W− = U−Λ−U+
− (127)

where W+(−) collect positive(negative) eigenmodes of
W1 − W2, the columns of semi-unitary matrix U− are the
active eigenvectors of W− and Λ− > 0 is a diagonal matrix
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of its eigenvalues, and multiplying (126) by U+
− and U−, one

obtains

U+
−(W1 − W2 + M)U− = −Λ− + U+

−MU− ≥ 0 (128)

from which it follows that

r(M) ≥ r(U+
−MU−) ≥ r(W−) = r−(W1 − W2) (129)

Since R∗M = 0, it follows that R(R∗) ∈ N (M) and hence

r(R∗) ≤ dimN (M) = m − r(M)
≤ m − r−(W1 − W2) (130)

as required, where dimN (M) is the dimensionality of N (M).

D. Proof of Proposition 3

Part 1: to prove sufficiency, observe that r+(W1−W2) ≥ 1
implies that there exists unitary vector u : u+W1u >
u+W2u, so that one can set R = puu+, where p =
min[PT , PI/u+W3u] > 0, which is feasible, and

Cs ≥ C(R) = ln
1 + pu+W1u
1 + pu+W2u

> 0 (131)

To prove necessity, assume r+(W1 − W2) = 0, which is
equivalent to W1 ≤ W2 and hence

C(R) = ln
|I + W1R|
|I + W2R| ≤ 0 (132)

for any R ≥ 0 so that Cs = maxR C(R) = 0.
Part 2: sufficiency is proved similarly to that of Part 1.

r+(U+
0 (W1 − W2)U0) ≥ 1 implies

∃u : u+W1u > u+W2u, u ∈ N (W3)

so that one can set R = PT uu+, which is feasible (note that
trW3R = 0, trR = PT ) and for which C(R) > 0. To prove
necessity, assume r+(U+

0 (W1−W2)U0) = 0, which implies
that U+

0 (W1−W2)U0 ≤ 0. On the other hand, trW3R = 0
implies W3R = 0, which implies R(R) ∈ N (W3) and hence
R can be presented as R = U0R̃U+

0 for some R̃ ≥ 0, and
hence

C(R) = ln
|I + W1R|
|I + W2R| = ln

|I + W̃1R̃|
|I + W̃2R̃| ≤ 0 (133)

for any R̃ ≥ 0 and hence for any feasible R, where W̃k =
U+

0 WkU0, so that Cs = maxR C(R) = 0.

E. Proof of Lemma 1

Since H3RH+
3 ≥ 0, λi(H3RH+

3 ) ≥ 0 so that

tr(H3RH+
3 ) =

∑
i

λi(H3RH+
3 ) = 0 (134)

imply λi(H3RH+
3 ) = 0 and hence H3RH+

3 = 0.
To show H3R = 0, observe that

σ2
i (H3R1/2) = λi(H3RH+

3 ) = 0 (135)

where σi denotes singular values, so that H3R1/2 = 0 and
hence H3R = 0 and W3R = 0 follow. Using similar
approach, it can be shown that W3R = 0 implies H3R = 0,
so that these conditions are equivalent.

F. Proof of Proposition 4

Let R∗ and R̃∗ be optimal covariance matrices for P1 and
P2 respectively. We will need the following technical Lemma,
which follows from von Neumann trace inequality [32].

Lemma 7: Let A and B be positive semi-definite matrices
and arrange their eigenvalues in decreasing order. Then,

tr(AB) ≤
∑

i

λi(A)λi(B). (136)

Now define R̃′ = U+
30R

∗U30 and observe that

tr(R̃′) = tr(U30U+
30R

∗)

≤
∑

i

λi(U30U+
30)λi(R∗)

≤
∑

i

λi(R∗) = trR∗ ≤ PT (137)

where 1st inequality in (137) follows from Lemma 7; 2nd
inequality is due to the fact that λi(U30U+

30) = 0 or 1, since
U30 is semi-unitary. Thus, R̃′ is feasible for P2 and hence

C2 ≥ C̃(R̃′) = ln
|I + U+

30W1U30U+
30R

∗U30|
|I + U+

30W2U30U+
30R∗U30|

= ln
|I + W1P3R∗P3|
|I + W2P3R∗P3|

= C(P3R∗P3) = C(R∗) = C1 (138)

where

C̃(R̃) = ln |I + W̃1R̃| − ln |I + W̃2R̃| (139)

and C(P3R∗P3) = C(R∗) follows from Lemma 2. Thus,
C1 ≤ C2.

Next, define R′ = U30R̃∗U+
30 and observe that

tr(R̃′) = tr(U+
30U30R̃∗) = trR̃∗ ≤ PT (140)

where 2nd equality follows from U+
30U30 = I. Additionally,

H3R′ = 0 so that R′ is feasible for P1 and hence

C1 ≥ C(R′) = ln
|I + U+

30W1U30R̃∗|
|I + U+

30W2U30R̃∗| = C̃(R̃∗) = C2

Combining this with C1 ≤ C2, C1 = C2 follows. It is also
clear that R∗ and R̃∗ are related as in (27).

G. Proof of Theorerm 2

Since the original problem P1 is equivalent to the projected
problem P2, as was established in Proposition 4, we consider
here P2. The corresponding Lagrangian is

L = ln |I + W̃2R̃| − ln |I + W̃1R̃|
+ λ(tr(R̃) − PT ) − tr(MR̃) (141)

where λ ≥ 0 is the Lagrange multiplier responsible for the
TPC tr(R̃) ≤ PT and M ≥ 0 is a matrix Lagrange multiplier
responsible for R̃ ≥ 0. The KKT conditions are:

(W̃−1
2 + R̃)−1 − (W̃−1

1 + R̃)−1 + λI − M = 0, (142)

MR̃ = 0, λ(tr(R̃) − PT ) = 0, (143)

λ ≥ 0, M ≥ 0, R̃ ≥ 0, tr(R̃) ≥ 0. (144)
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Since W̃1 − W̃2 > 0, the objective in (25) is concave and
hence the problem P2 is convex so that the KKT condi-
tions (142)-(144) are sufficient for global optimality. It is
straightforward to see that λ > 0 so that tr(R̃) = PT , i.e.
the total power constraint is always active.

To establish (30), we first find R̃ from the KKT conditions.
Since R̃ > 0, then M = 0 from (143) and (142) becomes

R−1
1 − R−1

2 = λI (145)

where

Rk = W̃−1
k + R̃, k = 1, 2. (146)

so that R1 and R2 have same eigenvectors and their eigen-
value decomposition becomes Rk = ŨΛ̃kŨ+, where the
unitary matrix Ũ collects the eigenvectors, the diagonal matrix
Λ̃k - corresponding eigenvalues. (145) can be expressed as

λI = (ŨΛ̃1Ũ+)−1 − (ŨΛ̃2Ũ+)−1 = Λ̃−1
1 − Λ̃−1

2 . (147)

In addition,

W̃−1
2 − W̃−1

1 = Ũ(Λ̃2 − Λ̃1)Ũ+ (148)

so that the columns of Ũ are also the eigenvectors of W̃−1
2 −

W̃−1
1 , and hence from (146)

R̃∗ = ŨΛ̃1Ũ+ − W̃−1
1 (149)

where Λ̃1 is found from (147) and (148), as expressed
in (31). The unprojected covariance R∗ in (30) follows
from (149). (32) follows from trR = tr(R̃) = PT and (149).

To establish the threshold power PT0 in (29), observe that
R̃∗ > 0 iff ŨΛ̃1Ũ+ > W̃−1

1 . It follows from (31) that λ1i are
decreasing functions of λ so that, as PT increases, λ decreases
and hence all λ1i increase. Furthermore, ŨΛ̃1Ũ+ > W̃−1

1

if mini λ1iλmin > 1 and PT0 is found from the boundary
condition mini λ1iλmin = 1, which implies

1
λmin

=
2
λ

(√
1 +

4μ1

λ
+ 1

)−1

(150)

from which (29) follows after some manipulations.
To prove r(R∗) = m − r3, notice that

λi(R∗) = λi(Ũ+
3−Ũ3−R̃∗) = λi(R̃∗) (151)

so that R̃∗ and R∗ have the same (non-zero) eigenvalues and
hence the same rank, and r(R̃∗) = m − r3 (since it is full-
rank). Finally, (30) follows from (27) and (32) - from the TPC.

H. Proof of Proposition 5

To establish 1st inequality, use Proposition 4 and consider
problem P2 instead, whose optimal covariance is R̃∗ =
Ũ+Λ̃+Ũ+

+, where Ũ+ is the semi-unitary matrix of its active
eigenvectors and Λ̃+ is the diagonal matrix of its positive
eigenvalues. It follows from Proposition 3 in [24] applied to
P2 that

Ũ+
+(W̃1 − W̃2)Ũ+ = Ũ+

+U+
30(W1 − W2)U30Ũ+ > 0

and, from (27), that

R∗ = U30Ũ+Λ̃+Ũ+
+U+

30 = U+Λ̃+U+
+ (152)

where U+ = U30Ũ+ is a semi-unitary matrix of active
eigenvectors of R∗, which establishes 1st inequality. 2nd one
follows from 1st one.

I. Proof of Corollary 1

To establish this result, observe from Proposition 6 that,
under stated condition, r(R∗) = r(R̃∗) = 1. Then, use
the problem equivalence in Proposition 4 and apply rank-1
solution in [24] to P2 so that R̃∗ = PT u1u+

1 , from which the
desired result follows.

J. Proof of Proposition 7

Note that R(W2) ∈ R(W3) and R∗W3 = 0 imply
R∗W2 = 0, i.e. R(R∗) ∈ N (W2) ∩ N (W3) = N (W3)
and

C(R∗) = ln |I + W1R∗|
= max

R≥0
ln |I + W1R| s.t. trR ≤ PT , W3R = 0

= max
R̃≥0

ln |I + W̃1R̃| s.t. trR̃ ≤ PT , (153)

for which the solution is given by the water-filling over the
eigenmodes of W̃1, R̃∗ = (μ−1I − W̃−1

1 )+, which, when
transformed back to the original space, gives (35).

K. Proof of Proposition 8

First, observe that adding constraints cannot increase the
capacity, so that Cs1 ≥ Cs, where Cs1 and Cs are the single-
Ev single-PR and multi-Ev multi-PR capacities, respectively.
Let R∗

1 be an optimal covariance for the single-user case,
so that

PI ≥ trW31R∗
1 ≥ trW3kR∗

1 ∀k (154)

where 2nd inequality is due to the ordering W31 ≥ W3k, and
hence R∗

1 is also feasible for the multi-user case. Furthermore,
the information leakage to k-th Ev does not exceed that to 1st
one,

I(w,Yn
21) ≥ I(w,Yn

2k) (155)

since W21 ≥ W2k, and, hence, if the secrecy criterion is
satisfied for 1st Ev, so it is for k-th Ev, i.e. any wiretap code
that works in the single-user case, also works in the multi-user
case, and hence Cs1 = Cs.

L. Proof of Proposition 9

To prove sufficiency, observe that (40) implies that ∃u :
u+W2u = 0, u+W1u > 0, so that one can set R = PT uu+

and

Cs ≥ C(R) = ln(1 + PT u+W1u) → ∞ (156)

as PT → ∞.
The proof of necessity is by contradiction: assume that

N (W2) ∈ N (W1), which implies R(W1) ∈ R(W2) and
hence P2WkP2 = Wk, where P2 = U2+U+

2+ is a projection
matrix on R(W2) and U2+ is a semi-unitary matrix of
active eigenvectors of W2. Let us re-normalize R as follows:
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R → R/PT so that trR ≤ 1 and the actual Tx covariance
is PT R. It follows that

C(R) = ln
|I + PTW1R|
|I + PTW2R|

= ln
|I + PTP2W1P2R|
|I + PTP2W2P2R|

= ln
|I + PTW′

1R
′|

|I + PTW′
2R′| (157)

where W′
k = U+

2+WkU2+, R′ = U+
2+RU2+, and trR′ ≤

trR ≤ 1. Note that W′
2 > 0 and hence

C(R) =
r2∑

i=1

ln
1 + PT λi(W′

1R
′)

1 + PT λi(W′
2R′)

≤
r2∑

i=1

ln
1 + PT λ1(W′

1)λi(R′)
1 + PT λr2(W′

2)λi(R′)

≤ r2 ln
λ1(W1)
λr2(W2)

< ∞ (158)

for any R and any PT , where r2 = r(W2), λr2(W2) > 0.
1st inequality follows from the matrix eigenvalue inequal-
ities: λi(WR) ≤ λ1(W)λi(R) and λi(WR) ≥
λm(W)λi(R) [32]. 2nd inequality follows from the fact that
the 2nd ratio in (158) is increasing in PT . Hence,

Cs = max
R

C(R) ≤ r2 ln
λ1(W1)
λr2(W2)

< ∞ (159)

M. Proof of Proposition 10

Sufficiency can be established in the same way as in
Proposition 9: (41) implies that ∃z : z+W2z = z+W3z = 0
while z+W1z > 0 so that setting R = PT zz+ (which is
feasible), one obtains:

Cs ≥ C(R) = ln(1 + PT z+W1z) > 0 (160)

To establish the necessary part, let us use the normalized
covariance trR ≤ 1 (where the actual Tx covariance is PTR).
It follows from the IPC that PT trW3R ≤ PI and hence

λi(R)u+
i W3ui ≤ PI/PT → 0 (161)

as PT → ∞ under bounded PI , which implies that all active
eigenvectors ui+ of R satisfy u+

i+W3ui+ = 0 asymptotically,
i.e. ui+ ∈ N (W3). Hence, R = P3RP3, where P3 =
U30U+

30 is a projection matrix on N (W3) and U30 is a semi-
unitary matrix of inactive eigenvectors of W3, which also form
an orthonormal basis of N (W3). With this in mind, C(R) can
be presented as

C(R) = ln
|I + PTW1R|
|I + PTW2R|

= ln
|I + PTW1P3RP3|
|I + PTW2P3RP3|

= ln
|I + PTW′

1R
′|

|I + PTW′
2R′| (162)

where W′
k = U+

30WkU30, R′ = U+
30RU30, and the secrecy

capacity is

Cs = max
R′≥0

C(R′) s.t. trR′ ≤ PT (163)

Now one can use the condition in (40) with W′
k in place

of Wk to conclude that the capacity saturates iff:

N (W′
2) ∈ N (W′

1) (164)

i.e. if

z+W′
2z = z+U+

30W2U30z = 0 (165)

implies

z+W′
1z = z+U+

30W1U30z = 0 (166)

for any z. The last equality in (165) implies that z′ =
U30z ∈ N (W3) ∩ N (W2) and likewise (166) implies that
z′ ∈ N (W3) ∩ N (W1) so that (164) is equivalent to

N (W3) ∩ N (W2) ∈ N (W3) ∩N (W1) (167)

which is in turn equivalent to N (W3) ∩ N (W2) ∈ N (W1)
so that the capacity grows unbounded iff (41) holds.
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