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The Decentralized Structures of Capacity Achieving Distributions of
Channels with Memory and Feedback

Charalambos D. Charalambous, Christos K. Kourtellaris, Ioannis Tzortzis and Sergey Loyka

Abstract— We consider extremum problems of feedback
capacity for models with memory, subject to average cost
constraints. We show the optimal input process that maximizes
directed information consists of two parts, one responsible to
control the output process, and one responsible to transmit
new information that interact. Unlike [1], the decentralized
structure of the optimal input process is demonstrated for
Gaussian models with memory on past inputs and outputs. A
semi-separation principle is shown that states, the optimal input
process is generated from multiple strategies of a decentralized
optimization problem, of control and information transmission.
Further, it is shown that the derivation of directed information
stability is semi-separable, in the sense that it separates into a
statement about the ergodic properties of the stochastic optimal
control problem with partial information, and a statement
related to an information transmission problem.

I. INTRODUCTION

Recently, it is shown that Shannon’s coding capacity ex-
tends to unstable dynamic systems, irrespectively of whether
these are communication channels or control systems [2]
(see also [1], [3] for extensive analysis). Shannon’s coding
capacity is called control-coding capacity to emphasize the
interaction of control and information transmission parts of
the optimal input process, that achieves capacity.
MIMO G-RM. This paper utilizes some of the results
found in the above references, to investigate Multiple-Input
Multiple-Output (MIMO) Gaussian Recursive Models (G-
RMs), with input process An

4
= {A0, A1, . . . , An} and

output process Y n
4
= {Y0, Y1, . . . , Yn}, described by

Yi = Ci−1 Y i−1 +Di,i Ai +Di,i−1Ai−1 + Vi, (1)

S
4
= (Y −1, A−1) = (y−1, a−1) ≡ s,

PVi|V i−1,Ai,S = PVi
, Vi ∼ N(0,KVi

),KVi
� 0, (2)

(Y −1, A−1) ∼ N(0,KY −1,A−1
), KY −1,A−1

� 0, (3)

1

n+ 1
E
{ n∑

i=0

〈Ai, RiAi〉+ 〈Yi−1, Qi,i−1Yi−1〉
}
≤ κ, (4)

(Di,i, Di,i−1) ∈ Rp×q × Rp×q, (5)

Ri ∈ Sq×q++ , Qi,i−1 ∈ Sp×p+ , i = 0, . . . , n. (6)

Here S is the initial data, Vi ∼ N(0,KVi), i = 0, 1, . . . , n
denotes zero mean Gaussian process, 〈·, ·〉 denotes inner
product of elements of linear spaces, Sq×q+ denotes the set
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of symmetric positive semi-definite q × q matrices, Sq×q++ its
subset of positive definite matrices, and κ is the power. The
initial state S = s is known to the encoder and the decoder.
Main Results. For the extremum problem of maximizing
directed information from An to Bn given the initial state
S = s, denoted by I(An → Bn|s), over conditional
distributions PAi|Ai−1,Bi−1,S , i = 0, . . . , n, that satisfy the
average cost constraint, it is shown that a semi-separation
principle holds with the following consequences.

(a) Part of the optimal input process An is characterized
by the solution of a stochastic optimal control problem with
partial information,

(b) the rest is characterized by the solution of an infor-
mation transmission problem that interacts with that of the
stochastic control part, and

(c) their computation is directly related to the notion
of Person-by-Person (PbP) optimality, and team or global
optimality in problems of optimal control and games, where
two or more strategies do not share the same information,
and aim at optimizing a single pay-off.

(d) The derivation of directed information stability is semi-
separable, into a statement related to the ergodic properties
of the stochastic optimal control problem, and a statement
related to an information transmission problem, that interact
in a specific order.

The semi-separation principle and its consequences (a)-(d)
are attributed to the property that a Gaussian input process
{Ai = Agi : i = 0, . . . , n} with corresponding Gaussian
ouput process {Yi = Y gi : i = 0, . . . , n}, maximizes directed
information I(An → Y n|s) (subject to the average cost
constraint), and that such an optimal process is given by
the following orthogonal decomposition.

Agi =ei(Y
g,i−1, Agi−1, Z

g
i ), i = 0, . . . , n, S = s, (7)

=Ugi + Λi,i−1A
g
i−1 + Zgi , Ugi

4
= Γi−1Y g,i−1, (8)

≡ei(Y g,i−1) + Λi,i−1A
g
i−1 + Zgi (9)

where

ei(y
i−1)

4
= Γi−1yi−1 is the control strategy, (10)

Zgi is independent of
(
Ag,i−1, Y g,i−1

)
,

Zg,i is independent of V i, i = 0, . . . , n, (11)
Zgi ∼ N(0,KZi

) : i = 0, 1, . . . , n is an independent
Gaussian process (12)

for some deterministic matrices {(Γi−1,Λi,i−1) : i =
0, . . . , n} of appropriate dimensions.
Indeed, the following properties hold.
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(P1) The optimal strategies (e∗i (·),Λ∗i,i−1,K
∗
Zi

) : i =
0, . . . , n} are characterized by the solution of a decentral-
ized optimization problem, where e∗i (·), i = 0, . . . , n is
the solution of a stochastic optimal control problem, for
a fixed (Λi,i−1,KZi

) : i = 0, . . . , n}, while the optimal
(Λ∗i,i−1,K

∗
Zi

) : i = 0, . . . , n} is the solution of an informa-
tion transmission problem, with ei(·) = e∗i (·), i = 0, . . . , n.

(P2) The following holds.

If KZi
= 0, i = 0, . . . , n then I(Ag,n → Y g,n|s) = 0.

(P2) is expected and easily verified, because the initial state
S = s is known to the encoder.
(P1) is an application of problems of optimal control and
games, where two or more strategies do not share the same
information, and aim at optimizing a single pay-off [4].
Special Cases of MIMO G-RM. Before we illustrate
that the MIMO G-RM is fundamentally different from past
investigations by other authors, we should mention that the
MIMO G-RM is an infinite impulse response (IIR) model,
and includes the following degenerate cases.

(1) Finite Impulse Response Model. If Ci−1 = 0, i =
0, . . . , n then the MIMO G-RM reduces to a finite impulse
response (FIR) model.

(2) No Dependence on Past Channel Inputs. If Di,i−1 =
0, i = 0, . . . , n then the MIMO G-RM reduces to the IIR
model investigated in [1], [3].

A. Literature on Gaussian Channels with Memory & Feed-
back

For scalar-valued, Additive Gaussian Noise (AGN) chan-
nels with nonstationary and nonergodic noise, described by
Yi = Ai + Vi,

1
n+1E

{∑n
i=0 |Ai|2

}
≤ κ, PVi|V i−1,Ai =

PVi|V i−1 , i = 0, . . . , n, V n ∼ N(0,KV n), then the feedback
capacity is characterized by Cover and Pombra [5], via

CCP0,n (κ)
4
=

1

2n
max

(Γn,KZn )
log
|
(
Γn + I

)
KV n

(
Γn + I

)T
+KZn |

|KV n |
(13)

subject to
1

n+ 1
tr
(

ΓnKV n(Γn)T +KZn

)
≤ κ (14)

where Zn is a Gaussian process N(0,KZn), orthogonal
to V n, and Γn is lower diagonal time-varying matrix with
deterministic entries. Note that although, Zn is called an “in-
novations process” in [5], this is not an orthogonal process.
Note also that if KZn = 0, since Γn is lower diagonal, then
CCP0,n (κ) = 0, as expected. The closed form solution to (13)
remains to this date an open problem.
The per unit time limit CCP (κ)

4
= limn−→∞ 1

n+1C
CP
0,n (κ),

for the special case of stationary ergodic noise with finite
memory, described by a power spectral density SV (ω) =
|H(ejω)|2, where the filter H(·) is rational with stable poles
and marginally stable zeros, is analyzed in [6] and in [7].
Theorem 7 and Corollary 7.1 in [7] state that capacity is
achieved, when the innovations part of the input processes
is zero (i.e., eqn(125) in [7] with et = 0, t = 0, . . . ,).

We should mention that Theorem 3.1 (of our paper) cannot
be obtained from [6]–[8], and that the methods applied in
[6], [7] are not applicable. Our results are based on a semi-
separation principle and its consequences (a)-(d).

II. FEEDBACK CAPACITY AND DECENTRALIZED
STRATEGIES

In this section we introduce a general channel or control
model (CM), and we recall the decentralized structure of the
input process, and its control and communication aspects.

Consider a CM model with input process An
4
= {Ai : i =

0, 1, . . . , n}, taking values in arbitrary alphabet spaces An 4=
×ni=0Ai, an output process Y n

4
= {Yi : i = 0, 1, . . . , n}

taking values in arbitrary alphabet spaces, Yn 4= ×ni=0Yi.
The initial data is S

4
= (A−1, Y −1) = s ∈ S 4= A−1 × Y−1.

The channel or control model (CM) is a sequence of
conditional distributions

PYi|Y i−1,Ai,S ≡ Qi(dyi|yi−1, ai, s), i = 0, . . . , n. (15)

The conditional distributions of the input process are
chosen from the set

P[0,n]
4
=
{
Pi(dai|ai−1, yi−1, s) : i = 0, . . . , n

}
.

The above definition means, the encoder (or controller-
encoder to be precise) knows the initial data s = (y−1, a−1),
and applies noiseless feedback. The conditional distributions
of the input process are subject to a cost constraint1

P[0,n](κ)
4
=
{
Pi(dai|ai−1, yi−1, s), i = 0, . . . , n : (16)

1

n+ 1
EPs

(
`0,n(An, Y n)

)
≤ κ

}
⊂ P[0,n] (17)

where `0,n(·, ·) : An × Yn 7−→ (−∞,∞] is a measurable
function, κ ∈ [0,∞] is the total power.
The pay-off is the directed information from An

4
=

{A0, . . . , An} to Y n
4
= {Y0, . . . , Yn}, conditioned on the

initial data S = s, and defined by [9], [10]

I(An→Y n|s) 4=
n∑

i=0

I(Ai;Yi|Y i−1, s)

To connect directed information to the feedback capacity of
the CM we introduce the following assumption [10].

Assumption 2.1: (i) If the information process to be en-
coded is {Xi : i = 0, . . . , k}, then the following holds.

PYi|Y i−1,Ai,S,Xk = PYi|Y i−1,Ai,S ,∀k, i = 0, . . . , n (18)

(ii) The initial data S = s is known to the encoder and
decoder.

The finite-time horizon (FTH) information capacity (un-
der Assumptions 2.1) is defined by

JAn→Y n|s(P
∗, κ)

4
= sup
P[0,n](κ)

I(An → Y n|s). (19)

1The notation EP
s indicates the dependence of the joint distribution on

elements of P[0,n] and the initial state S = s.
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Throughout we assume existence of a maximizing distribu-
tion (such conditions are extracted from [11]).
The information capacity is defined by

C(κ)
4
= lim
n−→∞

1

n+ 1
JAn→Y n|s(P

∗, κ) (20)

provided the limit exists and it is finite.
Coding Theorems. Recall [12], Appendix A (code definition
and achievable rate). By the converse coding theorem [13], a
tight upper bound on any achievable rate is C(κ). Moreover,
if the optimal joint process {(Ai, Yi) : i = 0, . . . , n} is
either asymptotically stationary and ergodic [14], [15], or
it induces information stability of the directed information
density (see [12], Appendix A), then any code rate below
C(κ) is achievable. In general, the rate may depend on the
initial data S = s, i.e., C(κ) = Cs(κ).
Dualities of Capacity and Stochastic Optimal Control. Let
PD[0,n] denote the restriction of randomized strategies P[0,n]

to the set of deterministic strategies

PD[0,n] ,
{
a0 = g0(s), . . . , an = gn(s, an−1, yn−1)

}
. (21)

By [11], for any finite n, it can be shown that C0,n(κ)
4
=

JAn→Y n|s(P ∗, κ), κ ∈ (κmin,∞) ⊂ [0,∞) is a concave
strictly increasing in κ ∈ (κmin,∞), and the inverse function
of C0,n(κ) denoted by κ0,n(C) is a convex non-decreasing
in C ∈ [0,∞). This implies the following duality.
Dual Extremum Problem.

κ0,n(C) , inf
1

n+1 I(A
n→Y n|s)≥C

EPs

{
`0,n(An, Y n)

}
(22)

≥ JSC0,n (P ∗)
4
= inf
P[0,n]

EPs

{
`0,n(An, Y n)

}
≡ κ0,n(0) (23)

= inf
PD

[0,n]

Egs

{
`0,n(An, Y n)

}
≡ JSC0,n (g∗). (24)

Here (24) follows from classical stochastic optimal control
theory, which states that minimizing EPs

{
`0,n(An, Y n)

}

over P[0,n] does not incur a better performance than maxi-
mizing it over PD[0,n] [16]. The minimum cost of control is
JSC0,n (P ∗), and for C ≥ 0, the cost of communication is

κ(C)− κ(0)
4
= lim
n−→∞

1

n+ 1
κ0,n(C)− lim

n−→∞
1

n+ 1
κ0,n(0)

provided the limits exists and they are finite. Hence, for
rate C > 0, it is necessary that the total cost of the
communication system exceeds the critical value is κmin(n+
1) = JSC0,n (P ∗) ≡ κ0,n(0) = JSC0,n (g∗). This is precisely the
minimum cost of control, when no communication occurs,
i.e., κ(C) ≥ κmin, so power is allocated to the control
process. For examples of the threshold effect see [1], [3].

Suppose the randomized strategies P[0,n] are restricted
to deterministic strategies, PD[0,n], then by recursive sub-
stitution, gj(s, y

j−1, aj−1) ≡ gj(s, y
j−1), we have

PP (dyi|yi−1, s)
∣∣∣
P∈PD

[0,n]

=Qi(dyi|yi−1, {g0(s), . . . ,

gi(s, y
j−1)}ij=0, s). Hence,

JAn→Y n(P ∗, κ)
∣∣∣{
P∗i (·|·):i=0,...,n

}
∈PD

[0,n]

= 0. (25)

By (22), then κ0,n(C)
∣∣∣
P[0,n]=PD

[0,n]

= κ0,n(0), and any

optimal input process consists of a control process, which
controls the output process, and a process which is respon-
sible for information transmission.

III. GAUSSIAN RECURSIVE MODEL

Consider the G-RM (1)-(6), with S = (Y −1, A−1) known
to encoder/decoder. By [17], the optimal distribution of the
input is of the form P0(da0|s), Pi(dai|ai−1, y

i−1, s), i =

1, . . . , n. The directed information from An
4
= {A0, . . . , An}

to Y n
4
= {Y0, . . . , Yn} conditioned on S = s is

I(An → Y n|s) =
n∑

i=0

{
H(Yi|Y i−1, s)−H(Vi)

}
. (26)

Let {(Agi , Y gi , Zgi ) : i = 0, . . . , n} denote a jointly Gaussian
process, given S = s. By the maximum entropy property
of Gaussian distributions it follows that the process given by
(7)-(12), and satisfies the average constraint is optimal. Now,
we prepare to compute directed information using (7)-(12).
We need the following definitions2.

Ŷi|i−1
4
= Es

{
Y gi

∣∣∣Y g,i−1
}
, Âi|i

4
= Es

{
Agi

∣∣∣Y g,i
}
,

KYi|Y i−1
4
= Es

{(
Y gi − Ŷi|i−1

)(
Y gi − Ŷi|i−1

)T ∣∣∣Y g,i−1
}

Pi|i = Es

(
Agi − Âi|i

)(
Agi − Âi|i

)T
, i = 0, . . . , n.

From [18], and using the independent properties of the noise
process, i.e., (2), (8)-(12) then

Âi|i = Λi,i−1Âi−1|i−1+Ugi + ∆i|i−1

(
Y gi −Ŷi|i−1

)
, (27)

Ŷi|i−1 = Ci−1Y g,i−1 +Di,iU
g
i + Λi,i−1Âi−1|i−1, (28)

KYi|Y i−1 = Λi,i−1Pi−1|i−1Λ
T

i,i−1 +Di,iKZi
DT
i,i (29)

+KVi
, i = 0, . . . , n, Ŷ0|−1 = Es{Y g0 }, Â−1|−1 = Es{Ag−1}

where

Λi,i−1
4
= Di,iΛi,i−1 +Di,i−1, i = 0, . . . , n,

Pi|i = Λi,i−1Pi−1|i−1ΛTi,i−1 +KZi

−
(
KZiD

T
i,i + Λi,i−1Pi−1|i−1Λ

T

i,i−1

)

Φi|i−1

(
KZiD

T
i,i + Λi,i−1Pi−1|i−1Λ

T

i,i−1

)T
,

Φi|i−1
4
=
[
Di,iKZi

DT
i,i +KVi

+ Λi,i−1Pi−1|i−1Λ
T

i,i−1

]−1

,

∆i|i−1
4
=
(
KZiD

T
i,i + Λi,i−1Pi−1|i−1Λ

T

i,i−1

)
Φi|i−1

The innovations process denoted by
{
νe : i = 0, . . . , n} is

an orthogonal process, independent of {ei(·) : i = 0, . . . , n},
and satisfies the following identities.

νei
4
= Y gi −Ŷi|i−1 = Λi,i−1

(
Agi−1−Âi−1|i−1

)
+Di,iZ

g
i +Vi

= νei

∣∣∣
e=0
≡ ν0

i , ν
0
i ∼ N(0,KYi|Y i−1), i = 0, . . . , n (30)

2Es means conditional expectations are for fixed S = s.
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where
{
ν0
i : i = 0, . . . , n

}
indicates that the innovations

process is independent of the strategy
{
ei(·) : i = 0, . . . , n}.

Then we obtain

I(Ag,n → Y g,n|s) =
1

2

n∑

i=0

log
|KYi|Y i−1 |
|KVi
| . (31)

Next, we give the decentralized semi-separation principle.

Theorem 3.1: (Decentralized semi-separation of control &
information transmission) Consider the G-RM (1)-(6) with
S = (Y −1, A−1) = s, fixed, and for simplicity assume
Ci−1Y i−1 in (1) is replaced by unit memory Ci,i−1Yi−1.
Then the following hold.
(a) Equivalent Extremum Problem. The process given by (7)-
(12) is optimal, and the following hold.

Y gi = Ci,i−1Y
g
i−1 + Λi,i−1A

g
i−1 +Di,iU

g
i +Di,iZ

g
i

+Vi, i = 0, . . . , n, S
4
= (Y−1, A−1) = s. (32)

Eēs

{
γi(A

g
i , Y

g
i−1)

}

= Eēs

{
〈Ugi , RiUgi 〉+ 2〈Λi,i−1Âi−1|i−1, RiU

g
i 〉

+〈Λi,i−1Âi−1|i−1, RiΛi,i−1Âi−1|i−1〉+ tr
(
KZi

Ri

)

+tr
(

ΛTi,i−1RiΛi,i−1Pi−1|i−1

)
+ 〈Y gi−1, QiY

g
i−1〉

}
. (33)

The FTH information capacity for fixed S = s is given by

JAn→Y n|s(ē
∗, κ, s) = sup

P1
[0,n](κ)

1

2

n∑

i=0

log
|KYi|Y i−1 |
|KVi
| (34)

P [0,n](κ)
4
=
{
ēi(·) 4=

(
ei(·),Λi,i−1,KZi

)
, i = 0, . . . , n :

1

n+ 1

n∑

i=0

Eēs

(
γi(A

g
i , Y

g,i−1)
)
≤ κ

}
. (35)

(b) Decentralized Separation of Controller and Encoder
Strategies. The optimal strategy denoted by {ē∗(·) ≡
(e∗i (·),Λ∗i,i−1,K

∗
Zi

) : i = 0, . . . , n} is the solution of the
dual optimization problem

κ0,n(C, s)
4
= inf(

ei(·),Λi,i−1,KZi

)
,i=0,...,n: 12

∑n
i=0 log

|K
Yi|Y i−1 |
|KVi

| ≥(n+1)C

Ees

{ n∑

i=0

γi(A
g
i , Y

g
i−1)

}
. (36)

Moreover, the following decentralized separation holds.
(i) The optimal strategy {e∗i (·) : i = 0, . . . , n} is the
solution of the stochastic optimal control problem with
partial information given by

inf
ei(·):i=0,...,n

Ees

{ n∑

i=0

γi(A
g
i , Y

g
i−1)

}
(37)

for a fixed {Λi,i−1,KZi
: i = 0, . . . , n}.

(ii) The optimal strategy {Λ∗i,i−1,K
∗
Zi

: i = 0, . . . , n} is the
solution of (36) for {ei(·) = e∗i (·) : i = 0, . . . , n}.

(c) Optimal Strategies. Any candidate of the control strategy
{ei(Y g,i−1) : i = 0, . . . , n} is of the form

ei(Y
g,i−1)

4
= Γ1

i,i−1Y
g
i−1 + Γ2

i,i−1Âi−1|i−1, (38)

≡ Γi,i−1Y
g

i−1, Y
g

i−1
4
=

[
Y gi−1

Âi−1|i−1

]
, i = 0, . . . , n.

Define the augmented system

Y
g

i =F i,i−1Y
g

i−1 +Bi,i−1U
g
i +Gi,i−1ν

e
i , (39)

F i,i−1
4
=

[
Ci,i−1 Λi,i−1

0 Λi,i−1

]
, Bi,i−1

4
=

[
Di,i

I

]
,

Gi,i−1
4
=

[
I

∆i|i−1

]
, i = 0, . . . , n

and average cost

Ees

{ n∑

i=0

γi(A
g
i , Y

g
i−1)

}
≡ Ees

{ n∑

i=0

γi(U
g
i , Y

g

i−1)
}

4
= Ees

{ n∑

i=0

([
Y
g

i−1

Ugi

]T [
M i,i−1 Li,i−1

L
T

i,i−1 N i,i−1

] [
Y
g

i−1

Ugi

]

+tr
(
KZi

Ri
)

+ tr
(
ΛTi,i−1RiΛi,i−1Pi−1|i−1

))}
,

M i,i−1
4
=

[
Qi,i−1 0

0 ΛTi,i−1RiΛi,i−1

]
,

Li,i−1
4
=

[
0

ΛTi,i−1Ri

]
, N i,i−1

4
= Ri.

Then the following hold.
(1) For a fixed {Λi,i−1,KZi

: i = 0, . . . , n} the optimal
strategy {Ug,∗i = e∗i (Y

g,i−1
) : i = 0, . . . , n} is the solution

of the stochastic optimal control problem

J0,n(e∗(·),Λ,KZ , κ, s)
4
= inf
ei(·):i=0,...,n

Ees

{ n∑

i=0

γi(U
g
i , Y

g

i−1)
}

where {Y gi : i = 0, . . . , n} satisfy recursion (39). Moreover,
the optimal strategy {Ug,∗i = e∗i (Y

g,i−1
) : i = 0, . . . , n} is

given by the following equations.

e∗i (y
i−1) = Γi,i−1yi−1, (40)

Γi,i−1=−
(
N i,i−1+B

T

i,i−1Σ(i+1)Bi,i−1

)−1

.
(
L
T

i,i−1 +B
T

i,i−1Σ(i+1)F i,i−1

)
, i = 0, . . . , n− 1(41)

e∗n(yn−1) = −N−1

n,n−1L
T

n,n−1yn−1, where the symmetric
positive semidefinite matrix {Σ(i) : i = 0, . . . , n} satisfies a
matrix difference Riccati equation, for i = 0, . . . , n− 1,

Σ(i)=F
T

i,i−1Σ(i+1)F i,i−1−(F
T

i,i−1Σ(i+1)Bi,i−1+Li,i−1)

.
(
N i,i−1 +B

T

i,i−1Σ(i+ 1)Bi,i−1

)−1(
B
T

i,i−1Σi,i−1F i,i−1

+L
T

i,i−1

)
+M i,i−1, Σ(n)=diag{Qn,n−1, 0}
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and the optimal pay-off is given by

J0,n(e∗(·),Λ,KZ , κ, s) =
n∑

j=0

{
tr
(
KZj

Rj
)

+tr
(
ΛTj,j−1RjΛj,j−1Pj−1|j−1

)}
+

n−1∑

j=0

tr
(
KYj |Y j−1G

T

j,j−1

.Σ(j + 1)Gj,j−1

)
+ E〈Y −1|−1,Σ(0)Y −1|−1〉

(2) The optimal strategies {(Λ∗i,i−1,K
∗
Zi

) : i = 0, . . . , n} are
the solutions of the optimization problem

κ0,n(C, s)
4
= inf(

Λi,i−1,KZi

)
,i=0,...,n: 12

∑n
i=0 log

|K
Yi|Y i−1 |
|KVi

| ≥(n+1)C

{

J0,n(e∗(·),Λ,KZ , κ)
}
.

Proof: (a) This follows from (4) and (9). (33) is obtained
using the reconditioning property of expectation. (b) (36)
follows from the dual relation (22). (i), (ii) follow from
the observation that the constraint in (36) depends only on
{Λ,KZ} and not on {ei(·) : i = 0, . . . , n}. (c), (i). (38)
follows from (27), (30), because {Yi, Âi|i : i = 0, . . . , n}
is a sufficient statistics for the control process. The rest of
the equations follows directly from the solution of partially
observable stochastic optimal control problems [19].

Theorem 3.1, (1) and (2) are Person-by-Person Optimality
statements of {ei(·) : i = 0, . . . , } and {Λi,i−1,KZi

: i =
0, . . . , n}.

Theorem 3.1, (c) states that the optimal input process
consists of 4 strategies, follows.

Agi = Γ1
i,i−1Y

g
i−1 + Γ2

i,i−1Âi−1|i−1 + Λi,i−1A
g
i−1 + Zgi . (42)

Remark 3.2: By Theorem 3.1, if Ci,i−1 = 0, Qi,i−1 =

0, i = 0, . . . , n then e∗i (y
i−1) = −Λi,i−1Âi−1|i−1, i =

0, . . . , n, and hence

Agi = Λi,i−1

(
Agi−1 − Âi−1|i−1

)
+ Zgi , i = 0, . . . , n. (43)

That is, Âi−1|i−1, i = 0, . . . , n is a sufficient statistic for the
strategy ei(Y g,i−1), i = 0, . . . , n, as expected.

Next, we discuss item Section I, (d).

Theorem 3.3: (Decentralized coding theorem)
Consider the G-RM of Theorem 3.1.

(a) If Di,i−1 = 0, i = 0, . . . , n, then [2], Theorem IV.1
holds that states, directed information stability holds and
separates into (i) a statement related to the ergodic prop-
erties of a stochastic optimal control problem with complete
information, and (ii) a statement related to an information
transmission problem.
(b) For the general G-RMs of Theorem 3.1 with Di,i−1 6=
0, i = 0, . . . , n, then (a) holds as in [2], Theorem IV.1, with
some variations.

Proof: (b) This is done similar to [2], Theorem IV.1.

IV. CONCLUSIONS

The decentralized features of extremum problems of ca-
pacity of models with memory and feedback are illustrated.
For Gaussian recursive models with past dependence on
inputs and outputs it is illustrated that a semi-separation
principle holds, that makes calculations and the derivation
of directed information stability simpler.

REFERENCES

[1] C. D. Charalambous, C. Kourtellaris, and S. Loyka, “Capacity achiev-
ing distributions & information lossless randomized strategies for feed-
back channels with memory: The LQG theory of directed information,”
IEEE Transactions on Information Theory, submitted in April 2016.

[2] C. Kourtellaris and C. D. Charalambous, “Information structures of ca-
pacity achieving distributions for feedback channels with memory and
transmission cost: Stochastic optimal control & variational equalities,”
IEEE Transactions on Information Theory, Accepted in November
2017, submitted in November 2015.

[3] C. D. Charalambous, C. Kourtellaris, I. Tzortzis, and Loyka, “The
capacity of unstable dynamical systems-interaction of control and
information transmission,” in IEEE International Symposium on Infor-
mation Theory Proceedings (ISIT), 25-30, June 2017, pp. 2663–2667.

[4] C. D. Charalambous and N. U. Ahmed, “Centralized versus decentral-
ized optimization of distributed stochastic differential decision systems
with different information structures-Part I: General theory,” IEEE
Transactions on Automatic Control, vol. 62, no. 3, pp. 1194–1209,
2017.

[5] T. Cover and S. Pombra, “Gaussian feedback capacity,” IEEE Trans-
actions on Information Theory, vol. 35, no. 1, pp. 37–43, Jan. 1989.

[6] Y.-H. Kim, “Feedback capacity of stationary Gaussian channels,” IEEE
Transactions on Information Theory, vol. 56, no. 1, pp. 57–85, 2010.

[7] S. Yang, A. Kavcic, and S. Tatikonda, “On feedback capacity of power-
constrained Gaussian noise channels with memory,” Information The-
ory, IEEE Transactions on, vol. 53, no. 3, pp. 929–954, March 2007.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory,
2nd ed. John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

[9] H. Marko, “The bidirectional communication theory–A generaliza-
tion of information theory,” IEEE Transactions on Communications,
vol. 21, no. 12, pp. 1345–1351, Dec. 1973.

[10] J. L. Massey, “Causality, feedback and directed information,” in
International Symposium on Information Theory and its Applications
(ISITA ’90), Nov. 27-30 1990, pp. 303–305.

[11] C. D. Charalambous and P. A. Stavrou, “Directed information on ab-
stract spaces: Properties and variational equalities,” IEEE Transactions
on Information Theory, vol. 62, no. 11, pp. 6019–6052, 2016.

[12] P. A. Stavrou, C. D. Charalambous, and C. Kourtellaris, “Sequential
necessary and sufficient conditions for capacity achieving distributions
of channels with memory and feedback,” IEEE Transactions on
Information Theory, accepted in May 2017.

[13] J. Chen and T. Berger, “The capacity of finite-state Markov channels
with feedback,” IEEE Transactions on Information Theory, vol. 51,
no. 3, pp. 780–798, March 2005.

[14] H. Permuter, T. Weissman, and A. Goldsmith, “Finite state channels
with time-invariant deterministic feedback,” IEEE Transactions on
Information Theory, vol. 55, no. 2, pp. 644–662, Feb. 2009.

[15] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,”
IEEE Transactions on Information Theory, vol. 55, no. 1, pp. 323–349,
Jan. 2009.

[16] I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes.
Springer-Verlag, 1979.

[17] C. D. Charalambous and C. Kourtellaris, “Information structures
of maximizing distributions of feedback capacity for general
channel with memory and applications,” IEEE Transactions on
Information Theory, submitted, July 2016. [Online]. Available:
https://arxiv.org/abs/1604.01063

[18] R. S. Liptser and A. N. Shiryaev, Statistics of Random Pro-
cesses: I. General Theory, 2nd ed. Springer-Verlag, Berlin, Hei-
delberg, New York, 2001.

[19] P. E. Caines, Linear Stochastic Systems, ser. Wiley Series in Probability
and Statistics. John Wiley & Sons, Inc., New York, 1988.

International Zurich Seminar on Information and Communication (IZS), February 21 – 23, 2018

88


