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Capacity Achieving Distributions and Separation
Principle for Feedback Gaussian Channels

With Memory: the LQG Theory
of Directed Information

Charalambos D. Charalambous , Christos K. Kourtellaris , and Sergey Loyka

Abstract— A method is developed to realize optimal channel
input conditional distributions, which maximize the finite trans-
mission feedback information (FTFI) capacity, often called
n−block length feedback capacity, by information lossless
randomized strategies. The method is applied to compute closed
form expressions for the FTFI capacity and feedback capacity,
of nonstationary, nonergodic, unstable, multiple input multiple
output Gaussian channels with memory on past channel outputs,
subject to average transmission cost constraints of quadratic
form in the channel inputs and outputs. It is shown that
randomized strategies decompose into two orthogonal parts-an
deterministic part, which controls the channel output process,
and an innovation part, which transmits new information over
the channel. Then a separation principle is shown between the
computation of the optimal deterministic part and the random
part of the optimal randomized strategies. Finally, the ergodic
theory of linear-quadratic-Gaussian stochastic optimal control
theory, is applied to identify sufficient conditions, expressed
in terms of solutions to matrix difference and algebraic Riccati
equations, so that the optimal control part of randomized
strategies induces asymptotic stationarity and ergodicity, and
feedback capacity is characterized by the per unit time limit
of the FTFI capacity. The method reveals an interaction of the
control and the information transmission parts of the optimal
randomized strategies, and that whether feedback increases
capacity, is directly related to the channel parameters and
the transmission cost function, through the solutions of the
matrix Riccati equations. For unstable channels, it is shown that
feedback capacity exists and it is strictly positive, provided the
power exceeds a critical threshold.

Index Terms— Channels with memory, unstable, feedback
capacity, separation principle, linear quadratic control.

I. INTRODUCTION

STOCHASTIC optimal control theory and a variational
equality of directed information are previously applied

in [1], to identify the information structures of optimal channel
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input conditional distributions with feedback, P[0,n]
�=�

PAi |Ai−1,Bi−1 : i = 0, 1, . . . , n
� ⊂ P[0,n](κ), which maxi-

mize the finite-time horizon directed information from channel
inputs An �= {A0, A1, . . . , An} to channel outputs Bn

0
�=

{B0, B1, . . . , Bn}, given the initial state B−1, defined by

CAn→Bn (κ) = sup
P[0,n](κ)

I (An → Bn),

I (An → Bn)
�=

n�

i=0

I (Ai ; Bi |Bi−1) (I.1)

where Bi−1 = (B−1, B0, . . . , Bi−1) for each i = 0, . . . , n.
Here P[0,n](κ) ⊂ P[0,n] is a subset of channel input distribu-
tions, which satisfy an average transmission cost constraint
with total power κ . The optimal channel input conditional
distributions are characterized by conditional independence
properties, called “information structures”. The identification
of information structures simplify the resulting finite-time
horizon optimization problem called the “characterization of
finite transmission feedback information (FTFI) capacity”.
These are analogous to those of memoryless channels without
feedback, which are established via the well-known upper
bounds

CnoF B
An ;Bn

�= max
PAn

I (An; Bn) ≤ max
PAi :i=0,...,n

n�

i=0

I (Ai ; Bi)

≤ (n + 1) max
PA

I (A; B) ≡ (n + 1)C (I.2)

which are achieved if PAi |Ai−1 = PAi , i = 0, . . . , n and
identically distributed, that imply the joint process {(Ai , Bi ) :
i = 0, 1, . . . , } is independent and identically distributed and
ergodic (and similarly if noiseless feedback is allowed). For
memoryless channels the bounds in (I.2) are applied in the
converse part of the coding theorem, to obtain a tight bound
on any achievable rate, while the direct part of the coding
theorem is often shown by randomly generating codes inde-

pendently, according to the product distribution P∗
An (dan)

�=
×n

i=0P∗
A(dai ), where P∗

A is the maximizing distribution that
achieves C .

However, to make the transition from memoryless channels
to channels with memory, without any á priori assumptions,
such as, stationarity, ergodicity or information stability, it is
often necessary to investigate the characterizations of FTFI
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capacity CAn→Bn (κ), and its asymptotic properties via the per
unit time limit

CA∞→B∞(κ)
�= lim inf

n−→∞
1

n + 1
CAn→Bn (κ). (I.3)

This follows from the fact that by the converse coding theorem,
the quantity CA∞→B∞(κ) is a tight upper bound on any
achievable rate of feedback codes (see Theorem 24, (a)).

This paper builds on the following ideas put forward in [1].
1) The information structures of optimal channel input

distributions and corresponding characterizations of
FTFI capacity, translate into corresponding information
structures for CA∞→B∞(κ). Moreover, via the converse
coding theorem, tight bounds on any achievable code
rate (of feedback codes) can be obtained, while the
direct part of the coding theorem can be shown, without
unnecessary á priori assumptions on the channel, such
as, stationarity, ergodicity, or information stability of the
joint process {(Ai , Bi ) : i = 0, 1, . . .}.

2) The characterizations of the FTFI capacity reveal several
hidden properties of the role of feedback to control the
channel output process of nonstationary, nonergodic and
unstable channels. These include fundamental properties
of optimal channel input conditional distributions, which
achieve CA∞→B∞(κ), properties of channel parameters
so that CA∞→B∞(κ) corresponds to feedback capacity,
and whether feedback increases capacity.

A. Contributions
The main contributions of the paper are the following.
i) Develop a methodology to realize optimal channel

input conditional distributions, by information lossless
randomized strategies (deterministic functions) driven
by uniformly distributed Random Variables (RVs). Then
apply the information lossless randomized strategies to
derive alternative equivalent characterizations of FTFI
capacity, using randomized strategies driven by arbitrary
independent RVs. In specific application examples, such
as, MIMO Gaussian channels with memory, the indepen-
dent RVs transform the optimal randomized strategies
into capacity achieving strategies, driven by independent
Gaussian RVs.

ii) Show that optimal randomized strategies of MIMO
Gaussian channels, which achieve the FTFI informa-
tion capacity, decompose into two orthogonal parts.
The control part which controls the channel output
process, and the information transmission or innovations
part, which is responsible to transmit new informa-
tion. Further, show a separation principle between the
computation of the optimal control part and the optimal
innovations part.

iii) Identify sufficient conditions, in terms of channel para-
meters and transmission cost functions, so that the
per unit time limit of the FTFI capacity CAn→Bn (κ)
converges to the characterization of feedback capacity
CA∞→B∞(κ).

iv) Identify sufficient conditions, to determine whether feed-
back increases capacity, of MIMO Gaussian channels
with memory.

The analyzed application examples of nonstationary, noner-
godic, unstable, multiple input multiple output (MIMO)
Gaussian channels with memory, unfold the interaction of
the control and the information transmission components
(strategies) of the optimal channel input distributions.

All results are developed by investigating the FTFI capacity
CAn→Bn (κ). This is analogous to the Cover and Pombra [2]
n−block length feedback capacity of time-varying additive
Gaussian noise (AGN) channels. The separation principle is
shown by directly attacking the FTFI capacity CAn→Bn (κ).
The analysis reveals fundamental insights on the interac-
tion of control and information transmission. Further, it is
demonstrated that it is much simpler to attack CA∞→B∞(κ),
from the per unit time limit of CAn→Bn (κ), because
sufficient conditions can be identified for CA∞→B∞(κ) to
correspond to the characterization of feedback capacity,
irrespectively of whether the channel is stable or unstable.
This is contrary to the recent believe in [3] (see page
57, second column, first paragraph), where it is claim
that attacking directly CAn→Bn (κ), for each “n” is almost
impossible.

The channel conditional distributions considered in this
paper, include the following classes.

Channel Distributions Class A.

PBi |Bi−1,Ai (dbi |bi−1, ai ) = PBi |Bi−1,Ai
(dbi |bi−1, ai ). (I.4)

Channel Distributions Class B.

PBi |Bi−1,Ai (dbi |bi−1, ai ) = PBi |Bi−1
i−M ,Ai

(dbi |bi−1
i−M , ai ),

i = 0, . . . , n (I.5)

where M is a nonnegative integer. The convention for
M = 0, is PBi |Bi−1

i−M ,Ai
(dbi |bi−1

i−M , ai ) = PBi |Ai (dbi |ai),

i = 0, 1, . . . , n, that is, the channel degenerates to a memory-
less channel.

The average transmission cost constraint is of the form

P[0,n](κ)
�=
�

PAi |Ai−1 ,Bi−1, i = 0, . . . , n :
1

n + 1
E
� n�

i=0

γi (Ai , T i Bn)
�

≤ κ
�
, κ ∈ [0,∞)

(I.6)

where for each i , T i bn is given by either T i bn = bi or T i bn =
bi

i−K , K a nonnegative finite integer, for i = 0, . . . , n. Thus,
the transmission cost functions are either one of the following
two classes1

Transmission Cost Functions Class A.

γi (ai , T i bn) = γ A
i (ai , bi ). (I.7)

Transmission Cost Functions Class B.

γi (ai , T i bn) = γ B
i (ai , bi

i−K ), i = 0, . . . , n. (I.8)

In this paper, the dual role of optimal channel input distri-
butions/randomized strategies, and separation principle of

1There is no loss of generality to consider γ B
i (ai , bi

i−K ), because by the

function restriction, such functions include γ B
i (ai , T i bn ) = γi (ai , bi−L

i−K )

and γi (ai ), for any nonnegative integers K ≥ L , and similarly for γ A
i (ai , bi ).
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computing the parts of the optimal strategy, are only illus-
trated for multiple input multiple output (MIMO) Gaussian
channels with memory, via a provocative direct connection
to the linear-quadratic-Gaussian (LQG) stochastic optimal
control theory, stability of linear stochastic control systems,
and Lyapunov and Riccati matrix equations [4], [5]. Indeed,
the LQG stochastic optimal control theory generalizes, in a
natural way, to directed information pay-off functionals. For
the readers convenience a short summary of these concepts is
given in Appendix E, while several examples are discussed to
illustrate their applications. These tools are necessary to treat
processes {(Ai , Bi ) : i = 0, 1, . . . , }, which are not assumed
á priori to be stationary, ergodic or information stable. Rather,
via these mathematical concepts, sufficient conditions are
identified to show that the optimal channel input conditional
distribution induces asymptotic stationarity and ergodicity of
the joint process {(Ai , Bi ) : i = 0, 1, . . .}, and to show that the
per unit time limit of the FTFI capacity exists and characterizes
feedback capacity, irrespectively of whether the channel is
stable or unstable.

For the application examples, it is further shown that
the optimal channel input distributions, which achieve FTFI
capacity are realized by randomized strategies, and that such
strategies decompose into two orthogonal parts, the determin-
istic part and the random part. Through this decomposition, a
separation principle is shown, between the role of randomized
strategies to control the channel output process and to transmit
new information over the channel. It is also shown that the
deterministic part corresponds to the optimal solution of the
LQG stochastic optimal control problem, while the random
part is determined from water-filling type equations.

In Section I-C, a short summary of the main
concepts, methods, and results obtained in this paper are
presented.

B. Literature Review

Over the years many papers have been written on the charac-
terization of capacity of channels with memory and feedback,
and on the computation of capacity. This section reviews only
part of the literature, with an emphasis on problems related
to this paper, and channels defined on continuous alphabet
spaces. Cover and Pombra [2] investigated the scalar time-
varying additive Gaussian noise (AGN) channel with memory,
defined by

Bi = Ai + Vi ,
1

n + 1
E
� n�

i=0

|Ai |2
� ≤ κ, κ ∈ [0,∞)

(I.9)

where V n �= {V0, V1, . . . , Vn} is a real-valued (scalar)
jointly nonstationary and nonergodic Gaussian process,
with covariance KV n . The underlying assumption (see

[2, p. 39, Lemma 5]) is that “An �= {A0, . . . , An} is
causally related to V n”, which states PAn ,V n (dan, dvn) =
⊗n

i=0PAi |Ai−1 ,V i−1 (dai |ai−1, v i−1) ⊗ PV n (dvn). Cover and

Pombra [2] characterized the feedback capacity CC P
W ;B∞(κ)

�=
limn−→∞ 1

n+1 CC P
W ;Bn(κ), via the following characterization

of FTFI capacity.2

CC P
W ;Bn(κ) = max

(�n,K Zn ): 1
n+1 E

�
tr
	

An (An )T

�

≤κ

H (Bn) − H (V n),

Ai =
i−1�

j=0

γ i, j V j + Zi , i = 0, . . . , n (I.10)

= max
(�n,K Zn ): tr

	
�n KV n �

T
n +K Zn



≤κ(n+1)

�

1

2
log

|	�n + I


KV n

	
�n + I


T + K Z
n |

|KV n |

�

(I.11)

where Z
n �= {Zi : i = 0, 1, . . . , n} is a correlated zero mean,

covariance K Z
n Gaussian process, denoted by N(0, K Z

n ), that

is orthogonal to V n �= {Vi : i = 0, . . . , n}, �n is lower
diagonal time-varying matrix with deterministic entries, and I
is the identity matrix. Although, Cover and Pombra [2] call
{Zi : i = 0, . . . , n} an innovation like process, this is not
equivalent to the standard definition of an innovation process,
which is an orthogonal process. Let CnoF B

A∞;B∞(κ) denote the
capacity without feedback. In [2] it is also shown that3

CnoF B
A∞;B∞(κ) ≤ CC P

W ;B∞(κ) ≤ 2CnoF B
A∞;B∞(κ)

CC P
W ;B∞(κ) ≤ CnoF B

A∞;B∞(κ) + 1

2
. (I.12)

The first inequalities are also obtained by Ebert [6]. The Cover
and Pombra scalar time-varying AGN channel is extensively
analyzed by Ihara in [7, Sec. 5.7, pp. 210–219]. Ihara in
[7, Th. 5.7.3] showed that CC P

W ;Bn(κ) is also achieved by
transmitting a Gaussian message using a linear coding scheme.
Moreover, Ihara in [7, Example 5.7.1, p. 217–218], considered
a scalar, stable, first-order autoregressive AR(1) Gaussian
noise represented by the recursion

Vi = αVi−1 + Wi , V−1 = 0, α ∈ (0, 1), i = 0, 1, . . . , n

(I.13)

where {Wi : i = 0, . . . , n} is independent and identically
distributed Gaussian Wi ∼ N(0; 1), and applied a linear
coding scheme of transmitting a Gaussian RV to derive the
lower and upper bounds on feedback capacity, given by the
following equations.

1

2
log x2 = 1

2
log

�
1 +

�
1 + α

x

�2
κ
�

≤ CC P
W ;B∞(κ)

≤ 1

2
log

�
1 +

�
1 + α

�2
κ
�

(I.14)

where x is the unique positive solution of the equation

x4 − x2 − κ
�

x + α
�2 = 0. (I.15)

2In [2], characterization (I.10) is obtained via the converse to the coding
theorem, by showing that CC P

W ;B∞ (κ) is an achievable upper bound on the
mutual information between uniformly distributed source messages W and
channel outputs Bn , i.e., on I (W ; Bn). The per unit time 1

n+1 CC P
W ;Bn (κ) is

often called the n−block length feedback capacity.
3and similarly for the finite transmission versions, i.e., without taking the

limit.
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Fig. I.1. Communication block diagram and its analogy to stochastic optimal control.

The above bounds are also derived by Butman in [8, Abstract]
for stationary autoregressive models with finite memory.
Yang et al. [9, Sec. II] analyzed the stationary limited memory
noise version of the Cover and Pombra [2] AGN, when the
channel noise is described by a power spectral density (PSD),
SV (ω) = |H (e jω)|2, where the filter H (z), z = e jω, ω ∈
[−π, π] is a proper rational polynomial in z, with stable
poles and marginally stable zeros. Yang et al. [9] applied
the inverse filter transformation H −1(z) to the channel output
process Bn [9, Section II.C], to obtain an equivalent state
space Gaussian noise channel. The main assumption in [9,
Sec. II.C] is that the state of the noise uniquely defines the
channel inputs and vice-versa. Yang et al. [9, Th. 7] state that
for an autoregressive noise filter with one zero and one pole,
then feedback capacity is achieved by a channel input process
which is a linear function of the estimation error of the noise
state, from past channel outputs, i.e., when the innovation part
of the channel input process is either zero or asymptotically
zero. When specialized to an AR(1) model (I.13), the feedback
capacity given in [9, Corollary 7.1] is precisely the lower
bound obtained in [7, Example 5.7.1] and earlier in [8], using
a linear coding scheme of encoding a Gaussian message,
and given by (I.14), where x is the unique positive solution
of (I.15) (simply set �2

W = 1 in [9, Corollary 7.1]). Contrary
to the linear coding scheme applied in [7] and [8], the input
process given in [9, Th. 7, Corollary 7.1] does not include
any randomization or it is asymptotically zero; however,
Yang, Kavcic and Tatikonda concluded in (see [9, Sec. VII,
Conclusion, last two paragraphs]) that it is still an open
problem to determine whether both the scaling on the error
of the noise state and the innovations part of the channel
input process could take nonzero optimal values. Kim [3]
analyzed the stationary limited memory noise version of the
Cover and Pombra AGN channel, i.e., the noise PSD is
described by Gaussian autoregressive model of order K , using
mostly frequency domain techniques. Among other results,
in Kim [3, Th. 6 and Lemma 6.1], it is stated that an input
process which is a linear function of the estimation error of the
state of the noise, from past channel outputs, with zero inno-
vation process, as in [9, Th. 7 and Corollary 7.1], achieves
feedback capacity, and further this expression of feedback
capacity is also achieved by K−dimensional generalization of
the Schalkwijk and Kailath [10] coding scheme. For the AR(1)
given by (I.13), the feedback capacity given in [3, p. 58, last

two equations], is precisely the lower bound given by (I.14).
Kim [3] and Yang [9] do not discuss the connection to the
lower and upper bounds given by (I.14). A more recent
analysis of general Gaussian channels with past depen-
dence on channel inputs and channel outputs are discussed
in [11].

Recently, feedback capacity problems for certain types
of channels with inputs and outputs taking values in finite
alphabet spaces, without transmission cost constraints, are
investigated in [12]–[16], and in [17]–[19] when transmission
cost are imposed. Coding theorems for memoryless channels
and channels with memory, with and without feedback, are
developed extensively over the years, under various assump-
tions, for example, in [7] and [20]–[30] (often for stationary
ergodic processes, Gaussian channels, and channel with inputs-
outputs, which are defined on finite alphabet spaces).

The contributions of this paper listed in Section I-A,
i)-iv) complement previous results obtained in [2], [3], [7],
and [9], with respect to the methodology and the optimization
procedure that is used to derive the main results of this paper.

C. Discussion of Methodology and Main Results

The results listed in Section I-A, i)-iv) are derived
by applying the analogy to stochastic optimal control
theory depicted in Fig. I-B, where the information measure
I (An → Bn) is the pay-off, the channel output process {Bi :
i = 0, 1, . . . , n} is the controlled process, the channel input
process {Ai : i = 0, 1, . . . , n} is the control process,
and B−1 = b−1 is the initial state with fixed distribution, that
is available to the encoder and may or may not be available
to the decoder.

1) Randomized Strategies and Characterizations of FTFI
Capacity: Section III, describes a methodology to derive alter-
native equivalent characterizations of FTFI capacity, by real-
izing optimal channel input conditional distributions, which
maximize directed information, using information lossless
randomized strategies driven by independent uniformly distrib-
uted RVs, and then by arbitrary distributed RVs.

An alternative equivalent characterization of FTFI capacity
is illustrated below.

Equivalent characterizations of FTFI capacity for class B
channels and transmission cost functions: Consider PAi |Bi−1

i−M
,

γi (ai , T i bn) = γ B
i (ai , bi−1

i−M ), i = 0, . . . , n, and M a
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nonnegative finite integer. In [1], it is shown that the
maximization of I (An → Bn) over all distributions
PAi |Ai−1 ,Bi−1 : i = 0, . . . , n}, which satisfy the constraint

1
n+1 E

�n
i=0 γ B

i (Ai , Bi−1
i−M )

� ≤ κ , satisfy conditional inde-
pendence

PAi |Ai−1,Bi−1 = PAi |Bi−1
i−M

, i = 0, . . . , n. (I.16)

This implies the information structure of the optimal channel
input distribution is Bi−1

i−M for i = 0, 1, . . . , n, and the
characterization of the FTFI capacity is given by the following
expression.

C B.M
An→Bn (κ)

= sup
P

Ai |Bi−1
i−M

,i=0,...,n: 1
n+1 E

�n
i=0 γ B

i (Ai ,Bi−1
i−M )

�
≤κ

�

E
� n�

i=0

log
�dPBi |Bi−1

i−M ,Ai
(·|Bi−1

i−M , Ai )

dPBi |Bi−1
i−M

(·|Bi−1
i−M )

(Bi )
���

. (I.17)

In Theorem 8, by utilizing (I.17), the following are shown.
(i) The class of optimal channel input distributions are

realized by information lossless randomized strategies defined
by

E B.M[0,n] (κ)
�=
�

ei : B
i−1
i−M × Zi −→ Ai , ai = ei (b

i−1
i−M , zi ) :

1

n + 1
Ee
� n�

i=0

γ B
i (ei (Bi−1

i−M , Zi ), Bi−1
i−M )

�
≤ κ

�

(I.18)

where
�

Zi : i = 0, . . . , n
�

is an independent sequence of RVs,
and Zi is independent of Bi−1, for i = 0, . . . , n.

(ii) An alternative equivalent characterization of the FTFI
capacity (I.17), is given by4

C B.M
An→Bn (κ) = sup�

Zi :i=0,...,n
�
,
�

ei (·,·):i=0,...,n
�
∈E B.M

0,n (κ)

�

Ee
� n�

i=0

log
�dP(·|Bi−1

i−M , ei (Bi−1
i−M , Zi ))

dPe(·|Bi−1
i−M )

(Bi )
���

.

(I.19)

In application examples, the maximizing randomized strategy,�
e∗

i (·, ·) : i = 0, . . . , n
� ∈ E B.M[0,n] (κ), and the maximizing

process
�

Z∗
i : i = 0, . . . , n

�
(i.e., its distribution) induce

the maximizing channel input conditional distribution of the
characterization of FTFI capacity (I.17).

Further, the following are illustrated, via application exam-
ples of MIMO Gaussian channel models (G-CMs).

2) Dual Role of Randomized Strategies & LQG Theory: For
channels with memory on past channel outputs, then random-
ized strategies, which realize candidates of optimal channel
input distributions, have a Dual Role, specifically, to optimally
control the channel output process {Bi : i = 0, 1, . . . , n}, and
to communicate information. In Theorem 14 (Section IV-C),
the dual role of randomized strategies (and several properties),

4The subscript notation on conditional distributions is suppressed, while
superscript notation indicates dependence on the strategies.

are illustrated for MIMO time-varying G-CMs with memory.
The following application example illustrates this dual role.

Alternative characterization of FTFI capacity for
G-CM-B.1: Consider the MIMO G-CM-B.1, corresponding to
channel Class B and transmission cost Class B, defined by5

Bi =Ci,i−1 Bi−1 + Di,i Ai +Vi , B−1 = b−1, i = 0, . . . , n,

(I.20)

1

n + 1
E
� n�

i=0

�
�Ai , Ri Ai � + �Bi−1, Qi,i−1 Bi−1�

��
≤ κ,

(I.21)

PVi |V i−1,Ai ,B−1(dvi |v i−1, ai , b−1) = PVi (dvi ),

Vi ∼ N(0, KVi ), i = 0, . . . , n, (I.22)

(Ci,i−1, Di,i ) ∈ R
p×p × R

p×q ,

(Ri , Qi,i−1) ∈ R
q×q × R

p×p,

Ri = RT
i � 0, Qi,i−1 = QT

i,i−1 � 0, i = 0, . . . , n (I.23)

where �·, ·� denotes inner product of elements of linear spaces.
In Section IV-B, the following are shown (by using (I.17), with
M = 1).

(iii) The optimal conditional channel input distribu-
tions are conditionally Gaussian of the form

�
Pg

Ai |Bi−1

(dai |bi−1) : i = 0, . . . , n
�
, which satisfy the average trans-

mission cost constraint, and that such distributions are realized
by linear randomized strategies e(·) ∈ E B.1

0,n (κ) driven by a
Gaussian innovations process {Zi : i = 0, . . . , n}, defined by
the set

E B.1[0,n](κ)
�=
�

Ag
i = gB.1

i (Bg
i−1) + Zi = �i,i−1 Bg

i−1 + Zi ,

Zi ⊥ Bg,i−1, {Zi : i = 0, . . . , n} independent process,

Zi ∼ N(0, K Zi ), K Zi � 0, i = 0, . . . , n :
1

n + 1
Eg B.1

� n�

i=0

�
�Ag

i , Ri,i Ag
i � + �Bg

i−1, Qi,i−1 Bg
i−1�

��
≤ κ

�

(I.24)

where · ⊥ · means the processes are independent. Thus,
randomized strategies in E B.1[0,n](κ) are decomposed into two
orthogonal parts, one of which is an innovations process
(i.e., independent process).

(iv) The characterization of FTFI capacity of the MIMO
G-CM.B.1 is given by the following expression.

C B.1
An→Bn (κ) = sup�	

�i,i−1 ,Zi



,i=0,...,n

�
∈E B.1[0,n](κ)

�

1

2

n�

i=0

log
|Di,i K Zi DT

i,i + KVi |
|KVi |

�
. (I.25)

The decomposition

Ag
i = �i,i−1 Bg

i−1 + Zi ≡ gB.1
i (Bg

i−1) + Zi , i = 0, . . . , n

(I.26)

implies that the feedback function {gB.1
i ≡ �i,i−1 : i =

0, . . . , n} is the feedback control law or strategy, which

5The fundamental difference between Qi,i−1 �= 0 versus Qi,i−1 = 0, i =
0, . . . , n and its implications on the maximum rate of transmitting information
over this channel, is discussed shortly.
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controls the output process {Bg
i : i = 0, . . . , n}, while

the orthogonal innovations process {Zi : i = 0, . . . , n} is
responsible to convey new information to the output process,
both chosen to maximize (I.25).

It should be noted that K Zi = 0, i = 0, . . . , n implies
that C B.1

An→Bn (κ) = 0, as expected (because the randomization
in (I.26) is zero), and hence the resulting optimization reduces
to the minimization of the average pay-off in (I.24), over the
deterministic strategies {gB.1

i (bg
i−1) : i = 0, . . . , n}, which

is equivalent to a LQG stochastic optimal control problem.
It is also noted that the solution of this LQG problem defines
the minimum cost of control, say, κmin ∈ [0,∞), and that a
solution to (I.25) exists for κ ∈ [κmin,∞).

3) Separation Principle: In Theorem 14, the decomposi-
tion (I.26) is applied to show a separation principle between
the computation of the optimal control part and the innovations
part, and to solve the extremum problem (I.25), via its relation
to the linear-quadratic-Gaussian (LQG) stochastic optimal
control theory (with randomized controls). The following are
shown.

(v) The characterization of FTFI capacity is given by

C B.1
An→Bn (κ)

= inf
s≥0

�
− s

�

Rp
�b−1, P(0)b−1�PB−1(db−1) + r(0)

�
(I.27)

where
�

P(i) : i = 0, . . . , n
�

is a positive semi definite solution
of the matrix Riccati difference equation

P(i) = CT
i,i−1 P(i + 1)Ci,i−1 + Qi,i−1 − CT

i,i−1 P(i + 1)Di,i

×
�

DT
i,i P(i +1)Di,i + Ri,i

�−1�
CT

i,i−1 P(i + 1)Di,i

�T
,

i = 0, . . . , n − 1, P(n) = Qn,n−1 (I.28)

s ≥ 0 is the Lagrange multiplier associated with the trans-
mission cost constraint, and the optimal deterministic part of
the randomized strategy, {gB.1,∗

i (·) : i = 0, . . . , n}, is given
by

gB.1,∗
i (bi−1) = −

�
DT P(i + 1)D + R

�−1
DT P(i + 1)C bi−1

≡ �∗
i,i−1bi−1, i = 0, . . . , n − 1, (I.29)

gB.1,∗
n (bn−1) = 0. (I.30)

The optimal random part of the strategy {K ∗
Zi

: i = 0, . . . , n}
(covariance of innovations process) is found from the water-
filling problem

r(i) = r(i + 1) + sup
K Zi ∈S

q×q
+

�1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |

−tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��

−tr
�

s Ri,i K Zi

��
, i = 0, . . . , n − 1, (I.31)

r(n) = sup
K Zn ∈S

q×q
+

�1

2
log

|Dn,n K Zn DT
n,n + KVn |

|KVn |
+ s(n + 1)κ

−tr
�

s Rn,n K Zn

��
. (I.32)

An alternative equivalent water-filling problem
is given by (IV.171) and Remark 15, while the
optimal {K ∗

Zi
: i = 0, . . . , n} for the scalar case is

given in Remark 16. The above solution illustrates the
separation principle, between the computation of the
deterministic part {gB.1

i (Bi−1) : i = 0, . . . , n} and random part
{Zi ∼ K Zi : i = 0, . . . , n} of the randomized strategy, in that,
the latter can be found, by first computing the former. More-
over, the properties of solutions

�
P(i) : i = 0, . . . , n

�
to the

Riccati equation, such as, P(i) � 0 or P(i) � 0, i = 0, . . . , n
(positive definite or positive semi definite), depend on the
properties of the parameters of the channel and the transmis-
sion cost function,

�
Ci,i−1, Di,i , Ri,i , Qi,i−1 : i = 0, . . . , n

�
.

It should be mentioned that if P(i) = 0, i = 0, . . . , n − 1
then Ag

i = Zi , i = 0, . . . , n and this means feedback does
not incur a higher value for C B.1

An→Bn (κ).
(vi) The optimal strategy (I.29) is precisely the solution of

the following LQG stochastic optimal control problem [4].
This connection is made explicit in Remark 15.

(vii) If the channel is time-invariant with
�

Ci,i−1 =
C, Di,i = D, KVi = KV , Ri,i = R, i = 0, . . . , n, Qi,i−1 =
Q, i = 0, . . . , n − 1, Qn,n−1 = M

�
, from (I.27), then

whether C B.1
A∞→B∞(κ)

�= limn−→∞ 1
n+1 C B.1

An→Bn (κ) exists and
corresponds to feedback capacity that is independent of the
initial distribution PB−1 , is determined from the properties of
solutions to the following matrix Riccati algebraic equation.

P = CT PC + Q − CT P D
�

DT P D + R
�−1�

CT P D
�T

.
(I.33)

The conditions are given in Theorem 19, in terms of the
so-called detectability and stabilizability. Moreover, whether
feedback increases capacity is determined from the solutions
of matrix Riccati equation (I.33).

4) Application Example: Feedback versus No Feedback &
The Infinite Horizon LQG Theory: In Sections V, the per unit
time limit of the characterizations of FTFI capacity of time-
invariant G-CM-Bs are investigated under the detectability and
stabilizability conditions. It is shown that whether feedback
increases capacity, is determined from the unique (stabilizing)
solution of the matrix Riccati algebraic equation (I.33). This
is established via direct connections to the infinite-horizon
LQG stochastic optimal control theory and stability of linear
stochastic controlled systems, and associated Lyapunov equa-
tions and matrix Riccati equations. Indeed, even if the channel
defined by (I.20) is unstable (i.e., any of the eigenvalues of
matrix C are outside the unit circle of the complex plane),
under certain conditions, which are specified in terms of
(C, D, R, Q, KV ), then the optimal deterministic part of the
randomized strategy stabilizes the channel via feedback, and
ensures asymptotic stationarity and existence of a unique
invariant joint distribution of the joint process {(Ai , Bi ) :
i = 0, . . . , n}, marginal distribution of the channel output
process, and ensures that CA∞→B∞(κ) exists, it is finite, and
corresponds to feedback capacity.

The following simple example illustrates several hidden
properties of optimal channel input distributions, and that feed-
back capacity and capacity without feedback are determined
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from the properties of the solutions to the matrix Riccati
algebraic equation (I.33).

Special case-the time-invariant scalar channel with p =
q = 1, R = 1, Q = 0 and (C, D) arbitrary: For these
choices of parameters the following are shown (and inde-
pendently in Example 13). The steady state solutions of
Riccati (quadratic) equation (I.33), and corresponding optimal
determinist part of the randomized strategy are given by the
following equations.

P
�

D2 P +
�
1 − C2

��
= 0 �⇒ P1 = 0, P2 = C2 − 1

D2 ,

(I.34)

gB.1,∗(b) = �∗ b,

�∗ ≡ �∗(P) = −
�

D2 P + 1
�−1

DPC =
�

0 if P = P1

−C2−1
C D if P = P2.

(I.35)

where P = P1 implies the admissible optimal channel input
distribution does not use feedback. The optimal covariance
K ∗

Z , is obtained from the per unit time limit of (I.31), (I.32)
given by (V.224), while the Lagrange multiplier, s, is found
from the average constraint or by performing the infimum
over s ≥ 0 of J B.1,∗ evaluated at (P, K ∗

Z ) given by (V.224).
The calculations give the following expressions.

If |C| < 1 then

�∗ = 0, K ∗
Z = κ, κ ∈ [0,∞).

If |C| > 1 then

�∗ = −C2 − 1

C D
, K ∗

Z = D2κ + KV (1 − C2)

C2 D2 ≥ 0,

κ ∈ [κmin,∞),

s∗ = 1

2

D2

D2κ + KV
∈ [s∗

min ,∞), κmin
�= (C2 − 1)KV

D2 ,

s∗
min

�= 1

2

D2

C2 KV
.

Hence, if |C| < 1 then P1 = 0 is the unique positive
semidefinite solution of (I.33). If |C| > 1 then uniqueness
of positive semidefinite solution of (I.33), which ensures
asymptotic ergodicity of Bi , i = 0, 1, . . . , fails.

It is noted that |C| = 1 in excluded, because it implies
�∗ = 0 and the eigenvalue of the channel is on the unit circle.
Asymptotic stationarity and ergodicity of Bi , i = 0, 1, . . . ,
i.e., uniqueness of invariant distribution is ensured if Q > 0,
i.e., the detectability condition (V.206) also holds.

(vii) The Feedback Capacity. The optimal strategy which
achieves feedback capacity CA∞→B∞(κ) is given by
�
�∗, K ∗

Z

�

≡
�
�∗(P), K ∗

Z (P)
�

=
⎧
⎨

⎩

(0, κ), κ ∈ [0,∞) if |C| < 1
�
− C2−1

C D , D2κ+KV (1−C2)
C2 D2

�
, κ ∈ [κmin,∞), if |C| >1

(I.36)

and the corresponding feedback capacity is given by

C B.1
A∞→B∞(κ) =

⎧
⎨

⎩

1
2 ln D2κ+KV

KV
if |C| < 1, i.e., K ∗

Z = κ

1
2 ln

D2 K ∗
Z +KV

KV
if |C| > 1, κ ∈ [κmin,∞)

(I.37)

For κ ∈ [0, κmin) and |C| ≥ 1 then feedback capacity does not
exists. The feedback capacity expression (I.37), illustrates that
the strategies

�
�∗, K ∗

Z

�
≡
�
�∗(P), K ∗

Z (P)
�

depend on the
solutions P of the quadratic Riccati equation (I.34). Clearly,
there are multiple regimes, depending on whether the channel
is stable, that is, |C| < 1 or unstable |C| > 1. Moreover,
for unstable channels |C| > 1, feedback capacity does not
exists, unless the power κ allocated for transmission, exceeds
the critical level κmin . For |C| = 1, to ensure a strictly positive
capacity or rate it is necessary to take Q > 0. However, for
any |C| > 1 then κmin ∈ (0,∞) and there is a threshold effect
for strictly positive feedback capacity. For Q > 0, it can be
verified that there is always a threshold effect, because κmin ∈
(0,∞), i.e., it is strictly positive. It should be mentioned that,
since Q = 0, for |C| > 1 then C B.1

A∞→B∞(κ) is the feedback
capacity, when the maximal solution to the Riccati equation P2
is used, and PB−1 is the stationary distribution (see Example 13
for discussion).

(viii) Capacity Achieving Channel Input Distributions.
From the above expressions, it follows that the capacity
achieving channel input distribution is

P∗
Ai |Bi−1

(dai |bi−1)

=

⎧
⎪⎪⎨

⎪⎪⎩

Pg,∗
Ai

(dai ) ∼ N(0, κ), κ ∈ [0,∞) if |C| < 1

Pg,∗
Ai |Bi−1

(dai |bi−1) ∼ N(�∗, K ∗
Z ), κ ∈ [κmin,∞)

if |C| > 1.

(I.38)

This shows that if the channel is stable, |C| < 1, then feedback
does not increase capacity, for the following reasons. As far
as the limit C B.1

A∞→B∞(κ) is concerned, there is no incentive
to apply feedback, since the controlled process-the channel
output process {Bi : i = 0, . . . , n}, does not appear, neither
in the transmission cost constraint nor in the characterization
of the FTFI capacity expression given by (I.25). However,
if Q �= 0, then the controlled process {Bi : i = 0, . . . , n} is
represented in the pay-off, and hence there is an incentive to
apply feedback.

(ix) Capacity Without Feedback. Clearly, for stable chan-
nels, i.e., |C| < 1, the capacity without feedback of
channel (I.20), denoted by CnoF B

A∞;B∞(κ), is

CnoF B
A∞→B∞(κ) = 1

2
log

�
1 + D2κ

KV

�
,

for |C| < 1, i.e., K ∗
Z = κ. (I.39)

This is precisely the value of capacity that is obtained
from (I.36), (I.37). Note that this is precisely the capacity of
a memoryless channel that corresponds to (I.20) with C = 0,
i.e., Bi = D Ai + Vi , i = 0, . . ., that is, the memory of the
channel (I.20), does not increase capacity.



CHARALAMBOUS et al.: CAPACITY ACHIEVING DISTRIBUTIONS AND SEPARATION PRINCIPLE 6391

Thus, the expressions of capacity without feedback
and feedback, coincide for the case of stable channels,
i.e., |C| < 1. This is attributed to the dual role of random-
ized strategies, specifically, the role of the deterministic part
to control the channel output process. Since in this case,
the channel is stable and Q = 0, no role is assigned to the
randomized strategy, except to transmit information. However,
if Q > 0 but the channel is stable, i.e., |C| < 1, the above
observation does not hold.

(x) Rate Loss of Unstable Channels. For unstable channels,
there is rate loss compared to the feedback capacity of stable
channels, expressed in terms of the logarithm of the unstable
eigenvalues of the channel, as follows.

If |C| > 1 then :
C B.1

A∞→B∞(κ) = 1

2
log

�
1+ D2κ

KV

�
−ln |C|, ∀κ ∈ [κmin ,∞).

(I.40)

That is, κmin = (C2−1)KV
D2 is the threshold on power beyond

which a strictly positive rate is feasible.
The rate loss of unstable channels given above, in terms

of the expressions of capacity with feedback and capacity
without feedback, C B.1

A∞→B∞(κ), CnoF B
A∞→B∞(κ), respectively,

is fundamentally different from the bounds derived by Cover
and Pombra [2] and Ebert [6], i.e., given by (I.12). Specifically,
as discussed above, for unstable channels, then feedback
capacity exists and it is strictly positive, if the power κ is
above a critical level or threshold κmin > 0, which is the
minimum cost to control the channel output, when K ∗

Z = 0,
i.e., it corresponds to zero feedback capacity or rate.

Finally, it noted that for the AGN channel (I.9), with AR(1)
noise model defined by (I.14), then properties analogous to
the ones discussed above should be identified, in terms of
Riccati equations of mean-square estimation theory. A treat-
ment in this direction is found in [11], for general Gaussian
channels with past dependence on channel inputs and channel
outputs.

5) Generalizations to Gaussian Channels with Arbitrary
Memory: All properties discussed above are shown to hold,
for general MIMO G-CM-B.1 and G-CM-B; they are obtained
by invoking properties of matrix Riccati algebraic equations.
These properties illustrate fundamental connections between
capacity of channels with feedback, without feedback, linear
systems theory, and LQG stochastic optimal control theory.

6) Relation Between Characterizations of FTFI Capacity
and Coding Theorems: In Section VI, the importance of the
characterizations of FTFI capacity are discussed in the context
the direct and converse parts of channel coding theorems.
Specifically, sufficient conditions are identified so that the
per unit time limits of the characterizations of FTFI capacity,
corresponds to feedback capacity, irrespectively of whether the
channel models are Gaussian.

II. INFORMATION STRUCTURES OF CHANNEL INPUT

DISTRIBUTIONS OF EXTREMUM PROBLEMS

OF FEEDBACK CAPACITY

In this section, the notation used throughout the paper is
established, and the information structures of optimal channel

input distributions, which maximize directed information,
are recalled from [31]. Table II.1 lists all considered case
with corresponding notation of FTFI capacity and feedback
capacity of different channels and transmission cost functions.

All spaces are assumed to be complete and separable metric
spaces, i.e., standard Borel spaces, to treat simultaneously
discrete, finite alphabet, real-valued R

k or complex-valued C
k

random processes for any positive integer k, etc. The product
measurable space of the two measurable spaces (X,B(X))
and (Y,B(Y)) is denoted by (X × Y,B(X) ⊗ B(Y)), where
B(X) ⊗ B(Y) is the smallest σ−algebra containing all
rectangles {A × B : A ∈ B(X), B ∈ B(Y)}. The prob-
ability distribution P(·) ≡ PX (·) on (X,B(X)) induced
by a Random Variable (RV) on (
,F , P) by the mapping
X : (
,F ) → (X,B(X)) is defined by6

P(A) ≡ PX (A)
�= P

�
ω ∈ 
 : X (ω) ∈ A

�
, ∀A ∈ B(X).

(II.41)

If the cardinality of X is finite then the RV is finite-valued
and it is called a finite alphabet valued RV. Given another RV
Y : (
,F ) → (Y,B(Y)), then PY |X (dy|X)(ω) is called the
conditional distribution of RV Y given RV X . The RVs X
and Y are called independent if and only if PY |X (dy|X)(ω) =
PY (dy), P−almost surely (a.s.), with P being the measure
on which X is defined. However, unless stated otherwise,
the qualifying “P − a.s.” is omitted when dealing with condi-
tional distributions. The conditional distribution of RV Y given
X = x is denoted by PY |X (dy|X = x) ≡ PY |X (dy|x), and the
joint distribution by PX,Y (dx, dy) = PY |X (dy|x) ⊗ PX (dx).
The family of conditional distributions on (Y,B(Y) parame-
trized by x ∈ X, is defined by

K (Y|X)
�= �

P(·|x) ∈ M (Y) : x ∈ X and ∀F ∈ B(Y),

the function P(F |·) is B(X)-measurable.
�
. (II.42)

The channel input and channel output alphabets are
sequences of measurable spaces {(Ai ,B(Ai )) : i ∈ N}
and {(Bi ,B(Bi )) : i ∈ N}, respectively, and their history

spaces are the product spaces A
N �= ×i∈NAi , B

N �= ×i∈NBi .
These spaces are endowed with their respective product

topologies, and B(�N)
�= ⊗i∈NB(�i ), where �i ∈ �

Ai , Bi
�
,

�N ∈ �
A

N, B
N
�
. Similarly, for B(�n), when n ∈ N is finite.

Points in �n are denoted by zn �= {z0, z1, . . . , zn} ∈ �n ,

unless stated otherwise, while points in �m
k

�= ×m
j=k� j are

denoted by zm
k

�= {zk, zk+1, . . . , zm} ∈ �m
k , (k, m) ∈ N × N.

Channel Distribution with Memory: A sequence of
stochastic kernels or distributions defined by

C[0,n]
�=
�

PBi |Bi−1,Ai = Qi (dbi |bi−1, ai )∈K (Bi |Bi−1×A
i ) :

i = 0, 1, . . . , n
�

(II.43)

where Ai �= {A0, A1, . . . , Ai }, Bi−1 �= {B−1, B0, . . . , Bi−1},
and B−1 is the initial state with distribution PB−1 = μ(db−1).

6The subscript on X is often omitted.
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TABLE II.1

NOTATION OF MATHEMATICAL SYMBOLS

TABLE II.2

NOTATION OF CAPACITY SYMBOLS

Thus, for i = 0, the initial distribution is Q0(db0|a0, b−1).
At each time instant i the conditional distribution of channel
output Bi is affected causally by previous channel output
symbols bi−1 ∈ B

i−1 and current and previous channel input
symbols ai ∈ A

i , i = 0, 1, . . . , n.
Channel Input Distribution with Feedback: A sequence of

stochastic kernels defined by

P[0,n]
�=
�

PAi |Ai−1 ,Bi−1 = Pi (dai |ai−1, bi−1)

∈ K (Ai |Ai−1 × B
i−1) : i = 0, 1, . . . , n

�
. (II.44)

For i = 0 the distribution is P0(da0|a−1, b−1) = P0(da0|b−1),
which means the initial state B−1 = b−1 is known to the
encoder. At each time instant i the conditional distribution
of channel input Ai is affected causally by past channel
inputs and output symbols (ai−1, bi−1) ∈ A

i−1 × B
i−1,

i = 0, 1, . . . , n.

Transmission Cost: The cost of transmitting and receiving
symbols an ∈ A

n, bn ∈ B
n over the channel is a measurable

function c0,n : A
n × B

n → [0,∞). The set of channel input
distributions with transmission cost is defined by

P[0,n](κ)
�=
�

Pi (dai |ai−1, bi−1) ∈ K (Ai |Ai−1 × B
i−1),

i = 0, . . . , n : 1

n+1
EP

μ

�
c0,n(An, Bn)

�
≤ κ

�
⊂ P[0,n],

c0,n(a
n, bn)

�=
n�

i=0

γi (T i an, T i bn), κ ∈ [0,∞) (II.45)

where for each i , T i an, T i bn, may arbitrary (for now), for
example, T i an = ai

i−L , T i bn = bi or T i bn = bi
i−K , with

L, K nonnegative finite integers, for i = 0, . . . , n. EP
μ(·)

denotes expectation with respect to the joint distribution of

RVs (An, Bn)
�= {A0, . . . , An, B−1, B0, . . . , Bn}, for fixed

distribution PB−1 = μ(dy−1), and superscript “P” indicates
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its dependence on the choice of conditional distribution
{Pi (dai |ai−1, bi−1) : i = 0, . . . , n} ∈ P[0,n](κ).

FTFI Capacity: Given any channel input conditional distri-
bution

�
Pi (dai |ai−1, bi−1) : i = 0, 1, . . . , n

� ∈ P[0,n](κ),
any channel distribution

�
Q(dbi |bi−1, ai) : i = 0, 1, . . . , n

� ∈
C[0,n], and any distribution μ(db−1), the induced joint distri-
bution PP

μ(dan, dbn) is uniquely defined, as follows.7

P
�

An ∈ dan, Bn ∈ dbn�

�= PP
μ (dan, dbn) = μ(db−1)

⊗n
j=0

�
P(db j |b j−1, a j ) ⊗ P(da j |a j−1, b j−1)

�
(II.46)

= μ(db−1) ⊗n
j=0

�
Q j (db j |b j−1, a j ) ⊗Pj (da j |a j−1, b j−1)

�
.

(II.47)

The joint distribution of
�

B0, . . . , Bn
�
, conditioned on B−1 =

b−1, and the conditional distribution of Bi conditioned on
Bi−1 = bi−1, are defined by8

P
�

Bn
0 ∈ dbn|B−1 = b−1� �= PP(dbn

0 |b−1)

=
�

An
PP(dan, dbn

0 |b−1) (II.48)

≡ �P
0,n(dbn

0 |b−1) = ⊗n
i=0�

P
i (dbi |bi−1), (II.49)

�P
i ( dbi |bi−1)

=
�

Ai
Qi (dbi |bi−1, ai ) ⊗ Pi (dai |ai−1, bi−1)

⊗ PP(dai−1|bi−1), i = 0, . . . , n. (II.50)

For i = 0, �P
0 (db0|b−1) = �

A0
Qi (db0|b−1, a0) ⊗

Pi (da0|b−1).

Directed information from An �= {A0, . . . , An} to
{B0, . . . , Bn} conditioned on the initial state B−1, and
denoted by I (An → Bn) (for convenience), is defined by

I (An → Bn)

�= EP
μ

� n�

i=0

log
�d Qi (·|Bi−1, Ai )

d�P
i (·|Bi−1)

(Bi )
��

(II.51)

=
n�

i=0

�

Ai×Bi
log

�d Qi (·|bi−1, ai )

d�P
i (·|bi−1)

(bi )
�

PP
μ (dai , dbi )

(II.52)

Note that directed information is expressed in terms
of the Radon-Nikodym derivatives between Qi (·|bi−1, ai )
and �P

i (·|bi−1), for i = 0, . . . , n (see [7], [32] or [28], [31]).
If for any i , the distribution Qi (·|bi−1, ai ) is not absolutely
continuous with respect to the distribution �P

i (·|bi−1),
then directed information takes the value +∞. Strictly
speaking the proper definition of directed information is

7Notation ⊗ is used to denote compound probability distributions generated
by multi-fold integrals.

8Throughout the paper the superscript notation on P in PP
μ (·),�P

0,n (·), etc.,
indicates the dependence of these distributions on the channel input condi-
tional distribution, while subscript notation on μ indicates the dependence on
the distribution μ of the initial state B−1.

via relative entropy [7], which admits the value +∞.
If the probability distributions can be expressed in terms
of probability density functions, then Qi (dbi |bi−1, ai ) =
fBi |Bi−1,Ai (bi |bi−1, ai )dbi ,�

P
i (dbi |bi−1) = f P

Bi |Bi−1(bi |bi−1)

dbi , i = 0, . . . , n, etc., and (II.51) reduces to

I (An → Bn) = EP
μ

� n�

i=0

log
� fBi |Bi−1,Ai (Bi |Bi−1, Ai )

f P
Bi |Bi−1(Bi |Bi−1)

��
.

(II.53)

The FTFI capacity with and without transmission cost
constraints, CAn→Bn (κ) and CAn→Bn , respectively, are defined
as follows.

CAn→Bn (κ)
�= sup

P[0,n](κ)

I (An → Bn), (II.54)

CAn→Bn
�= sup

P[0,n]
I (An → Bn). (II.55)

Throughout the paper it is assumed that the supremum
in (II.55) exists and it is achieved in the sets (see [31] for
sufficient conditions based weak compactness of probability
measures). That is, κ ∈ [0,∞) is sufficiently large for
P[0,n](κ) to be non-empty.

For the per unit time limiting version CA∞→B∞(κ)
of CAn→Bn (κ), to be a candidate of feedback capacity, and
thus a candidate of the characterization of the supremum of
all achievable rates (via direct and converse channel coding
theorems), the following assumption is imposed throughout the
paper. For any process {Xi : i = 0, . . . , }, which may represent
the source process to be encoded and transmitted over the
channel, the following conditional independence, pointed out
by Massey [33] holds.

PBi |Bi−1,Ai ,Xk = PBi |Bi−1,Ai ⇐⇒ Xk ↔ (Ai , Bi−1) ↔ Bi ,

∀k ∈ {0, 1, . . . , }, i = 0, . . . , (II.56)

The next theorem summarizes certain results derived in [1];
they are recalled, because they are extensively used in this
paper.

Theorem 1 (Characterization of FTFI Capacity for Chan-
nels of Class A or B and Transmission Cost of Class
A or B [1]):

(1) Suppose the channel distribution is of Class A defined
by (I.4). Define the restricted class of channel input distribu-
tions P

A
[0,n] ⊂ P[0,n] by

P
A
[0,n]

�=
��

Pi (dai |ai−1, bi−1) : i = 0, 1, . . . , n
� ∈ P[0,n] :

Pi (dai |ai−1, bi−1)=πi (dai |bi−1), i = 0, 1, . . . , n
�
. (II.57)

Then the following hold.
(1.a) The maximization of I (An → Bn) defined by (II.51)

over P[0,n] occurs in P
A
[0,n] ⊂ P[0,n] and the characteriza-

tion of FTFI capacity is given by the following expression.

C A
An→Bn = sup�

πi (dai |bi−1)∈M (Ai ):i=0,...,n
�

�

Eπ
μ

� n�

i=0

log
�d Qi (·|Bi−1, Ai )

d�
πi
i (·|Bi−1)

(Bi )
���

(II.58)
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where

�π
i (dbi |bi−1) =

�

Ai

Qi (dbi |bi−1, ai ) ⊗ πi (dai |bi−1),

i = 0, . . . , n, (II.59)

Pπ
μ(dai , dbi) = μ(db−1) ⊗i

j=0

�
Q j (db j |b j−1, a j )

⊗π j (da j |b j−1)
�
. (II.60)

(1.b) Suppose the following two conditions hold.

(b.1) γi (T i an, T i bn) = γ A
i (ai , bi) or

γi (T i an, T i bn) = γ B.K
i (ai , bi

i−K ), i = 0, . . . , n, (II.61)

(b.2) C A
An→Bn (κ)

�= sup
P[0,n](κ)

I (An → Bn) (II.62)

= inf
s≥0

sup�
Pi (dai |ai−1,bi−1):i=0,...,n

�
∈P[0,n]

�
I (An → Bn)

−s
�

EP
μ

�
c0,n(An, Bn)

�
− κ(n + 1)

��
. (II.63)

Then the maximization of I (An → Bn) defined by (II.51)
over

�
Pi (dai |ai−1, bi−1) : i = 0, . . . , n

� ∈ P[0,n](κ) occurs

in P
A
[0,n]

�
P[0,n](κ) and the FTFI capacity is given by the

following expression.

C A
An→Bn (κ)

= sup
πi (dai |bi−1)∈M (Ai ),i=0,...,n: 1

n+1 Eπ
μ

�
c0,n (An ,Bn)

�
≤κ

�

Eπ
μ

� n�

i=0

log
�d Qi (·|Bi−1, Ai )

d�
πi
i (·|Bi−1)

(Bi )
���

. (II.64)

(2) Suppose the channel distribution is of Class B
defined by (I.5), that is, Qi (dbi |bi−1

i−M , ai ), i = 0, . . . , n,
a transmission cost is imposed P0,n(κ), corresponding to�
γ B

i (ai , bi
i−K ), i = 0, . . . , n

�
, and the analogue of (1), (b.2)

holds. Define the restricted class of channel input distributions
◦

P
B.J

[0,n]⊂ P[0,n] by

◦
P

B.J

[0,n]
�=
��

Pi (dai |ai−1, bi−1) : i = 0, 1, . . . , n
� ∈ P[0,n] :

Pi (dai |ai−1, bi−1) = πi (dai |bi−1
i−J ) : i = 0, 1, . . . , n

�

(II.65)

where J
�= max{K , M}. Then the following hold.

(2.a) The maximization of I (An → Bn) defined by (II.51)
over

�
Pi (dai |ai−1, bi−1), i = 0, . . . , n

� ∈ P0,n(κ) occurs

in
◦

P
B.J

[0,n]
�

P[0,n](κ), and the characterization of FTFI

capacity is given by the following expression.

C B.J
An→Bn (κ)

= sup
πi (dai |bi−1

i−J )∈M (Ai ),i=0,...,n: 1
n+1 Eπ

μ

�
c0,n (An ,Bn)

�
≤κ

�

Eπ
μ

� n�

i=0

log
�d Qi (·|Bi−1

i−M , Ai )

dνπ
i (·|Bi−1

i−J )
(Bi)

���
(II.66)

where

Pπ
μ(dbi , dai) = μ(db−1

−J ) ⊗i
j=0

�
Q j (db j |b j−1

j−M , a j )

⊗π j (da j |b j−1
j−J )

�
, i = 0, . . . , n, (II.67)

νπ
i (dbi |bi−1

i−J ) =
�

Ai

Qi (dbi |bi−1
i−M , ai ) ⊗ πi (dai |bi−1

i−J ).

(II.68)

(2.b) Suppose the channel distribution is of Class B, and
the maximization of I (An → Bn) defined by (II.51), is over
channel input conditional distributions with transmission cost
P0,n(κ), corresponding to {γ A

i (ai , bi ) : i = 0, . . . , n}, and
the analogue of (1), (b.2) holds.

Then the maximization of I (An → Bn) over�
Pi (dai |ai−1, bi−1), i = 0, . . . , n

� ∈ P[0,n](κ) occurs

in P
A
[0,n]

�
P[0,n](κ).

Remark 2 (Equivalence of Constraint and Unconstraint
Problems): Assuming existence of maximizing elements, then
the equivalence of constraint and unconstraint problems
in Theorem 1, can be shown by invoking Lagrange’s duality
theory of globally optimizing convex functionals over convex
sets [34]. Specifically, by [31] the set of distributions

PC1(dan|bn−1)
�= ⊗n

i=0 Pi (dai |ai−1, bi−1) ∈ M (An) is
convex, and this uniquely defines P[0,n] and vice-versa,
directed information as a functional of PC1(dan|bn−1)
∈ M (An) is convex, and by the linearity the constraint set
P[0,n](κ) expressed in PC1(dan|bn−1), is convex. Hence,
if a maximizing distribution exists, and the so-called Slater
condition holds (i.e., a sufficient condition is the existence of
an interior point to the constraint set), then for every s ≥ 0
(not equal to zero), then the constraint and unconstraint
problems are equivalent.

III. REALIZATION OF CHANNEL INPUT DISTRIBUTIONS BY

INFORMATION LOSSLESS RANDOMIZED STRATEGIES

In this section, alternative characterizations of FTFI capacity
given in Theorem 1 are obtained by inducing, i.e., realizing
the optimal channel input conditional distributions by infor-
mation lossless randomized strategies, driven by independent
RVs, using as an intermediate step, independent uniformly
distributed RVs. Application examples to Gaussian channel
models with memory are given in Section IV and Section V.

The principle idea exploited is based on Lemma 3 (see [35]).
This lemma states that, for any family of conditional distri-
butions (on Polish spaces), conditioned on an information
structure (i.e., parametrized by the conditioning variables),
there exist deterministic functions, measurable with respect
to the conditioning information structure and an additional
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real-valued uniform RV taking values in [0, 1], such that
conditional distributions can be replaced by the Lebesgue
measure of such deterministic functions.

Lemma 3 (Realization of Conditional Distributions by
Randomized Strategies Lemma 1.2 in [35]): Let P(·|w) be
a family of measures on Polish space (V,B(V)), w ∈ W,
(i.e., (W,B(W)) a measurable space).

Let B([0, 1]) be the σ−algebra of Borel sets on [0, 1]
and m(·) the Lebesgue measure on [0, 1].

If P(A|w) is B(W)−measurable in w ∈ W for all A ∈
B(V), then there exists a function f : W × [0, 1] →
V, (w, t) → a

�= f (w, t), measurable with respect to B(W)⊗
B([0, 1]) such that

m
�

t ∈ [0, 1] : f (w, t) ∈ A
�

= P(A|w), ∀A ∈ B(V)

and ∀w ∈ W. (III.69)
Since Lemma 3 holds for general distributions defined on
complete separable metric spaces V, W, these also include
distributions induced by arbitrary RVs, such as, continuous,
countable, finite etc., valued RVs. The function f (w, ·)
in Lemma 3 is a randomization with respect to a uniform RV
taking values in [0, 1]. The derivation of Lemma 3 utilizes the
fact that, for any Polish space (V,B(V)), there exists a one-
to-one function λ : (V,B(V)) → ([0, 1],B([0, 1])) such that
λ(A) is a Borel set on [0, 1] for all A ∈ B(V) (i.e., λ(A)
is the image of A under λ). Any distribution function on
V is a candidate for such a function λ(x), and hence by
introducing the quantile representation of λ(x), then one can
assume without loss of generality that V coincides with [0, 1].

The definition of the quantile representation of distributions
and some of their properties are presented in the next remark,
for subsequent application.

Remark 4 (Quantile Representation of Distributions): Let
F (X) denote the space of probability distributions F(x) on
X, and define the corresponding set of quantile functions
QF ([0, 1]) by

QF ([0, 1])
�=
�

G : (0, 1) → X : G(·) is monotonically increasing,

continuous on the left, with limits on the right
�
.

For any F(·) ∈ F (X) define

I[F](u)
�= inf

�
x ∈ X : F(x) ≥ u

�
, ∀u ∈ (0, 1). (III.70)

Then the quantile function of F(·) ∈ F (X) is G(·) �= I[F](·)
and the following well-known properties hold.
(1) I : F (X) → QF ([0, 1]) is a bijection map.
(2) For any integrable measurable function ϕ : X → V then

E
�
ϕ(X)

�
=
�

X

ϕ(x)d F(x) =
�

(0,1)
ϕ(G(u))du. (III.71)

If F(·) ∈ F (X) is strictly increasing then G(·) �= I[F](·) =
F−1(·), u ∈ (0, 1) → G(u) = I[F](u) = F−1(u), which is
the usual inverse of a distribution function F(·), and du =
du
dx dx = d F(x)

dx dx = f (x)dx, where the last equality holds
provided the density function f (·) of the distribution F(·)
exists.

A. Recursive Nonlinear Channel Models A and B

The material of this section are developed for nonlinear
channel models, which induce channel distributions of Class
A, B, as defined below.

Definition 5 (Nonlinear Channel Models and Transmission
Costs A and B):

(1) NCM-A. Nonlinear channel models A are defined by
nonlinear recursive models and transmission cost functions,
as follows.

Bi = h A
i (Bi−1, Ai , Vi ), B−1 = b−1, i = 0, . . . , n,

1

n + 1
Eμ

� n�

i=0

γ A
i (Ai , Bi )

� ≤ κ (III.72)

where {Vi : i = 0, 1, . . . , n} is the noise process. The under-
lying assumptions are the following.

(1.a) h A
i : B

i−1 × Ai × Vi → Bi , γ
A

i : Ai × B
i → Ai

and h A
i (·, ·, ·), γ A

i (·, ·) are measurable functions, for i =
0, 1, . . . , n.

(1.b) The noise process {Vi : i = 0, . . . , n} satisfies

PVi |V i−1,Ai ,B−1(dvi |v i−1, ai , b−1) = PVi (dvi ), i = 0, . . . , n.

(III.73)

(2) NCM-B. Nonlinear channel models B are defined as
follows.

Bi = h B.M
i (Bi−1

i−M , Ai , Vi ), B−1
−M = b−1

−M , i = 0, . . . , n,

1

n + 1
Eμ

� n�

i=0

γ B.K
i (Ai , Bi

i−K )
� ≤ κ (III.74)

where {Vi : i = 0, 1, . . . , n} is the noise process, and the
underlying assumptions are the following.

(2.a) Conditions (1.a), (1.b) hold with appropriate changes.
In the above definition, there is no assumption on the

alphabet spaces of the RVs, i.e., whether these RVs are
continuous-valued, finite or countable-valued, or combinations
of them. To ensure Theorem 1 applies to the NCMs of Defin-
ition 5, it is sufficient to show such NCMs induce any of the
channel distributions described in Theorem 1. The following
calculation verifies that model (III.72) induces a conditional
channel distribution of Class A. By (III.73), the following
consistency condition holds.

P

�
Bi ∈ �

�
�
�Bi−1 = bi−1, Ai = ai

�

= PVi

�
vi : h A

i (bi−1, ai , vi ) ∈ �
�
, � ∈ B(Bi ) (III.75)

= Qi (�|bi−1, ai ), i = 0, 1, . . . , n. (III.76)

The convention for model (III.72) is that transmission starts
at time i = 0, and the initial data B−1 = b−1 ≡ b−1−∞ are
specified, and their distribution is fixed. Another alternative
convention is to assume

B0 = h0(B−1, A0, V0) ≡ h0(A0, V0),

γ A
0 (A0, B0) ≡ γ A

0 (A0, B0),

B1 = h1(B0, A1, V1) ≡ h1(B0, A1, V1),

γ A
1 (A1, B1) = γ1(A1, B0, B1), . . . , n.
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This alternative convention means that no information is avail-
able prior to transmission, that is, the sigma algebra generated
by B−1 is σ {B−1} = {
,∅} (the trivial σ−algebra), and by
Theorem 1, the optimal channel input distribution at time i = 0
is π0(da0|b−1)) = π0(da0).

Similarly, for NCM-B defined by (III.74), by using (III.73),
the following consistency condition holds.

P

�
Bi ∈ �

�
��Bi−1 = bi−1, Ai = ai

�

= PVi

�
vi : h B.M

i (bi−1
i−M , ai , vi ) ∈ �

�
, � ∈ B(Bi ) (III.77)

= Qi (�|bi−1
i−M , ai ), i = 0, 1, . . . , n. (III.78)

Hence, NCM-B given by (III.74) induces a channel distribu-
tion of Class B. It is not necessary to introduced additional
NCMs which are combinations of channels of Class A or B
and transmission costs of Class A or B, because these are
included in the above models.

B. Alternative Characterization of FTFI Capacity
for NCM-A

Consider the NCM-A given by (III.72), i.e., Defini-
tion 5, (1). By invoking Lemma 3 and Remark 4, then a
property called information lossless of randomized strategies
is identified, and an alternative characterization of the FTFI
capacity given in Theorem 1, (1), is obtained, as stated in the
next theorem.

Theorem 6 (Characterization of FTFI Capacity for NCM-A
by Information Lossless Randomized Strategies):
Consider the characterization of FTFI capacity, C A

An→Bn (κ),
of Theorem 1, (1), for the NCM-A of Definition 5, (1). Then
the following hold on some constructed probability space
(
,F , P).

(a) For each channel input distribution from the set P
A
[0,n]

defined by (II.57), the consistency conditions CON(a.1), (a.2)
stated below hold.

CON(a.1). There exist functions eA
i (·, ·) measurable with

respect to the information structure I eA

i
�= {bi−1, ui },

i = 0, 1, . . . , n and defined by

eA
i : B

i−1 × Ui → Ai , Ui
�= [0, 1],

ai = eA
i (bi−1, ui ), i = 0, 1, . . . , n (III.79)

such that
�
Ui : i = 0, . . . , n

�
are uniform RVs on U

n+1 and

PAi |Bi−1(dai |bi−1) ≡ πi (dai |bi−1), i = 0, 1, . . . , n

= PUi

�
ui : eA

i (bi−1, ui ) ∈ dai

�
. (III.80)

CON(a.2). i) Ai is conditionally independent of Ai−1

given Bi−1, for each i = 0, 1, . . . , n, ii) Ui is independent
of
	
Ui−1, V i−1



, i = 0, 1, . . . , n, and iii) Vi is independent

of
	
V i−1, Ui



, i = 0, 1, . . . , n.

Moreover,9

Ai = eA
i (Bi−1, Ui ), i = 0, 1, . . . , n, (III.81)

9Superscript notation “Ee A
μ {·}” indicates the dependence of the joint distri-

bution on the strategy {eA
i (·, ·) : i = 0, . . . , n}.

Bi = h A
i (Bi−1, Ai , Vi ), B−1 = b−1, i = 0, 1, . . . , n,

(III.82)

1

n + 1
EeA

μ

� n�

i=0

γ A
i (eA

i (Bi−1, Ui ), Bi )
�

≤ κ. (III.83)

(b) Let
�

Zi : i = 0, . . . , n
�

be a sequence of independent
RVs taking values in

�
Zi : i = 0, . . . , n

�
with corresponding

sequence of distributions
�

FZi (·) ∈ F (Zi ) : i = 0, . . . , n
�
.

Then (a) holds with the following changes.

Ui −→ Zi , (ui , Ui ) −→ (zi , Zi ),

eA
i (bi−1, ui ) −→ eA

i (bi−1, zi ),

PUi −→ PZi , i = 0, . . . , n. (III.84)

Moreover,

C A
An→Bn (κ)

= sup�
PZi :i=0,...,n

�
,
�

eA
i (·,·):i=0,...,n

�
∈E A[0,n](κ)

�

EeA

μ

� n�

i=0

log
�d Qi (·|Bi−1, eA

i (Bi−1, Zi ))

d�eA

i (·|Bi−1)
(Bi )

���

(III.85)

where

E A[0,n](κ)

�=
�

eA
i (bi−1, zi ), i = 0, . . . , n :

1

n + 1
EeA

μ

� n�

i=0

γ A
i (eA

i (Bi−1, Zi ), Bi )
�

≤ κ
�
. (III.86)

Define the restricted class of randomized strategies called
information lossless randomized strategies, as follows.

E I L−A
[0,n]
�=
�

eA
i : B

i−1×Zi → Ai , ai =eA
i (bi−1, zi ), i =0, . . . , n :

{Zi : i =0, . . . , n} an independent process,

for fixed bi−1, the map eA
i (bi−1, ·) : Zi → Ai is a

bijection and its inverse measurable

for i = 0, . . . , n
�
, (III.87)

E I L−A
[0,n] (κ)

�=
��

eA
i (bi−1, zi ) : i = 0, . . . , n

� ∈ E I L−A
[0,n] :

1

n + 1
EeA

μ

� n�

i=0

γ A
i (eA

i (Bi−1, Zi ), Bi )
�

≤ κ
�
. (III.88)

Then an alternative equivalent characterization of FTFI
capacity C F B,A

An→Bn (κ) defined by (II.58), is given by the
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following expression.

C A
An→Bn (κ)

= C I L−A
An→Bn (κ)

�= sup�
PZi :i=0,...,n

�
,
�

eA
i (·,·):i=0,...,n

�
∈E I L−A

[0,n] (κ)

�

EeA

μ

� n�

i=0

log
�d Qi (·|Bi−1, eA

i (Bi−1, Zi ))

d�eA

i (·|Bi−1)
(Bi )

���

(III.89)

≡ sup�
PZi :i=0,...,n

�
,
�

eA
i (·,·):i=0,...,n

�
∈E I L−A

[0,n] (κ)

n�

i=0

I eA
(Zi ; Bi |Bi−1)

(III.90)

and superscript eA in I eA
(·; ·|·) indicates the dependence of

the distributions on the strategies
�
eA

i (·, ·) : i = 0, . . . , n
� ∈

E I L−A
[0,n] (κ).

Proof: See Appendix A. �
An application of Theorem 6, (b) is illustrated

in Theorem 10. It is noted that the context of Theorem 6
is different from posterior matching schemes of memoryless
channels [36].

Remark 7: (Comments on Theorem 6)
(a) Given a specific NCM-A, then Theorem 6, (b) shows

that, any candidate of optimal channel input distribution
πi (dai |bi−1) can be replaced by a randomized strategy
{eA

i (bi−1, Zi ) : i = 0, . . . , b} driven by independent RVs
{Zi : i = 0, . . . , n}, from the set of randomized strategies
E A[0,n](κ). Moreover, for such channels, directed information
I (An → Bn) = n

i=0 I (Ai ; Bi |Bi−1), which is a functional
of channel input conditional distributions {πi (dai |bi−1) :
i = 0, . . . , n}, i.e., I (Ai ; Bi |Bi−1) ≡ Iπ (Ai ; Bi |Bi−1),
can be expressed as a functional of randomized strategies
{eA

i (bi−1, zi ) : i = 0, . . . , n} ∈ E A[0,n], i.e., Iπ (Ai ; Bi |Bi−1) =
I eA

(Ai ; Bi |Bi−1), i = 0, . . . , n. However, under appro-
priate conditions, i.e., for information lossless randomized
strategies {eA

i (bi−1, zi ) : i = 0, . . . , n} ∈ E I L−A
[0,n] then

Iπ (Ai ; Bi |Bi−1) = I eA
(Zi ; Bi |Bi−1), i = 0, . . . , n.

(b) By Remark 4, (1) and (2), then an alternative
characterization of the FTFI capacity can be obtained
with respect to uniform RVs {Ui : i = 0, . . . , n},
as follows. For any {eA

i (bi−1, zi ) : i = 0, . . . , n} ∈ E A[0,n], let
zi = G(ui ) = I[FZi ](ui ), and define ai = eA

i (bi−1, ui ) =
eA

i (bi−1, G(ui )), i = 0, . . . , n. By Theorem 6, then

I (An → Bn) =
n�

i=0

I (Ai ; Bi |Bi−1)

=
n�

i=0

I (eA
i (Bi−1, G(Ui )); Bi |Bi−1) (III.91)

(c) For memoryless channels, i.e., Qi (dbi |bi−1, ai ) =
Qi (dbi |ai ) and γ A

i (ai , bi−1) = γi (ai), i = 0, . . . , n, the
distribution, which maximizes the characterization of FTFI

capacity is P
�

Ai ≤ ai
� �= FA∗

i
(ai ), i = 0, . . . , n. In this case,

ai = ei (G(ui )), and the optimal randomized strategies are
given by e∗

i (G(ui )) = F−1
A∗

i
(ui ), that is, the optimal process

is A∗
i = Z∗

i , i = 0, . . . , n. This is due to the fact an arbitrary
distributed RVs can be generated from uniform RVs.

(d) To show the fundamental difference between Theorem 6
and posterior matching schemes of memoryless channels [36],
consider channels with memory, say, Qi (dbi |bi−1, ai ) =
Qi (dbi |bi−1, ai ) and γ A

i (ai , bi ), i = 0, . . . , n. Then any
candidate of optimal distribution corresponding to the char-
acterization of FTFI capacity, in general, satisfies

P
�

Ai ≤ ai |Ai−1 = ai−1, Bi−1 = bi−1�

= P
�

Ai ≤ ai |Bi−1 = bi−1� �= FAi (ai )

(III.92)

hence

ai = eA
i (bi−1, G(ui )) �= ẽi (G(ui )), i = 0, . . . , n. (III.93)

Moreover, ai = eA
i (bi−1, G(ui )) �= ẽi (Gbi−1(ui )), Gbi−1(·) �=

I[FAi |Bi−1](·|bi−1), because such a construction violates
Lemma 3, i.e., the information structure of random-
ized strategies. This subtle issue is further clarified via
application examples of Gaussian channels with memory,
in Section IV.

C. Alternative Characterization of FTFI Capacity for NCM-B

Consider the NCM-B defined by (III.74), i.e., Definition 5,
(2). By Theorem 1, (2), the corresponding optimal channel
input distribution are of the form

�
πi (dai |bi−1

i−J ) : i =
0, 1, . . . , n

�
, J

�= max{M, K }. Clearly, all the material of
Section III-B apply to NCM-B. The analog of Theorem 6 is
stated below for future reference.

Theorem 8 (Characterization of FTFI Capacity for NCM-B
by Information Lossless Randomized Strategies):
Consider the characterization of FTFI capacity, C B.J

An→Bn (κ),
given in Theorem 1, (2), for the NCM-B of Definition 5, (2).
Then the following hold on some constructed probability space
(
,F , P).

(a) For each channel input distribution
◦

P
B.J

[0,n] defined
by (II.65), the consistency conditions CON(b.1), (b.2) stated
below hold.

CON(b.1). There exists a function eB.J
i (·), J

�= max{M, K }
measurable with respect to the information structure I eB.J

i
�=

{bi−1
i−J , ui }, i = 0, 1, . . . , n defined by

eB.J
i : B

i−1
i−J × Ui → Ai , Ui

�= [0, 1],
ai = eB.J

i (bi−1
i−J , ui ), i = 0, 1, . . . , n (III.94)

such that {Ui : i = 0, 1, . . . , n} are uniform distributed on
[0, 1]n+1 and

PAi |Bi−1
i−J

(dai |bi−1
i−J ) = PUi

�
ui : eB.J

i (bi−1
i−J , ui ) ∈ dai

�
,

i = 0, 1, . . . , n, J
�= max{M, K }. (III.95)

CON(b.2). i) Ai is conditionally independent
of

�
Ai−1, Bi−J−1

�
given

�
Bi−1

i−J : i = 0, . . . , n
�

for i =
0, . . . , n, ii) Ui is independent of

�
Ui−1, V i−1

�
, i = 0, . . . , n,

iii) Vi is independent of
�

V i−1, Ui
�

, i = 0, . . . , n.
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Moreover, the analog of (III.81)-(III.83) hold.
(b) Let

�
Zi : i = 0, . . . , n

�
be a sequence of independent

RVs taking values in
�
Zi : i = 0, . . . , n

�
with corresponding

sequence of distributions
�

FZi (·) ∈ F (Zi ) : i = 0, . . . , n
�
.

Then the analog of Theorem 6, (b) holds.
Proof: See Appendix B. �

Remark 9 (Alternative Characterizations): The main point
to be made is that, the characterizations of FTFI capacity,
which are extremum problems with respect to channel input
conditional distributions, can be transformed into alternative
equivalent characterizations, which are extremum problems
over randomized strategies driven by independent random
variables.

IV. CHARACTERIZATIONS OF FTFI CAPACITY

OF GAUSSIAN CMS A AND B & CONNECTIONS

TO THE LQG THEORY

In this section, the characterizations of FTFI capacity given
in Section II and Section III are applied to Gaussian channel
models (G-CMs), which are special cases of NCM-A, NCM-B
of Definition 5, to obtain the following.

(a) Characterizations of FTFI capacity for multiple input
multiple output (MIMO) G-CMs;

(b) characterizations of FTFI capacity for MIMO G-CMs
via connections to finite horizon linear-quadratic-
Gaussian (LQG) stochastic optimal control theory,
matrix Riccati difference equations, and water-filling
solutions of MIMO channels;

(c) unfold the dual role of randomized strategies, which
realize optimal channel channel input processes that
correspond to the characterizations of FTFI capacity,
to control the channel output process and to transmit
new information over the channel.

The characterizations of feedback capacity and its connec-
tions to the infinite horizon LQG stochastic optimal control
theory and stability theory of linear control systems is treated
in Section V, by using per unit time limiting versions of the
results obtained in this section.

A. Characterizations of FTFI Capacity for Gaussian
Channel Models A

Consider a Gaussian channel model A (G-CM-A), i.e., a
special case of the NCM-A given by (III.72), and defined as
follows10

Bi =
i−1�

j=0

Ci, j B j + Di,i Ai + Vi , B0 = D0,0 A0 + V0,

i = 1, . . . , n, (IV.96)

1

n + 1
E
� n�

i=0

�
�Ai , Ri,i Ai � + �Bi−1, Qi (i − 1)Bi−1�

��

≤ κ, (IV.97)

Ci, j ∈ R
p×p, Di,i ∈ R

p×q , Ri,i ∈ S
q×q
++ ,

10There is no loss of generality of not considering the more general
transmission cost function �Ai , Ri,i Ai � + �Bi , Qi (i)Bi�, because we can
substitute Bi by (IV.96) and re-define the cost function.

Q0(−1) = 0, Qi (i − 1) ∈ S
ip×ip
+ , i = 0, . . . , n,

j = 0, . . . , i − 1 (IV.98)

where Bi �= (B0, B1, . . . , Bi ). Thus, at time i = 0, A0
does not use feedback, equivalently, σ {B−1} = {
,∅}.
The following assumption holds.

Assumption A: 1) Definition 5, (1.a), (1.b) hold, and 2) the
noise process {Vi : i = 0, . . . , n} is Gaussian distributed,
specified by

Vi ∼ N(0, KVi ), KVi � 0, i.e., μVi

�= E
�

Vi
� = 0,

KVi

�= Cov(Vi , Vi ) = E
�

Vi V
T
i

�
, i = 0, 1, . . . , n. (IV.99)

The next theorem states that the optimal channel input
distribution is Gaussian, and it is realized by an information
lossless Gaussian randomized strategy that is expressed via
the decomposition Ai = gi(Bi−1) + Zi , in which gi (Bi−1) ⊥
Zi , i = 0, . . . , n, {gi(·) : i = 0, . . . , n} is a deterministic
function of the feedback or output process, and {Zi : i =
0, . . . , n} is an orthogonal innovations process.

Theorem 10 (Characterization of FTFI Capacity for G-
CM-A):
Consider the G-CM-A defined by (IV.96)-(IV.98), and suppose

Assumption A holds. Let {(Ag
i , Bg

i ) : i = 0, . . . , n} denote a
jointly Gaussian process.

Then the following hold.
(a) The optimal channel input distribution {π(dai |bi−1) ≡

πg(dai |bi−1) : i = 0, . . . , n} is conditionally Gaussian, with
conditional mean which is linear in {bi : i = 0, . . . , n}
and conditional covariance which is non-random, and the
characterization of FTFI capacity is given by the following
expression.

CG−A
An→Bn (κ)

�= sup
PG−A

[0,n] (κ)

H (Bg,n) − H (V n) (IV.100)

where

PG−A
[0,n] (κ)

�=
�
π

g
i (dai |bi−1), i = 0, . . . , n :

1

n + 1

n�

i=0

Eπg
�
�Ag

i , Ri,i Ag
i �

+ �Bg,i−1, Qi (i − 1)Bg,i−1�
�

≤ κ
�
. (IV.101)

(b) An alternative equivalent characterization of the FTFI
capacity is given by the following expressions.

CG−A
An→Bn (κ)

�= sup�	
�i (i−1),K Zi



,i=0,...,n

�
∈E I L−G−A

[0,n] (κ)

�

H (Bg,n) − H (V n)
�

(IV.102)

where

E I L−G−A
[0,n] (κ)

�=
�	

�i (i − 1), K Zi



, i = 0, . . . , n :

1

n + 1
E
� n�

i=0

	�Ag
i , Ri,i Ag

i �
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+ �Bg,i−1, Qi (i − 1)Bg,i−1�
 ≤ κ
��

(IV.103)

H (Bg,n) − H (V n)

=
n�

i=0

H (Bg
i |Bg,i−1) − H (V n)

= 1

2

n�

i=0

log
|Di,i K Zi DT

i,i + KVi |
|KVi |

, (IV.104)

Ag
i =

i−1�

j=0

�i, j Bg
j + Zi , i = 0, 1, . . . , n, (IV.105)

≡ �i (i − 1)Bg,i−1 + Zi , (IV.106)

Bg
i =

i−1�

j=0

Ci, j Bg
j + Di,i Ag

i + Vi

=
i−1�

j=0

�
Ci, j + Di,i �i, j

�
Bg

j + Di,i Zi + Vi , (IV.107)

≡
�

Ci (i − 1) + Di,i �i (i − 1)
�

Bg,i−1 + Di,i Zi + Vi ,

(IV.108)

i) Zi is independent of (Ag,i−1, Bg,i−1), i = 0, . . . , n,

i i) Zi is independent of V i , i = 0, . . . , n, (IV.109)

i i i)
�

Zi ∼ N(0, K Zi ) : i = 0, 1, . . . , n
�

is an

orthogonal innovations Gaussian process. (IV.110)
Proof: The derivation is based on the maximum

entropy property of Gaussian distribution, and the decompo-
sition (IV.106) expressed in terms of an orthogonal process
{Zi : i = 0, . . . , n}. The details are given in Appendix C. �

Remark 11 (Extremum Solution of the G-CM-A):
(a) The connection of decomposition (IV.105) to the Cover
and Pombra [2] realization of Gaussian channel input process
given by (I.10) is done as follows. Substituting in the right
hand side of (IV.105) the output process (IV.107), then the
process {Ag

i : i = 0, . . . , n} is expressed in terms of the
channel noise process {Vi : i = 0, . . . , n} and a linear
combination of the process {Zi : i = 0, . . . , n}, by

Ag,n = �
n
V n + Z

n
, where�

Zi : i = 0, . . . , n
�

is Gaussian and Correlated

Z
n

is Gaussian N(0, K Z
n ), V n ⊥ Z

n
(IV.111)

and �
n

is a lower diagonal matrix with time-varying determin-
istic entries. It should be noted that, for the above equivalent
realization is very difficult to optimize the corresponding
characterization of FTFT capacity given by (IV.102), even
in the special case, Qi (i − 1) = 0, i = 0, . . . , n, because
the process

�
Zi : i = 0, . . . , n

�
is not an orthogonal

innovations process. Any past attempts to solve the Cover
and Pombra [2], characterization given by (I.10), for any n,

that is, corresponding to the nonstationary nonergodic case,
have been unsuccessful. Previous attempts are extensively
elaborated in [3].

(b) Although, at first glance, the problem of determining
the optimal matrices {�∗

i (i − 1), K ∗
Zi



, i = 0, . . . , n}, which

correspond to the extremum problem (IV.102), appears diffi-
cult, even in special cases, one possible re-formulation, is to
compactly represent (IV.102), as follows.

From (IV.105), (IV.107), it is always possible to find lower
diagonal matrices {(C[i,i], �[i,i]) : i = 0, . . . , n} and matrices
{D[i,i] : i = 0, . . . , n}, such that the following hold.

Ag,i = �[i,i] Bg,i + Zi , i = 0, . . . , n, (IV.112)

Bg,i = C[i,i] Bg,i + D[i,i] Ai + V i , i = 0, . . . , n. (IV.113)

By the above expressions, then the covariance of the channel
output process is given by

K Bi−1
�= E

�
Bg,i−1	Bg,i−1
T

�
, i = 0, 1, . . . , n, (IV.114)

=
�

I − C[i−1,i−1] − D[i−1,i−1]�[i−1,i−1]
�−1

.D[i−1,i−1]
�

K Zi−1 + KV i−1

�
DT[i−1,i−1]

.
�

I − C[i−1,i−1] − D[i−1,i−1]�[i−1,i−1]
�−1,T

,

spec
�

C[i−1,i−1] + D[i−1,i−1]�[i−1,i−1]
�

< 1.

(IV.115)

The condition spec
�

C[i−1,i−1] + D[i−1,i−1]�[i−1,i−1]
�

< 1,

i = 0, . . . , n is equivalent to the existence of a sequence
{�i, j : i = 0, . . . , n, j = 0, . . . , i − 1}, which ensures the
eigenvalues of the channel output process lie in the open unit
disc in the space of complex numbers C. Utilizing the above
representations, the average transmission cost constraint is
given by

E I L−G−A
[0,n] (κ)

=
��

�i (i − 1), K Zi

�
, i = 0, . . . , n :

1

n + 1
E
� n�

i=0

�
�Ag

i , Ri,i Ag
i �

+ �Bg,i−1, Qi (i − 1)Bg,i−1�
��

= 1

n + 1

n�

i=0

tr
�

Ri,i �i (i − 1)K Bi−1�T
i (i − 1)

+ Ri,i K Zi + Qi (i − 1)K Bi−1

�
≤ κ

�
. (IV.116)

Hence, the FTFI capacity is characterized by

CG−A
An→Bn (κ)

= max�	
�i (i−1),K Zi



,i=0,...,n

�
∈E I L−G−A

[0,n] (κ), (IV.115) holds

�

1

2

n�

i=0

log
|Di,i K Zi DT

i,i + KVi |
|KVi |

�
(IV.117)
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Extremum problem (IV.117) is a deterministic optimization
problem. However, although compactly represented and attrac-
tive, it is not at all easy to optimize, because the functional
dependence of {K Bi−1 : i = 0, 1, . . . , n} on {�i (i − 1), K Zi :
i = 0, . . . , n}, is very complex. Hence, this re-formulation is
not pursued any further. Rather, extremum problem (IV.117)
is re-visited in Section IV-E, where closed form expres-
sions are obtained via direct connections to linear-quadratic-
Gaussian (LQG) stochastic optimal control problems.

B. Characterizations of FTFI Capacity for Gaussian
Channel Models B.1

Consider the Gaussian channel model B.1 (G-CM-B.1),
i.e., a special case of NCM-B with M = 1, and defined by

Bi = Ci,i−1 Bi−1 + Di,i Ai +Vi , B−1 =b−1, i =0, . . . , n,

(IV.118)

1

n + 1
E
� n�

i=0

�Ai , Ri,i Ai � + �Bi−1, Qi,i−1 Bi−1�
�

≤ κ,

Ri,i ∈ S
q×q
++ , Qi,i−1 ∈ S

p×p
+ , i = 0, . . . , n (IV.119)

under the following assumption.
Assumption B: 1) Definition 5, (2.a) holds, and 2) the noise�

Vi ∼ N(0, KVi ) : i = 0, 1, . . . , n
�

is independent and
Gaussian distributed, as in (IV.99) and independent of the zero
mean Gaussian RV B−1 (and a maximizing element exists in
the set of channel input distributions).

It should be noted that one can consider the case when
B−1 = b−1 is fixed, hence all expressions below are replaced
by expectations for fixed B−1 = b−1.

Clearly, all statements regarding the G-CM-A, defined
by (IV.96)-(IV.98) (given in Section IV-A), can be specialized
to G-CM-B.1. The following statements are listed for future
reference.

1) Characterization of the FTFI Capacity: The characteri-
zation of the FTFI capacity of G-CM.B.1 is given by

CG−B.1
An→Bn (κ) = sup

�
π

g
i (dai |bi−1),i=0,...,n

�
∈ ◦
P

G−B.1

[0,n] (κ)

n�

i=0

H (Bg
i |Bg

i−1)

− H (V n) (IV.120)

where
◦

P
G−B.1

[0,n] (κ)

�=
�
π

g
i (dai |bi−1), i = 0, . . . , n :
1

n + 1
Eπg

n�

i=0

�
�Ag

i , Ri,i Ag
i �+�Bg

i−1, Qi,i−1 Bg
i−1�

�
≤κ

�

(IV.121)

P
�

Bg
i ≤ bi |Bg

i−1 = bi−1
�

=
�

Ai

P
�

Vi ≤ bi − Ci,i−1bi−1 − Di,i ai

�

π
g
i (dai |bi−1), i = 0, 1, . . . , n (IV.122)

that is, {πg
i (dai |bi−1) ≡ Pg

Ai |Bi−1
(ai |bi−1) : i = 0,

1, . . . , n} is conditionally Gaussian, satisfying the average

transmission cost constraint, implying {PBi |Bi−1(bi |bi−1) ≡
Pg

Bi |Bi−1
(bi |bi−1) : i = 0, 1, . . . , n} is also conditionally

Gaussian, both with conditional mean which is linear in {bi :
i = 0, . . . , n} and conditional covariance which is non-
random.

2) Alternative Characterization of FTFI Capacity:
By Theorem 10, the set of all channel input condi-
tional distribution is realized by randomized strategies,
as follows.

Ag
i = eB.1

i (Bg
i−1, Zi ) = �i,i−1 Bg

i−1 + Zi , i = 0, . . . , n,

(IV.123)

Bg
i =

�
Ci,i−1 + Di,i �i,i−1

�
Bg

i−1 + Di,i Zi + Vi ,

Bg
−1 = b−1, i = 0, . . . , n, (IV.124)

i) Zi independent of
�

Ag,i−1, Bg,i−1
�
, i =0, . . . , n,

i i) Zi independent of V i , for i = 0, . . . , n,

i i i)
�

Zi ∼ N(0, K Zi ) : i = 0, . . . , n
�

independent

Gaussian process. (IV.125)

The following are easily obtained, from the above equation.

μBi |Bi−1

�= E
�

Bg
i

��
�Bg

i−1

�
=
�

Ci,i−1 + Di,i �i,i−1

�
Bg

i−1,

i = 0, . . . , n, (IV.126)

K Bi |Bi−1

�= E
��

Bg
i − μBi |Bi−1

��
Bg

i − μBi |Bi−1

�T ��
�Bg

i−1

�

= Di,i K Zi DT
i,i + KVi , i = 0, . . . , n, (IV.127)

K Bi

�= E
�

Bg
i

	
Bg

i


T
�
, satisfies the discrete

time-varying Lyapunov equation (IV.128)

K Bi =
�

Ci,i−1 + Di,i �i,i−1

�
K Bi−1

�
Ci,i−1 + Di,i �i,i−1

�T

+ Di,i K Zi DT
i,i + KVi , i = 0, . . . , n, (IV.129)

K B−1 = Given. (IV.130)

Consequently, the alternative characterization of the FTFI
capacity is given, as follows.

CG−B.1
An→Bn (κ) = C I L−G−B.1

An→Bn (κ)

�= sup�	
�i,i−1 ,K Zi



,i=0,...,n

�
∈E I L−G−B.1

[0,n] (κ)

and (IV.129), (IV.130) hold

n�

i=0

H (Bg
i |Bg

i−1)−H (V n)

(IV.131)

where
n�

i=0

H (Bg
i |Bg

i−1) − H (V n)

= 1

2

n�

i=0

log
|Di,i K Zi DT

i,i + KVi |
|KVi |

, (IV.132)
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E I L−G−B.1
[0,n] (κ)

�=
�	

�i,i−1, K Zi



, i = 0, . . . , n :

1

n + 1
E

n�

i=0

�
�Ag

i , Ri,i Ag
i � + �Bg

i−1, Qi,i−1 Bg
i−1�

�

= 1

n + 1

n�

i=0

tr
�

Ri,i �i−1,i K Bi−1�
T
i,i−1 + Ri,i K Zi

+ Qi,i−1 K Bi−1

�
≤ κ

�
. (IV.133)

This is a classical deterministic optimization problem of
a dynamical system, described by the covariance of the
channel output process {K Bi : i = 0, . . . , n}, and satisfying
the discrete time-varying Lyapunov type difference equa-
tion (IV.129), (IV.130), where

�
K Bi : i = 0, . . . , n

�
is the

controlled object, while the control object is
�
(�i,i−1, K Zi ) :

i = 0, . . . , n
�
, and it is chosen to maximize the pay-off.

Discrete time-varying Lyapunov type difference equations are
extensively utilized in stability analysis of time-varying linear
controlled systems (see Appendix E or [4], Chapter 7).

The next remark elaborates further on the direct connection
between the characterization of FTFI capacity and Discrete-
time Lyapunov matrix equations its per unit time limiting
version, and linear stochastic controlled systems.

Remark 12 (Relations of FTFI Capacity and Feedback
Capacity of G-CM-B.1 & Linear Stochastic Controlled
Systems):
(a) The recursive equation (IV.129) satisfied by the covariance
{K Bi : i = 0, . . . , n} of the output process {Bg

i : i =
0, . . . , n} is a Lyapunov type matrix difference equation. It is
possible to apply calculus of variations to determine the pair
{(�i,i−1, K Zi ) ∈ R

q×p × S
q×q
+ : i = 0, . . . , n}, which incurs

the maximum in (IV.131). However, since this is done in a
subsequent section via dynamic programming, this direction
is not pursued any further.

(b) Suppose the coefficients of the G-CM-B.1 defined
by (IV.118), (IV.119) are time-invariant, and the parameters
of the optimal channel input distributions induced by (IV.123),
are restricted to time-invariant, i.e.,

Ci,i−1 = C, Di,i = D, KVi = KV , Ri,i = R, i = 0, . . . , n,

Qi,i−1 = Q, i = 0, . . . , n − 1, Qn,n−1 = M, (IV.134)

(�i,i−1, K Zi ) = (�, K Z ), i = 0, . . . , n. (IV.135)

Recursive substitution gives

K Bi =
��

C + D�
�i
�

K B0

��
C + D�

�i
�T

+
i−1�

j=0

��
C + D�

� j
��

DK Z DT + KV

�

×
��

C + D�
� j
�T

, i = 1, . . . , n. (IV.136)

Next, the properties of time-invariant Lyapunov difference and
algebraic equations, given in Appendix E, Theorem 27 are
utilized to analyze the FTFI capacity and feedback capacity
of the G-CM-B.1.

Suppose the set of all eigenvalues of (C + D�) lie
in the open unit disc of the space of complex numbers C,
i.e., spec

	
C + D�


 ⊂ Do. Then, irrespectively of the initial
covariance K B0 , the limit, limn−→∞ K Bi = K B exists and
satisfies the Lyapunov algebraic matrix equation

K B =
�

C + D�
�

K B

�
C + D�

�T + DK Z DT + KV

and K B � 0 is a unique solution (IV.137)

However, if K B0 = K B, then the solution of the Lyapunov
matrix difference equation (IV.129) with time-invariant coeffi-
cients is time-invariant.

The per unit time limiting version of the characterization of
the FTFI capacity is given by the following expression.

CG−B.1
A∞→B∞(κ)

�= sup
E I L−G−B.1

[0,∞] (κ), (IV.137) holds

�

1

2
log

|DK Z DT + KV |
|KV |

�
, (IV.138)

E I L−G−B.1
[0,∞] (κ)

�=
�	

�, K Z

 ∈ R

q×p × S
q×q
+ :

tr
�

R�K B�T + RK Z + QK B

�
≤ κ

�
,

spec
	
C + D�


 ⊂ Do. (IV.139)

If spec
	
C + D�


 ⊂ Do, and there is a unique invariant
distribution of the transition kernel PBi |Bi−1 , then the joint
distribution of the joint process {Ag

i , Bg
i ) : i = 0, . . . , } and

its marginals are asymptotically ergodic, and hence (IV.138)
is the feedback capacity. Appendix E, Theorem 27, gives
sufficient conditions, which imply spec

	
C + D�


 ⊂ Do, and
existence of per unit time limiting version of the characteri-
zation of the FTFI capacity, and existence of unique invariant
distribution of the joint process {(Ag

i , Bg
i ) : i = 0, . . . , }.

The complete analysis is done in Section V via dynamic
programming.

In the next example it is demonstrated that the statements
described by (I.34)-(I.40), which are derived by invoking of
the algebraic Riccati equation (I.33), can also be derived by
an alternative method that uses (IV.137)-(IV.139).

Example 13 (Scalar Channel p = q = 1 and R = 1,
Q = 0): The explicit solution of feedback capacity (IV.138)
is obtained below. From (IV.137), then

K B = D2 K Z + KV

1 − 	
C + D�


 if |C + D�| < 1. (IV.140)

The constraint optimization problem (IV.138) is convex, and
by substituting (IV.140) into (IV.139), it is equivalent to the
following unconstraint optimization (see [34]).

J (K ∗
Z , s∗) �= inf

s≥0
sup

�∈R,K Z≥0

�1

2
log

D2 K Z + KV

KV

−s
�
�2 D2 K Z + KV

1 − 	
C + D�


 + K Z − κ
��

,

|C + D�| < 1 (IV.141)

where s ≥ 0 is the Lagrange multiplier associated with
the constraint. The above problem gives the following
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optimal solution.

If |C| < 1 then:

�∗ = 0, K ∗
Z = κ, κ ∈ [0,∞). (IV.142)

If |C| > 1 then:

�∗ = −C2 − 1

C D
, K ∗

Z = D2κ + KV (1 − C2)

C2 D2 ≥ 0,

κ ∈ [κmin,∞), (IV.143)

s∗ = 1

2

D2

D2κ + KV
∈ [s∗

min ,∞), κmin
�= (C2 − 1)KV

D2 ,

s∗
min

�= 1

2

D2

C2 KV
. (IV.144)

Hence, for |C| > 1, then κmin = (C2−1)KV
D2 is the threshold

on power that ensures a strictly positive rate is feasible,
i.e., exists. Note that at κ = κmin , then K ∗

Z = 0, hence the

rate is zero, i.e., 1
2 log

D2 K ∗
Z +KV

KV
= 0, and κmin is precisely

the minimum cost incurred of the problem of controlling the
channel output process, when the rate is zero.

The feedback capacity is obtained by substituting the
optimal values (�∗, K ∗

Z ) into (IV.138) to deduce the following
expression.

CG−B.1
A∞→B∞(κ) =

⎧
⎨

⎩

1
2 ln D2 κ+KV

KV
if |C| < 1, i.e., K ∗

Z = κ

1
2 ln

D2 K ∗
Z+KV

KV
if |C| > 1, κ ∈ [κmin,∞)

(IV.145)

If C = 1 then �∗ = 0 and
	
C + D�∗
 = 1 /∈ Do, hence

CG−B.1
A∞→B∞(κ) does not exists. To cover this case, one needs to

take Q > 0.
If |C| > 1 and κ ∈ [0, κmin) then CG−B.1

A∞→B∞(κ) does not exists.
This is precisely the feedback capacity obtained in (I.37), using
the solutions of the Riccati equation.

Let C Stable
A∞→B∞(κ) denote the feedback capacity if the

channel is stable, i.e., |C| < 1 and CUnstable
A∞→B∞(κ) denote the

feedback capacity if the channel is unstable, i.e., |C| > 1.
Then, the corresponding feedback capacity is given by the
following expressions.

For |C| < 1:

CG−B.1
A∞→B∞(κ)

�= C Stable
A∞→B∞(κ)

= 1

2
log

�
1 + κ

KV

�
, κ ∈ [0,∞) (IV.146)

For |C| > 1:

CG−B.1
A∞→B∞(κ)

�= CUnstable
A∞→B∞(κ)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 log

�
1 + κ

KV

�
− log |C| if κ ∈ [κmin,∞)

does not exists if κ ∈ [0, κmin).

(IV.147)

Then it is clear from (IV.146) and (IV.147), that

CUnstable
A∞→B∞(κ) = C Stable

A∞→B∞(κ) − log |C|, κ ∈ [κmin ,∞).

(IV.148)

Therefore, the rate loss due to the instability of the channel is
given by

Rate Loss of Unstable Channels

�= C Stable
A∞→B∞(κ) − CUnstable

A∞→B∞(κ)

= log |C|, κ ∈ [κmin ,∞). (IV.149)

In view of the above expressions, for unstable channels, there
is rate a loss, expressed in terms of the logarithm of the
unstable eigenvalue of the channel.

The above example illustrates the direct connection
to linear stochastic systems and stability theory via
Lyapunov equations. The general MIMO G-CM-
B.1 is addressed in Section IV-C, by invoking dynamic
programming.

C. Characterization of FTFI Capacity of G-CM-B.1 and the
LQG Theory of Directed Information

The objective of this section is to completely solve the
extremum problem corresponding to the characterization of
FTFI capacity of the G-CM-B.1, and to gain insight on how to
solve more general versions, such as, the G-CM-B (i.e., when
the channel distribution depends on arbitrary memory), and
the G-CM-A. This is done by re-formulating such extremum
problems, using LQG stochastic optimal control theory, with
randomized strategies (instead of deterministic as in the stan-
dard LQG theory [4, Ch. 6] or [5, Ch. 5]. Via this re-
formulation, the optimal deterministic part of the randomized
strategy, {�∗

i,i−1 : i = 0, . . . , n}, is found explicitly, in terms
of solutions of Riccati matrix difference equations, while the
random part {K ∗

Zi
: i = 0, . . . , n}, is determined from a

water filling optimization problem, similar to that of MIMO
memoryless channels [37].

The subsequent methodology is based the following simple
observations.

(i) Define the randomized strategy of the equivalent charac-
terization of FTFI capacity given by (IV.123)-(IV.125),
as follows.

Ag
i

�= U g
i + Zi , i = 0, . . . , n (IV.150)

U g
i

�= gB.1
i (Bg

i−1) ≡ �i,i−1 Bg
i−1 (IV.151)

where {U g
i : i = 0, . . . , n} is the deterministic part

of the strategy and {Zi : i = 0, . . . , n} its random
part. Then {U g

i : i = 0, . . . , n} is the control process,
chosen to control the channel output process {Bg

i : i =
0, . . . , n}, and {Zi : i = 0, . . . , n} is the innovations
process, chosen to transmit new information over the
channel.

(ii) Apply dynamic programming to show a separation prin-
ciple and to determine recursively the optimal deter-
ministic strategy {gB.1,∗

i (·) : i = 0, . . . , n} and the
optimal randomized process {Zi : i = 0, . . . , n}
(i.e., {K ∗

Zi
: i = 0, . . . , n}), from which the optimal

solution
�
(�∗

i,i−1, K ∗
Zi

) : i = 0, . . . , n
�
, can be

constructed.
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Indeed, this methodology unfolds all consequences and the
role of the control process {U g

i : i = 0, . . . , n} to affect
the controlled process {Bg

i : i = 0, . . . , }, for the extremum
problem of FTFI capacity characterization, and its per unit
time limiting version, the feedback capacity.

The next theorem establishes the separation principle and
the direct connection between LQG stochastic optimal control
theory and the characterization of FTFI capacity, for MIMO
G-CM-B.1.

Theorem 14 (Optimal Strategies of FTFI Capacity
of G-CM-B.1): Consider the G-CM-B.1 defined
by (IV.118), (IV.119), under Assumptions B, and consider
κ ∈ [κmin,∞).

(a) Define

Ag
i

�= U g
i + Zi , U g

i = gB.1
i (Bg

i−1) ≡ �i,i−1 Bg
i−1,

i = 0, . . . , n (IV.152)

where {U g
i : i = 0, . . . , n} is the deterministic part of the

randomized strategy (control part) and {Zi : i = 0, . . . , n} is
the random part. Then

Bg
i = Ci,i−1 Bg

i−1 + Di,i U
g
i

+ Di,i Zi + Vi , i = 0, . . . , n, Bg
i−1 = b−1 (IV.153)

and the equivalent characterization of the FTFI capacity is
given by

CG−B.1
An→Bn (κ) = C I L−G−B.1

An→Bn (κ)

= sup�
(g B.1

i (·),K Zi ),i=0,...,n
�
∈E B.1[0,n](κ)

n�

i=0

H (Bg
i |Bg

i−1) − H (V n)

(IV.154)

where

n�

i=0

H (Bg
i |Bg

i−1) − H (V n) = (I V .132), (IV.155)

E B.1[0,n](κ)
�=
�

gB.1
i : R

p → R
q , ui = gB.1

i (bi−1),

K Zi ∈ S
q×q
+ , i = 0, . . . , n : 1

n + 1
Eg B.1

� n�

i=0

�
�Ag

i , Ri,i Ag
i �

+�Bg
i−1, Qi,i−1 Bg

i−1�
��

≤ κ
�
. (IV.156)

For the rest of the statements assume there exist an�
(Bg

i , gB.1
i (·), Zi ) : i = 0, . . . ,

�
in the Hilbert space of square

summable sequences, such that the feasible set in (IV.156) has
an interior point (convexity of pay-off functional and constraint
set can be shown).

(b) The cost-to-go C B.1
i : R

p −→ R (corresponding
to (IV.154)), from time “i” to the terminal time “n” for a

fixed the value of the output Bg
i−1 = bi−1 is defined by

C B.1
i (bi−1)

�= sup�
(U g

j ,K Z j )∈Rq×S
q×q
+ ,U g

j =g B.1
j (Bg

j ), j=i,...,n

�

�

1

2

n�

j=i

log
|D j, j K Z j DT

j, j + KVj |
|KVj |

−
n�

j=i

tr
�

s R j, j K Z j

�

+ s(n + 1)κ − sEg B.1
� n�

j=i

�
�U g

j , R j, j U
g
j �

+ �Bg
j−1, Q j, j−1 Bg

j−1�
���
�Bg

i−1 = bi−1

��
(IV.157)

where s ≥ 0 is the Lagrange multiplier associated with the
average transmission cost constraint (IV.156).

(c) The dynamic programming recursions are given by the
following equations.

C B.1
n (bn−1)

= sup
(un,K Zn )∈Rq×S

q×q
+

�1

2
log

|Dn,n K Zn DT
n,n + KVn |

|KVn |
− tr

�
s Rn,n K Zn

�
+ s(n + 1)κ

− s
�
�un, Rn,nun� + �bn−1, Qn,n−1bn−1�

��
, (IV.158)

C B.1
i (bi−1)

= sup
(ui ,K Zi )∈Rq×S

q×q
+

�
1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
− tr

�
s Ri,i K Zi

�
− s

�
�ui , Ri,i ui � + �bi−1, Qi,i−1bi−1�

�

+ Eg B.1
�

C B.1
i+1(Bg

i )
��
�Bg

i−1 = bi−1

��
, i = 0, . . . , n − 1.

(IV.159)

(d) Separation Principle. The optimal deterministic part of the
randomized strategy, {gB.1,∗

i (·) : i = 0, . . . , n} is independent
of {K Zi : i = 0, . . . , n}, and the corresponding covariance

K Bi

�= E
�

Bg
i

	
Bg

i


T �
, i = 0, 1, . . . , n, are given by the

following equations.

gB.1,∗
i : R

p → R
q , i = 0, . . . , n,

�∗ : {0, 1, . . . , n} → R
q×p, P : {0, 1, . . . , n} → S

p×p
+ ,

(IV.160)

gB.1,∗
i (bi−1) = F∗(i) bi−1 ≡ �∗

i,i−1bi−1, i = 0, . . . , n,

(IV.161)

F∗(n) = �∗
n,n−1 = 0, F∗(i) = −H −1

22 (i)H T
12(i), (IV.162)

H11(i) = CT
i,i−1 P(i + 1)Ci,i−1 + Qi,i−1,

H12(i) = CT
i,i−1 P(i + 1)Di,i ,

H22(i) = DT
i,i P(i + 1)Di,i + Ri,i ,

P(i) = H11(i) − H12(i)H −1
22 (i)H T

12(i), i = 0, . . . , n − 1,

(IV.163)
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= CT
i,i−1 P(i + 1)Ci,i−1 + Qi,i−1 − CT

i,i−1 P(i + 1)Di,i

.
�

DT
i,i P(i + 1)Di,i + Ri,i

�−1�
CT

i,i−1 P(i + 1)Di,i

�T

(IV.164)

P(n) = Qn,n−1, (IV.165)

K Bi =
�

Ci,i−1 + Di,i �
∗
i,i−1

�
K Bi−1

�
Ci,i−1 + Di,i �

∗
i,i−1

�T

+Di,i K Zi DT
i,i + KVi , i = 0, . . . , n, (IV.166)

K B−1 = Given. (IV.167)

(e) The solution of the dynamic programming equations is
given by the following equations.

C B.1
i (bi−1) = −s�bi−1, P(i)bi−1� + r(i), i = 0, . . . , n

(IV.168)

where {P(i) : i = 0, . . . , n} satisfies the backward recursive
Riccati equation (IV.164), (IV.165), and the process {r(i) : i =
0, . . . , n} satisfies the backward recursion

r(i) =r(i + 1) + sup
K Zi ∈S

q×q
+

�1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |

− tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��

− tr
�

s Ri,i K Zi

��
, i = 0, . . . , n − 1, (IV.169)

r(n) = sup
K Zn ∈S

q×q
+

�1

2
log

|Dn,n K Zn DT
n,n + KVn |

|KVn |
+ s(n + 1)κ − tr

�
s Rn,n K Zn

��
(IV.170)

or equivalently

r(0) = sup
K Zi ∈S

q×q
+ : i=0,...,n

� n−1�

i=0

�1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
−tr

�
s Ri,i K Zi

�
− tr

�
s P(i + 1)

�
Di,i K Zi DT

i,i + KVi

���

+1

2
log

|Dn,n K Zn DT
n,n + KVn |

|KVn |
+ s(n + 1)κ

−tr
�

s Rn,n K Zn

��
(IV.171)

where s is the Lagrange multiplier.
Moreover, the optimal deterministic part of the randomized

strategy is given by

gB.1,∗
i (bi−1) = −

�
DT

i,i P(i + 1)Di,i + Ri,i

�−1

×DT
i,i P(i + 1)Ci,i−1 bi−1

≡ �∗
i,i−1bi−1, i = 0, . . . , n − 1, (IV.172)

gB.1,∗
n (bn−1) = 0. (IV.173)

(f) The optimal covariance (the random part of the randomized
strategy) {K ∗

Zi
: i = 0, . . . , n} and s∗ ≡ s∗(κ) ≥ 0 are found

from the problem

sup
s≥0

�− s�b−1, P(0)b−1� + r(0)
�

subject to (IV.171).

(IV.174)

(g) The characterization of FTFI capacity (for any s ≥ 0
corresponding to κ) is given by

CG−B.1
An→Bn (κ) = −s

�

Rp
�b−1, P(0)b−1�PB−1(db−1) + r(0).

(IV.175)

(h) κmin is given by

1

n + 1
Eg B.1,∗� n�

i=0

�
�Ag

i , Ri,i Ag
i �

+ �Bg
i−1, Qi,i−1 Bg

i−1�
����
�
K Z=0

(IV.176)

that is, it is the solution of the LQG stochastic optimal control
problem with K Zi = 0, i = 0, . . . , n.

Proof: See Appendix D. �
The closed form expressions given in Theorem 14, for the

G-CM.B.1 is attributed to the decomposition of the random-
ized strategies (IV.150), where the innovation process is an
orthogonal process, which then implies the separation principle
can be established. It appears this orthogonal decomposition
and separation principle are vital and should be incorporated
in other extremum problems of feedback capacity, such as,
the Cover and Pombra [2] characterization of FTFI capacity
given by (I.9) or any of its variants [3], [7], [9]. These points
are further elaborated below.

Remark 15 (Connections to LQG Stochastic Optimal
Control Theory): Theorem 14 illustrates the separation prin-
ciple and the dual role of the randomized strategies (IV.152)
in extremum problems of directed information. Specifically,
the optimal deterministic part (IV.172), (IV.173) controls the
channel output process, precisely as in LQG stochastic optimal
control theory [4]. However, its optimal random part {Zi :
i = 0, . . . , n} that is found from (IV.171), ensures an optimal
innovations process with covariance {K ∗

Zi
: i = 0, . . . , n} is

transmitted over the channel, to achieve the characterization
of FTFI capacity, and to meet the average transmission cost
constraint.

(a) The separation principle of Theorem 14 is derived
via dynamic programming. However, this is not the only
choice, as it is demonstrated below. Moreover, the main
reasons which lead to the separation principle are (i) the
decomposition of the channel input process Ag

i = U g
i +

Zi , i = 0, . . . , n given by (IV.152) and (ii) the independence
of the directed information pay-off I (Ag,n → Bg,n) =
1
2

n
j=0 log

|D j, j K Z j DT
j, j+KV j |

|KV j | on the predictable process {U g
i :

i = 0, . . . , n}. To illustrate this, consider the optimization
problem of Theorem 14.

sup�
(U g

i ,K Zi ),i=0,...,n
�
∈E B.1[0,n](κ)

1

2

n�

j=0

log
|D j, j K Z j DT

j, j + KVj |
|KVj |

.

(IV.177)
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The Lagrangian of the unconstraint optimization problem is
given by

L s
0,n(K Zi , U g

i : i = 0, . . . , n)

�= 1

2

n�

i=0

log
|Di,i K Zi DT

i,i + KVi |
|KVi |

− s
�

Eg B.1
� n�

i=0

�
�Ag

i , Ri,i Ag
i � + �Bg

i−1, Qi,i−1 Bg
i−1�

��

− κ(n + 1)
�
, s ≥ 0 (IV.178)

(a)= 1

2

n�

i=0

log
|Di,i K Zi DT

i,i + KVi |
|KVi |

− s
n�

i=0

T r
�

Ri,i K Zi

�

− s
�

Eg B.1
� n�

i=0

�
�U g

i , Ri,i U
g
i � + �Bg

i−1, Qi,i−1 Bg
i−1�

��

− κ(n + 1)
�

(IV.179)

where {Bg
i : i = 0, . . . , n} satisfies (IV.153), and (a) is due

to the orthogonality of U g
i and Zi . Clearly, for a fixed s,

the Lagrangian L s
0,n(K Zi , U g

i : i = 0, . . . , n) needs to be
maximized over (U g

i , K Zi ), i = 0, . . . , n.
But, for a fixed {K Zi : i = 0, . . . , n}, the maximization

of L s
0,n(K Zi , U g

i : i = 0, . . . , n) over {U g
i : i = 0, . . . , n} is

equivalent to the following problem.

J0,n(U
g,∗)

�= inf
U g

i :i=0,...,n
Eg B.1

� n�

j=0

�
�U g

j , R j, j U
g
j �

+ �Bg
j−1, Q j, j−1 Bg

j−1�
��

, (IV.180)

subject to {Bg
i : i = 0, . . . , n} satisfying (IV.153).

(IV.181)

Note that optimization problem J0,n(U g,∗
i : i = 0, . . . , n)

is a classical LQG stochastic optimal control problem with
complete information. Hence, its solution can be derived using

1) the completion of squares method, or
2) the stochastic Pontryagin’s maximum principle method,

or
3) dynamic programming method.
The important observation is that, the optimal strategy

of a classical LQG stochastic optimal control problem with
complete information, and hence that of J0,n(U g,∗), is inde-
pendent of the noise processes {(K Zi , KVi ) : i = 0, . . . , n}
which drive the dynamics of the process {Bg

i : i =
0, . . . , n}. Hence, the strategy of the optimal process U g,∗

i =
gB.1,∗

i (Bg,∗
i−1), i = 0, . . . , n is independent of the innovations

process {K Zi : i = 0, . . . , n}, and it is given as stated
in Theorem 14. Thus, the fact that separation holds, is not
related to the method of dynamic programming applied to find
the optimal solution.

Moreover, by the above discussion or Theorem 14, it follows
that the optimal pay-off J0,n(U g,∗), for fixed B−1 = b−1 is

given by

J0,n(U
g,∗, b−1)

=
n−1�

i=0

tr
�

P(i + 1)
�
Di,i K Zi DT

i,i + KVi

�+ Ri,i K Zi

�

+ tr
�

Rn,n K Zn

�
+ �b−1, P(0)b−1� (IV.182)

Hence, the characterization of FTFI capacity for fixed B−1 =
b−1 is given by

C B.1
0 (b−1) = sup

K Zi �0, i=0,...,n:
J0,n(U g,∗,b−1)≤(n+1)κ

�

1

2

n�

j=0

log
|D j, j K Z j DT

j, j + KVj |
|KVj |

�
. (IV.183)

Clearly, (IV.171) is the unconstraint optimization problem
corresponding to (IV.183), where s is the Lagrange multiplier
associated with the average cost constraint. It is easy to verify
this is a convex optimization problem.

(b) From (IV.152)-(IV.154) it follows directly, as expected,
that

if K ∗
Zi

= 0, i = 0, . . . , n then CG−B.1
An→Bn (κ) = 0. (IV.184)

Hence, the FTFI capacity is zero and consequently, its per unit
time limit the feedback capacity is zero, although the output
process can be stabilized (under appropriate conditions, given
in Theorem 19). This re-confirms and strengthens the following
well-known fact of LQG stochastic optimal control or deci-
sion theory. Among all (not necessarily Markov) randomized

strategy π RS �=
�

PAi |Ai−1,Bi−1 : i = 0, . . . , n
�

, the optimal
strategy of the LQG stochastic optimal control problem

J0,n(π
RS,∗)

�= inf
PAi |Ai−1 ,Bi−1 :i=0,...,n

1

n + 1
E
� n�

i=0

�
�Ai , Ri,i Ai �

+ �Bi−1, Qi,i−1 Bi−1�
��

, (IV.185)

subject to

Bi = Ci,i−1 Bi−1 + Di,i Ai + Vi , B−1 = b−1,

i = 0, . . . , n (IV.186)

is Gaussian and Markov of the form Ai = gM
i (Bi−1) +

Zi , Zi ∼ N(0, K Zi ), Zi ⊥ Bi−1, i = 0, . . . , n, {Zi : i =
0, . . . , n} an orthogonal process, and occurs in the subclass
of nonrandom or deterministic policies

�	
gM

i (bi−1), Zi

 = 	

gB.1,∗
i (bi−1), 0


 : i = 0, . . . , n
�

(IV.187)

i.e., P∗
Ai |Ai−1,Bi−1 = P∗

Ai |Bi−1
= δAi (gB.1,∗

i (bi−1)), is a delta

measure concentrated at gB.1,∗
i (·), i = 0, . . . , n). In view

of (IV.184), then J0,n(π
RS,∗) is the minimum cost, κmin ∈

[0,∞) for existence of the solution to the FTFI capacity, and
for any κ ∈ (κmin ,∞) its value is strictly positive.

It should be mentioned that the above observations imply
that the FTFI capacity is attractive for designing controllers,
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which stabilize controlled dynamical systems, and ensure
information transfer or signalling from, say, the control
process to the controlled process, or from one decision maker
to another.

(b) The optimal random part of the strategy is found
from (IV.170), that depends on the solution of a Riccati
difference equation.

(c) The extremum solution illustrates a separation between
the role of control (deterministic part of the strategy) and the
role of information transmission (random part of the strategy).

(d) The material discussed in Section I-C, regarding
the G-CM-B.1, given by (I.20)-(I.40), that relate feedback
capacity, capacity without feedback and LQG stochastic
optimal control theory, are direct consequences of the above
theorem, specifically, the per unit time limiting version of
Theorem 14, which is investigated in Section V.

The solution of the information transmission optimization
problem is presented in the next remark for the scalar case.

Example 16 (Solution of Information Transmission
Problem): From (IV.171) or the equivalent formula-
tion (IV.183), it follows that both optimization problems
are convex, that is, both pay-offs in (IV.171) or (IV.183)
are concave with respect to randomized part of the strategy�

K Zi : i = 0, . . . , n
�
. Also, by (IV.183) then C B.1

0 (b−1)
is nondecreasing and concave in κ ∈ (κmin,∞), and
hence continuous on this interval, and also zero at
κ = κmin . These imply C B.1

0 (b−1) is strictly increasing
in κ ∈ (κmin ,∞), and the constraint is satisfied with equality.
In fact, (IV.171) is the unconstraint version of (IV.183), where
s is the Lagrange multiplier. Hence, the optimal strategy�

K ∗
Zi

� 0 : i = 0, . . . , n
�

is found by using the Kuhn-Tucker
conditions as follows. Write the information rate as a function
of the power allocated to the optimal strategy at each time
instant as follows.

C B.1
0 (b−1) = Cb−1

0,n (κ∗
0 , . . . , κ∗

n )
�=

n�

i=0

Cb−1
i (κ∗

i ) (IV.188)

≡ sup
K Zi �0,i=0,...,n:n

i=0 κi (K Zi )=κ(n+1)

n�

i=0

Cb−1
i (κi )

(IV.189)

where

Cb−1
i (κi )

�= 1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
, i = 0, . . . , n,

(IV.190)

κi ≡ κi (K Zi )

�=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tr
�

Rn,n K Zn

�
, i = n

tr
�

P(i + 1)
�
Di,i K Zi DT

i,i +KVi

�+ Ri,i K Zi

�
,

i = 1, . . . , n − 1

tr
�

P(1)
�
D0,0 K Z0 DT

0,0 + KV0

�+ R0,0K Z0

�

+�b−1, P(0)b−1�, i = 0.

(IV.191)

Note that as expected, if K Zi = 0 : i = 0, . . . , n, then

κ
b−1
0,n (0)

�= J0,n(U g,∗, b−1)
��
�
K Zi =0,i=0,...,n

=
n−1�

i=0

tr
�

P(i + 1)KVi

�
+ �b−1, P(0)b−1� (IV.192)

which is the optimal pay-off of the LQG problem (IV.185) or
(IV.182) with deterministic strategies.

1) Special Case p = q = 1: Since K ∗
Zi

must be nonneg-
ative, by invoking the Kuhn-Tucker conditions, after some
algebra the following are obtained.

K ∗
Zn

=
� 1

2s Rn,n
− KVn

D2
n,n

�+
,
�
x
�+ �= max

�
0, x

�

(IV.193)

K ∗
Zi

=
� 1

2s
�

P(i + 1)D2
i,i + Ri,i

� − KVi

D2
i,i

�+
,

i = n − 1, n − 2, . . . , 0 (IV.194)

where s = sn(κ, b−1) ≥ 0 is chosen to satisfy the average
constraint with equality given by

n−1�

i=0

�� 1

2s
−
�

P(i + 1)D2
i,i + Ri,i

�
KVi

D2
i,i

�+ + P(i + 1)KVi

�

+
� 1

2s
− Rn,n KVn

D2
n,n

�+ + b2−1 P(0) = κ(n + 1). (IV.195)

The characaterization of FTFI capacity for fixed B−1 = b−1
is given by

CG−B.1
An→Bn (κ, b−1)

≡ C B.1
0 (b−1) = 1

2

n�

i=0

log
|Di,i K ∗

Zi
DT

i,i + KVi |
|KVi |

= 1

2

n−1�

i=0

�
log

� D2
i

2s
�

P(i + 1)D2
i,i + Ri,i

�
KVi

�
��+

+ 1

2

�
log

� D2
i,i

2s Rn,n KVn

��+

=
n�

i=0

Cb−1
i (κ∗

i ). (IV.196)

Over the time horizon, {0, 1, . . . , n}, for a given κ and
initial state B−1 = b−1, then the optimal level s =
sn(κ, b−1) is found from (IV.195) and then substituted it
into (IV.193), (IV.194) and (IV.196), to determine whether
at each time i , the information rate Cb−1

i (κ∗
i ) is either

positive or zero, for i = 0, . . . , n. Clearly, in general, for
each i , then Cb−1

i (κ∗
i ) > 0 provided κ∗

i ∈ (κmin,i ,∞) and
these critical values depend on whether the coefficients of
the channel model are |Ci,i−1 | ≥ 1 or |Ci,i−1 | < 1, for
i = 0, . . . , n. In principle, the general MIMO case is solved
similarly, although it is much more involved because there is
a water-filling both in time and dimension (spatial).

Remark 17 (Relation to Cover and Pombra [2]):
(a) As pointed out in Remark 11, it is difficult to obtain
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closed form solutions to the extremum problem of the Cover
and Pombra [2] scalar AGN channel, without, re-visiting
the derivation to obtain a realization of optimal channel
input distribution, based on an orthogonal decomposition
similar to (IV.150), and without showing an analogous sepa-
ration principle. In fact, the only known explicit calculations
of feedback capacity to the Cover and Pombra [2] scalar
AGN channel, are the ones presented in Section I-B (as
documented in [3], [7] and [9]), for scalar, stable and
stationary Gaussian noise models, such as, the AR(1) model
|α| < 1 [3], [7], [9]. The unstable AR(1) model is not
addressed [3], [7], [9], hence it remains to be determined
whether the cost 1

n+1 E
�n

i=0 |Ai |2
�

≤ κ is sufficient to
ensure asymptotic ergodicity. Moreover, the tools applied
in [3], [7] and [9] are based on Power Spectral densi-
ties, and hence these need to be re-visited, to be able to
deal with non-stationary noise processes. Also the analysis
in [3], [7] and [9] does not include a direct connection
to mean-square estimation theory, which the analog (dual)
of the LQG stochastic optimal control theory, for models
presented in this paper. As illustrated for the scalar channel
by (IV.145), whether feedback capacity exists, and whether
feedback increases capacity, depends on the á priori assump-
tions imposed on the channel, and the type of transmission cost
imposed. This point should be accounted for when analyzing
feedback channels, with memory, especially for unstable chan-
nels or noise models.

(b) For more general channels, which also depend on past
channel inputs, a decomposition analogous to (IV.150) can be
derived, which includes additional components. Some of these
components can be obtained, independently of others, and
hence a separation similar to the one obtained in Theorem 14,
can be shown. In general, it is expected that extremum
problems of FTFI capacity can be decomposed into sub-
optimization problems, each associated with either deter-
mining one of the components of the optimal strategy, or
determining two or more components which interact. However,
the critical level κmin needs to be identified (see Example 13)
to ensure a non-zero rate.

Finally, it should be mentioned that for the Cover and
Pombra [2] scalar AGN channel (I.9), with AR(1) noise
model defined by (I.14), the statements in Kim [3, Th. 6 and
Lemma 6.1] and [9, Corollary 7.1] do not include the analog
of (IV.184).

(c) For non-Gaussian channels it remains to be deter-
mined whether a separation similar to the one obtained
in Theorem 14, can be established.

D. Characterization of FTFI Capacity of G-CM-B and the
LQG Theory

Consider the G-CM-B.J (a generalization of the G-CM-B.1),
defined by

Bi =
M�

j=1

Ci,i− j Bi− j + Di,i Ai + Vi , B−1
−M = b−1

−M ,

i = 0, . . . , n, (IV.197)

1

n + 1
E
� n�

i=0

�
�Ai , Ri,i Ai �

+ �Bi−1
i−K , QK (i − 1)Bi−1

i−K �
��

≤ κ, (IV.198)

J
�= max{M, K }, Ri,i ∈ Sq×q

+ , QK (−1) = 0,

QK (i − 1) ∈ SK p×K p
+ , i = 0, . . . , n,

Assumption B holds. (IV.199)

It can be verified, by repeating the derivation of Theorem 10,
if necessary, that the optimal channel input distribution is
conditionally Gaussian of the form {πg

i (dai |bi−1
i−J ) : i =

0, . . . , n}, with linear conditional mean and non-random
conditional covariance, and that all material presented
in Section IV-C, generalize to G-CM-B.J.

E. Characterization of FTFI Capacity of G-CM-A and the
LQG Theory

Consider the G-CM-A, i.e., (IV.96), which is not of limited
memory. By Theorem 10, if σ {Bg,−1} = {∅,
} then

Ag
i

�= U g
i + Zi , A0 = Z0, i = 1, . . . , n (IV.200)

U g
i = g A

i (Bg,i−1) ≡ �i (i − 1)Bg,i−1 (IV.201)

where {U g
i : i = 0, . . . , n} is the deterministic part of the

randomized strategy and {Zi : i = 0, . . . , n} is the random
part. Then

Bg
i = Ci (i − 1)Bg,i−1 + Di,i U

g
i + Di,i Zi + Vi ,

Bg
0 = D0,0 Ag

0 + V0, i = 1, . . . , n. (IV.202)

Clearly, the dimension of the process {Sg
i

�= Bg,i−1 : i =
0, . . . , n} increases with time i = 0, 1, . . . , n. The following
is stated as a conjecture.

Conjecture 18: Based on (IV.200), (IV.202) the optimal
randomized strategy of the G-CM-A defined by (IV.96) can
be found by using the method of Remark 11 or by restricting
attention to stationary ergodic processes and applying
Cholesky decomposition, and power spectral densities.

V. FEEDBACK CAPACITY OF G-CM-B & THE INFINITE

HORIZON LQG THEORY OF DIRECTED INFORMATION

In this section, the per unit time limiting version of G-CM-B
is investigated, and the characterization of feedback capacity
is derived, irrespectively of whether the eigenvalues of the
channel matrix C , that is, spec

	
C



lie in the open disc of
the unit circle in C. Specifically, the characterizations of FTFI
capacity given in Section III are applied to Gaussian channel
models (G-CMs) of Definition 5, to obtain the following.

(a) Characterizations of feedback capacity for multiple input
multiple output (MIMO) G-CMs, via the per unit time
limit of the characterizations of FTFI capacity of MIMO
G-CMs;

(b) relations between infinite horizon LQG stochastic
optimal control theory, linear stochastic feedback
controlled systems, feedback capacity and capacity
without feedback.
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A. Feedback Capacity of G-CM-B.1 & Infinite Horizon
LQG Theory

Consider first, the G-CM-B.1, i.e., (IV.118), (IV.119).
The extension to the general model G-CM-B.J, can be treated
as discussed in Section IV-C. The next theorem establishes
a hidden connection between, infinite horizon per unit time
LQG stochastic optimal control theory, directed information
stability (see (VI.240), (VI.241)), and optimal transmission
rates. Moreover, through the computation of the feedback
capacity, a separation principle is established, between the role
of deterministic part of the randomized strategy to stabilize
unstable channels, and the role of its random part to transmit
new information.

Theorem 19 (Feedback Capacity of TI-G-CM-B.1):
Consider the time-invariant version of G-CM-B.1,
i.e., (IV.118), (IV.119), under Assumption B, called
TI-G-CM.B.1, defined by

Bi = C Bi−1 + D Ai + Vi , B−1 = b−1,

KVi = KV ∈ S p×p
++ , i = 0, . . . , n, (V.203)

1

n + 1
E
� n�

i=0

�
�Ai , R Ai � + �Bi−1, QBi−1�

��
≤ κ,

R ∈ S
q×q
++ , Q ∈ S

p×p
+ . (V.204)

for some κ ∈ [κmin ,∞).
Assume the following conditions hold (see Appendix for

definitions and implications).

i) the pair (C, D) is stabilizable (V.205)

i i) the pair (G, C) is detectable, where Q = GT G,

G ∈ S
p×p
+ . (V.206)

Moreover, assume the set of channel input conditional
distributions is restricted to time-invariant distributions,
i.e., {πg

i (dai |bi−1) = πg,∞(dai |bi−1) : i = 0, . . . , n}.
Then the following hold.
(a) Define

Ag
i

�= U g
i + Zi , U g

i = gB.1(Bg
i−1)≡�Bg

i−1, i = 0, . . . , n

(V.207)

where {U g
i : i = 0, . . . , n} is the deterministic part of the

randomized strategy and {Zi : i = 0, . . . , n} is its random
part. Then

Bg
i = C Bg

i−1 + DU g
i + DZi + Vi , i = 0, . . . , n.

(V.208)

Define

C B.1
An→Bn (κ)

�= sup�
(g B.1(·),K Z ),i=0,...,n

�
∈E B.1[0,n](κ)

n�

i=0

H (Bg
i |Bg

i−1)

− H (V n), (V.209)

E B.1[0,n](κ)

�=
�

gB.1 : R
p −→ R

q , ui = gB.1(bi−1),

K Z ∈ S
q×q
+ , i = 0, . . . , n :

1

n + 1
Eg B.1

� n�

i=0

�
�Ag

i , R Ag
i � + �Bg

i−1, QBg
i−1�

��
≤ κ

�

(V.210)

C B.1
A∞→B∞(κ)

�= lim inf
n−→∞

1

n + 1
C F B,B.1

An→Bn (κ) (V.211)

and assume there exist an (
�

Bg
i : i = 0, . . . ,

�
, gB.1(·), K Z )

such that the feasible set in (V.210) has an interior point.
Then C B.1

A∞→B∞(κ) is the per unit time version of the
characterization of FTFI capacity corresponding to (IV.154),
that is,

C B.1
A∞→B∞(κ)

= CG−B.1
A∞→B∞(κ)

�= lim inf
n−→∞

1

n + 1
CG−B.1

An→Bn (κ)

(V.212)

= C I L−G−B.1
A∞→B∞ (κ)

�= lim inf
n−→∞

1

n + 1
C I L−G−B.1

An→Bn (κ)

(V.213)

where CG−B.1
An→Bn (κ) is defined by (IV.154).

(b) The pair
�

J B.1,∗, C B.1(b)
�
, J B.1,∗ ∈ R, C B.1 : R

p → R

satisfies the following dynamic programming equation (corre-
sponding to C B.1

A∞→B∞(κ)).

J B.1,∗ + C B.1(b)

= sup
(u,K Z )∈Rq×S

q×q
+

�
1

2
log

|DK Z DT + KV |
|KV |

− tr
�

s RK Z

�
+ sκ − s

�
�u, Ru� + �b, Qb�

�

+ Eg B.1
�

C B.1(Bg
i )
�
�
�Bg

i−1 = b
��

(V.214)

where s ≥ 0 is found from the average transmission cost
constraint.

(c) The optimal stationary policy gB.1,∞,∗(·) and corre-
sponding covariance matrix K of {B∗

i : i = 0, . . . , n} are
given by the following equations.

gB.1,∗ : R
p → R

q , � ∈ R
q×p, P ∈ S

p×p
+ , (V.215)

gB.1,∗(b) = �∗b, (V.216)

�∗ = −H −1
22 H T

12 = −
�

DT P D + R
�−1

DT PC, (V.217)

H11 = CT PC + Q, H12 = CT P D, H22 = DT P D + R,

(V.218)

P = H11 − H12H −1
22 H T

12 (V.219)

P = CT PC + Q − CT P D
�

DT P D + R
�−1�

CT P D
�T

,

(V.220)

K =
�

C + D�∗�K
�

C + D�∗�T + DK Z DT + KV ,

(V.221)

spec
�

C + D�∗�

= spec
�

C − D
�

DT P D + R
�−1

DT PC
�

⊂ Do. (V.222)
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(d) The solution of the dynamic programming equation is
given by

C B.1(b) = −s�b, Pb�, (V.223)

J B.1,∗ = sup
K Z ∈S

q×q
+

�1

2
log

|DK Z DT + KV |
|KV |

+ sκ − tr
�

s RK Z

�
− tr

�
s P
�

DK Z DT +KV

���

(V.224)

gB.1,∗(b) = −
�

DT P D + R
�−1

DT PC b. (V.225)

(e) The optimal covariance K ∗
Z and s ≥ 0 are found from the

optimization problem

inf
s≥0

J B.1,∗ where P is the solution of (V.220). (V.226)

The average transmission cost constraint evaluated on the
optimal strategy is given by

Eg B.1,∗��gB.1,∗(B∗), RgB.1,∗(B∗)� + �B∗, QB∗�
�

+ tr
�

RK ∗
Z

�
≤ κ (V.227)

where the expectation is with respect to the invariant distri-

bution Pg B.1,∗
B (db) of the optimal output process {B∗

i : i =
0, . . . , n} corresponding to (gB.1,∗(·), K ∗

Z ).

(f) J B.1,∗
�
�
�
s=s∗ = C B.1

A∞→B∞(κ), where s∗ is the Lagrange
multiplier found from (V.226) or the average constraint
via (V.227).

(g) The information density and the constraint evaluated
at the optimal stationary strategy are information stable,
(see (VI.240), (VI.241) for precise definition). Specifically, for
any initial distribution PB−1(db−1) = μ(db−1) ∈ M (Rp),
the following hold.

C B.1
A∞→B∞(κ)

≡ J (πg,∞,∗, μ) = J B.1,∗
�
�
�
s=s∗, ∀μ(·) ∈ M (Rp), (V.228)

J 0(πg,∞,∗, μ)

= J B.1,∗
�
�
�
s=s∗, Pπg,∞,∗

μ − a.s., ∀μ(·) ∈ M (Rp) (V.229)

where

J 0(πg,∞,∗, μ)

�= sup
◦

P
∞,B.1

[0,∞] (κ)

lim inf
n−→∞

1

n + 1

�

n�

i=0

log
�d Qi (·|Bi−1, Ai )

dvπg,∞
i (·|Bi−1)

(Bi )
��

, (V.230)

◦
P

∞,B.1

[0,∞] (κ)

�=
�
πg,∞(dai |bi−1), i = 0, 1, . . . , n : lim sup

n−→∞
1

n + 1

n�

i=0

�
�Ag

i , R Ag
i � + �Bg

i−1, QBg
i−1�

�
≤ κ

�
.

(V.231)

Proof: (a) This follows as in Theorem 14. (b)-(e) By
the stabilizability and detectability conditions, i), ii) the
dynamic programming equation (V.214) holds (see [37, Ch. 8,
Sec. 5] or [5, Ch. 6]). By repeating the derivation of
Theorem 14, if necessary, (c)-(d) are obtained. (f), (g) These
follow from the fact that N(0, K B ) is the unique invariant
Gaussian distribution of (V.208), corresponding to the stabi-
lizing optimal policy (V.225) (i.e., (V.222) holds), the ergodic
properties of LQG stochastic optimal control theory [4],
[5], and asymptotic pathwise optimality of the per unit
time limit of directed information density (by applying [38,
Th. 5.7.9]). A derivation based on information stability is given
in [1, Th. 4.1]. �

Remark 20 (Comments on Theorem 19):
(a) Theorem 19 gives sufficient conditions in terms of
detectability and stabilizability, i.e., (V.205), (V.206), for
existence of feedback capacity, irrespectively of the initial
distribution of B−1 and whether the eigenvalues of channel
matrix C are stable or unstable, that is, whether they lie
in the open unit disc of complex numbers, spec

	
C) ⊂

Do
�= �

c ∈ C : |c| < 1
�

or outside spec
	
C) ⊂ D

c
o

�=�
c ∈ C : |c| ≥ 1

�
. In fact, without any assumptions on

stationarity and ergodicity, the above theorem demonstrates
that feedback capacity (i.e., the supremum of all achievable
rates) depends on the á priori assumptions on the channel
model coefficients, {C, D, R, Q, KV }, because these determine
whether the conditions of stabilizability of the pair

	
C, D




and detectability of the pair
	
G, C



, i.e., (V.205), (V.206) are

satisfied.
(b) Whether feedback capacity exists at all, for nonsta-

tionary and nonergodic processes, is directly related to these
conditions of stabilizability and detectability, and the structure
of the matrix Q � 0 entering the transmission cost function,
plays a significant role, on the uniqueness of nonnegative
stabilizing solutions to algebraic Riccati equations, and the
ability of the optimal feedback strategy {gB.1,∗(bi−1) : i =
0, . . . ,

�
given by (V.225) to stabilize even unstable channels,

that is, when the eigenvalues of channel matrix C do not lie
on the open unit disc of complex numbers.

Appendix E, Theorem 27 and Theorem 28, summarize
the implications of stabilizability and detectability on the
optimal capacity achieving channel input distribution, and the
corresponding ergodic properties of the optimal joint process
{(Ag,∗

i , Bg,∗
i ) : i = 0, . . . ,

�
and the output process {Bg,∗

i :
i = 0, . . . ,

�
, via properties of algebraic and discrete-time

recursive Lyapunov equations and Riccati equations.
(c) To apply Theorem 28 to the feedback capacity of

Theorem 19, in order to determine the properties of solutions
to the algebraic Riccati equation), the following substitutions
are invoked.

A −→CT , CT −→ D, B KW BT �= GGT −→ Q
�= GT G,

N KV NT −→ R. (V.232)

The following implications hold.
(i) If the pair

	
C, D



is stabilizable and the pair

	
G, C



is

detectable, then by Theorem 28, (a), (d), the deterministic
part of the optimal feedback strategy ensures stability,
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thus establishing validity of (V.222), irrespectively of the
eigenvalues of channel matrix C. By Appendix E, if the
pair

	
C, D



is controllable then it is stabilizable and if

the pair
	
G, C



is observable then it is detectable.

(ii) If the conditions in (i) hold, and in addition

(C, K
1
2
V ), KV

�= K
1
2
V K

1
2 ,T
V is a controllable pair, which

is satisfied because KV is full rank, then by Theorem 27,
(d), the Lyapunov matrix equation (V.221) has a unique
positive definite solution K � 0, which implies the
channel output process {Bg,∗

i : i = 0, . . . , } has a unique
invariant distribution.

The next example further illustrates the importance of stabi-
lizability and detectability conditions, in determining feedback
capacity, and the role of zero matrix Q = 0 versus Q �= 0.

Example 21 (Consequences of Theorem 19): Consider the
feedback capacity given in Theorem 19.

(a) Scalar with p = q = 1, R = 1, Q = 0. This
is discussed in Section I-C. Specifically, (I.34)-(I.40), are
obtained from the expressions of Theorem 19. The same
solution is obtained independently in Example 13, without
using the Riccati equation. This example demonstrates, once
again, that whether feedback increases capacity depends on
the channel parameters and transmission cost parameters
{C, D, R, Q, KV }.

(b) MIMO with Q = 0: Since Q = 0, the algebraic Riccati
equation (V.220) reduces to the following matrix equation.

P = CT PC − CT P D
�

DT P D + R
�−1�

CT P D
�T

�⇒ P =0 i.e., the zero matrix is one solution. (V.233)

It is shown next, that feedback capacity C B.1
A∞→B∞(κ) ≡

J B.1,∗
�
�
�
s=s∗ depends on whether the eigenvalues lie inside the

unit disc of the space of complex numbers Do, and whether
feedback increases capacity is determined from the solutions
of the algebraic Riccati equation.

(i) Case 1 (MIMO Stable Channel, spec
	
C

 ⊂ Do). Since

spec
	
C

 ⊂ Do then

	
G, C



, Q

�= GT G is detectable even
though, G = 0, because by Definition 26, there exists an
matrix L such that spec(C − LG) ⊂ Do, i.e., take L = 0.
Similarly, (C, D) is stabilizable. By invoking Theorem 28,
(with substitutions (V.232)), then the Riccati matrix equa-
tion (V.233) with P � 0 has at most one solution, and hence
P = 0 is the only solution. Substituting P = 0 into the
Lyapunov equation (V.221) and (V.223)-(V.225) the following
are obtained.

�∗ = 0, C B.1(b) = 0,

J B.1,∗ = sup
K Z∈S

q×q
+

�1

2
log

|DK Z DT + KV |
|KV |

+ sκ − tr
�

s RK Z

��
, (V.234)

K = C K CT + DK Z DT + KV . (V.235)

Recall that K is the covariance of the channel output process
{B∗

i : i = 0, . . . , ..}. By Theorem 27, (d), if KV is full

rank or the analog of 2) holds, then 1), 2) imply K � 0.
Further, by Theorem 27, (b), K � 0 is the unique solution
of (V.235), and hence the channel output process {B∗

i : i =
0, . . . , } has a unique invariant distribution.

Finally, by (V.234) and the fact that “s” correspond to the
Lagrange multiplier of the transmission cost constraint, then
the following holds.

C B.1
A∞→B∞(κ) = sup

K Z∈S
q×q
+ :tr

	
RK Z



≤κ

1

2
log

|DK Z DT + KV |
|KV |

= CnoF B,B.1
A∞→B∞ (κ). (V.236)

where CnoF B,B.1
A∞→B∞ (κ) is the capacity of (V.203), (V.204) (with

Q = 0) without feedback.
Moreover, it can be shown that the capacity achieving

channel input distribution without feedback is asymptotically
stationary (even if {Zi : i = 0, 1 . . .} is not restricted to a
stationary process, and satisfies conditional independence

P∗
Ai |Ai−1 (dai |ai−1) = P∗

Ai
(dai ), i = 0, 1 . . . , (V.237)

The above discussion generalizes the scalar example discussed
in Section I-C, (I.34)-(I.40), to MIMO channels.

(ii) Case 2 (MIMO Unstable Channel, spec
	
C

 ∈ D

c
o

�=�
c ∈ C : |c| ≥ 1

�
and spec

	
C



not on unit circle.)

For unstable channels,
	
G, C



, Q

�= GT G is not detectable
(i.e., since Q = 0 and C is unstable), hence condi-
tion (V.206) is violated. However, even if detectability is

violated, by Theorem 27, (d) if the pair (C, K
1
2
V ) is controllable

and Lyapunov equation (V.221) has a positive definite solution
K � 0, then (V.222) holds, that is, the feedback optimal
strategy is stabilizing, i.e., spec

�
C + D�∗

�
∈ Do, and

by Theorem 28, (e), then the matrix Riccati equation has a
unique solution P � 0. This is often called the maximal and
stabilizing solution of the matrix Riccati equation.

The above example illustrates the link between LQG
stochastic optimal control theory, and feedback capacity of
G-LCM-B.1.

B. Feedback Capacity of G-CM-B.J, G-CM-A & Infinite
Horizon LQG Theory

Consider the G-CM-B.J defined in Section IV-C. Then
Theorem 19 is easily generalized to G-CM-B.J; this is left
to the reader.

Remark 22 (Generalizations):
(a) It is possible to derive analogous results for the time-

invariant version of the G-CM-A and G-CM.B.J, by invoking
the formulation in Section IV-C, Section IV-E.

(b) The material of this section, illustrate that for MIMO
TI-G-CMs, by invoking stochastic optimal control theory, then
the characterizations of feedback capacity can be computed.
Moreover, detectability and stabilizability are sufficient condi-
tions, for the optimal channel input distribution to induce,
asymptotically, an invariant distribution for the joint process
{(Ag

i , Bg
i ) : i = 0, 1, . . . , } and its marginals such that

that feedback capacity is independent of the initial distribu-
tion μ(db−1). This illustrates the direct connection between
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ergodic LQG stochastic optimal control theory and feedback
capacity.

VI. RELATIONS BETWEEN CHARACTERIZATIONS OF FTFI
CAPACITY AND CODING THEOREMS

In this section the importance of the characterizations of
FTFI capacity is discussed, with respect to the converse and
the direct part of the channel coding theorems. Sufficient
conditions are identified so that the per unit time limits of
the characterizations of FTFI capacity for classes A, B and
C channels, corresponds to feedback capacity, independently
of the material of Section V. It is noted that coding theorem
based on the material of Section V are found in [1, Th. 4.1].

Consider the following definition of a code.
Definition 23 (Achievable Rates of Codes With Feedback):

Given a channel distribution of Class A or B and a transmis-
sion cost function of Class A or B, an {(n, Mn , �n, b−1) : n =
0, 1, . . . } code with feedback consists of the following.

(a) A set of uniformly distributed messages Mn
�=

{1, . . . , Mn} and a set of encoding maps, mapping source
messages into channel inputs of block length (n + 1), defined
by

E F B[0,n](κ)

�=
�

gi : Mn × B
i−1 −→ Ai , a0 = g0(w, b−1),

a1 = gi(w, b0), . . . , an = gn(w, bi−1), w ∈ Mn :
1

n + 1
Eg

b−1

�
c0,n(An, Bn)

�
≤ κ

�
. (VI.238)

The codeword for any w ∈ Mn is uw ∈ A
n,

uw = (g0(w, b−1), g1(w, b0), . . . , gn(w, bn−1)), and Cn =
(u1, u2, . . . , uMn ) is the code for the message set Mn.

(b) Decoder measurable mappings d0,n(b−1, ·) : B
n
0 −→

Mn, Y n
0 = d0,n(b−1, Bn

0 ), such that the average probability of
decoding error satisfies

P(n)
e (b−1)

�= 1

Mn

�

w∈Mn

P
g
�

d0,n(b
−1, Bn

0 ) �= w|B−1 = b−1, W = w
�

≡ P
g
�

d0,n(B−1, Bn
0 ) �= W |B−1 = b−1

�
≤ �n ∈ [0, 1)

(VI.239)

where rn
�= 1

n+1 log Mn is the coding rate or transmission rate
(and the messages are uniformly distributed over Mn).

A rate R is said to be an achievable rate, if there
exists a code sequence satisfying limn−→∞ �n = 0
and lim infn−→∞ 1

n+1 log Mn ≥ R. The feedback capacity is

defined by C
�= sup{R : R is achievable}, where R ≡ R(b−1)

may depend on the initial data b−1.
Note that in the above definition, the code depends on the

initial data B−1 = b−1, which is known to the encoder and
decoder. Knowledge of B−1 = b−1 at the decoder can be
relaxed. However, whether the rate depends on the initial
data, is often determined by establishing that in the limit,
as n −→ ∞, the per unit time of the FTFI capacity is indeed
the supremum of all achievable rates, and that the optimal

channel input conditional distribution induces a channel output
process, having a unique invariant distribution. Theorem 19
establishes sufficient conditions in terms of detectability and
stabilizability.

Direct and converse coding theorems are derived
in [2], [3], [28], [29], and [39], with respect to the
above definition of a code or variants of it, under different
assumptions. These are can be separated into those which
treat Gaussian channels with memory, and those which
treat channels with finite alphabet input and output spaces.
The coding theorems in [2], [3], [28], [29], and [39]
are directly applicable to channels of Class A or B and
transmission cost functions of Class A or B, provided,
the assumptions based on which these are derived, are
adopted, or they are modified to account for additional
generalities. For example, the coding theorems derived by
Cover and Pombra [2] for scalar nonstationary nonergodic
AGN channels with memory, are directly applicable to the
G-CM-A presented in Section IV-A. For finite alphabet
spaces {Ai = A, Bi = B : i = 0, . . . , n}, the coding theorems
derived by Kim [39], for the class of stationary channels with
feedback, are directly applicable to NCM-A and NCM-B
(without transmission cost), given in Definition 5, and they
can be extended to include transmission cost constraints.
The coding theorem derived by Chen and Berger [16] for the
UMCO (i.e., {PBi |Bi−1,Ai : i = 0, . . . , n}) with finite alphabet
spaces, is directly applicable, while a transmission cost
function of Class B with K = 1 can be easily incorporated.
The various coding theorems derived by Kim et al. [3]
and Permuter et al. [29] for finite alphabet spaces (without
transmission cost constraints), under the assumption of
time-invariant deterministic feedback, are directly applicable
to channel distributions of Class A or B, and since their
method is based on irreducibility of the channel distribution,
they also extend to problems with time-invariant transmission
cost functions of Class A or B.

Most converse coding theorems found in the literature,
do not address the fundamental questions whether i) an optimal
channel input conditional distribution corresponding to the
characterization of FTFI capacity exists, and ii) its per unit
time limit exists and it is finite. For channels defined on
countable, continuous or abstract alphabet spaces, it is well-
known that Shannon’s information measures, such as, entropy,
relative entropy, mutual information, and conditional mutual
information, are not necessarily continuous with respect to
strong topologies (see [40] for various examples). For such
spaces, conditions for existence of optimal channel input distri-
butions corresponding to the characterization of FTFI capacity
are given in [31, Th. 8 and 17], using the topology of weak
convergence of probability distributions. Moreover, to ensure
tightness of upper bounds on any achievable rate, expressed
in terms of information theoretic measures, it is necessary to
identify the information structures of optimal channel input
distributions corresponding to the characterization of FTFI,
i.e., as obtained in Theorem 1.

For the direct part of the coding theorem, in addition to
the conditions of the converse coding theorem, it is suffi-
cient to identify conditions for information stability in the
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sense of Pinsker [32]. Information stability implies that the
asymptotic equipartition property (AEP) of directed infor-
mation holds, from which the direct part of the coding
theorem follows by standard arguments. To show information
stability for general channels defined on abstract alphabet
spaces is often a challenging task. However, such conditions
can be identified via the ergodic theory of Markov decision
[38, Th. 5.7.9], by showing asymptotic pathwise optimality
of the per unit time limit of directed information density.
For any channel distribution of Class A, Class B, and trans-
mission cost of Class A or B, with corresponding information
density and transmission cost, evaluated at the optimal channel
input distributions,

�
π∗(dai |bi−1) : i = 0, 1, . . . , n

� ∈
P

A
[0,∞]

�
P[0,n](κ),

◦
P

B.J

[0,∞]
�

P[0,n](κ), respectively, such
results can be obtained by combining [31, Th. 8 and 17] and
[38, Th. 5.7.9].

For the Gaussian channels considered in Section IV and
Section V, the coding theorems in [1, Th. 4.1], illustrate the
various connections to ergodic theory, for unstable channels.
Specifically, Theorem 19 describes sufficient conditions for
validity of both the direct and the converse parts of the
coding theorems, using the ergodic theory of linear-quadratic
Gaussian stochastic optimal control problems, in terms of
detectability and stabilizability (see [1, Th. 4.1]. for details).

The coding theorem stated below, is generic, in the sense
that sufficient conditions are imposed, to ensure both the
converse part and direct part of coding theorem hold.

Theorem 24 (Coding Theorem): Consider any channel
distribution and transmission cost function of Class A or B,
with corresponding characterizations of FTFI capacity
denoted by CAn→Bn (κ), and channel input conditional distri-
butions denoted by

�
πi (dai |I P

i ) : i = 0, 1, . . . , n
� ∈

P[0,n](κ), where {I P
i : i = 0, . . . , n} is the information

structure of channel input distributions.
Suppose the following two conditions hold.
i) Conditional independence (II.56) holds;
ii) there exists an optimal channel input conditional distri-

bution
�
π∗

i (dai |I P
i ) : i = 0, 1, . . . , n

� ∈ P[0,n](κ), which
achieves the characterization of the FTFI capacity, and its
per unit time limit exists (if not replace it by lim inf) it is
finite, and independent of initial distribution B−1 ∼ μ(db−1),
denoted by CA∞→B∞(κ).

Define the following.
For

�
π∗

i (dai |I P
i ) : i = 0, 1, . . . , n

� ∈ P[0,n](κ) (assuming
condition ii)), the directed information density is called stable,
if ∀ε > 0 and ∀δ > 0 there exists an integer n0(ε, δ) > 0 such
that

Pπ∗
b−1

�
(An, Bn) ∈ A

n × B
n :

1

n + 1

�
�
�Eπ∗

μ

�
iπ

∗
(An, Bn)

�− iπ
∗
(An, Bn)

�
�
� > ε

�
< δ,

∀n > n0(ε, δ), ∀b−1 ∈ B
−1 (VI.240)

where for channel distribution of Class A, and transmis-
sion cost of Class A or B, the directed information density

is iπ
∗
(An, Bn)

�= n
i=0 log

�
P(·|Bi−1,Ai )

Pπ∗
(·|Bi−1)

(Bi )
�

, i = 0, . . . , n
(and similarly for Channels of Class B).

For
�
π∗

i (dai |I P
i ) : i = 0, 1, . . . , n

� ∈ P[0,n](κ) (assuming
condition ii)), the transmission cost is called stable, if ∀ε > 0
and ∀δ > 0 there exists an integer n0(ε, δ) > 0 such that

Pπ∗
b−1

�
(An, Bn) ∈ A

n × B
n :

1

n + 1

�
�
�Eπ∗

μ

�
c0,n(An, Bn)

�− c0,n(An, Bn)
�
�
� > ε

�
< δ,

∀n > n0(ε, δ), ∀b−1 ∈ B
−1. (VI.241)

Then the following hold.
(a) (Converse) If conditions i), ii) hold, then any achievable

rate R of codes with feedback given in Definition 23, satisfies
the following inequalities.

R ≤ lim inf
n−→∞

1

n + 1
log Mn

≤ lim inf
n−→∞ sup�

gi (·,·):i=0,...,n
�
∈E F B[0,n](κ)

�

1

n + 1

n�

i=0

I (Ai ; Bi |Bi−1)
�

(VI.242)

≤ lim inf
n−→∞ sup�

π(ai |I P
i ):i=0,1,...,n

�
∈P[0,n](κ)

�

1

n + 1

n�

i=0

I (Ai ; Bi |Bi−1)
�

≡ CA∞→B∞(κ) (VI.243)

(b) (Direct) If conditions i), ii) hold and in addition
iii) the directed information density is stable,
iv) the transmission cost is stable,
v) For each n the FTFI capacity CAn→Bn (κ) is continuous

in κ ∈ (κmin ,∞),
then any rate R < CA∞→B∞(κ) is achievable.

Proof: (a) Condition i) implies the well-known data
processing inequality, while condition ii) implies existence of
the optimal channel input distribution and finiteness of the
corresponding characterizations of the FTFI capacity and its
per unit time limit. Hence, the statements of inequalities follow
by applying Fano’s inequality. If conditions i) and ii) hold,
the derivation is also found in many references, (i.e., [2], [3],
[28], [29], [39]).

(b) This is standard, because conditions ii)-v) are sufficient
to ensure the AEP holds, and hence standard random coding
arguments hold (i.e., following Ihara [7], by replacing the
information density of mutual information by that of directed
information). �

It is noted that alternative achievability theorems can be
obtained by combining the achievability theorem derived by
Permuter et al. [29], which is based on bounding the error
of Maximum Likelihood (ML) decoding, and the characteri-
zations of FTFI capacity and feedback capacity.

The following remark summarizes the connection between
Theorem 24 (achievability) and Theorem 19.

Remark 25 (Achievability Based on LQG Theory
[1, Th. 4.1]):

(a) For the TI-G-CM-B.1, Theorem 19 gives
sufficient conditions, in terms of the channel variables�
C, D, R, Q, KV }, expressed in terms of detectability and
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stabilizability, for J B.1,∗
�
��
s=s∗ = C B.1

A∞→B∞(κ), defined
by (V.225), to correspond to Feedback Capacity, for any
initial distribution μ(db−1), irrespectively, of whether the
channel is stable or unstable.

(b) For the TI-G-CM-B.J, similarly to Theorem 19, suffi-
cient conditions can be obtained, for the corresponding solu-
tion of the dynamic programming, denoted by J B.J,∗

�
�
�
s=s∗ =

C B.J
A∞→B∞(κ) to correspond to Feedback Capacity.
(c) For Multidimensional Gaussian sources to be encoded

and transmitted over any one of the channels, G-CM-A,
G-CM-B.1, G-CM-B.J, coding strategies can be constructed,
which achieve the corresponding characterizations of the FTFI
capacity, and Feedback capacity.

Finally, it is noted for general Gaussian channels with past
dependence on channel inputs and channel outputs then a
treatment analogous to the one of this paper can be carried
out, although it is more involved [11].

VII. CONCLUSION

The information structures of optimal channel input condi-
tional distributions derived in [1] are applied to derive alterna-
tive characterizations of FTFI capacity, based on randomized
information lossless strategies, driven by independent RVs.
Their per unit time limiting versions are analyzed, without
imposing á priori assumptions, which rule out the dual role of
such strategies, to achieve the FTFI capacity characterizations
and feedback capacity, to control the channel output process
and to transmit new information through the channel.

The characterizations of FTFI capacity and feedback
capacity are investigated for application examples of MIMO
Gaussian channel models (G-CMs) with memory. In these
application examples, the randomized strategies decompose
into a deterministic part, which corresponds to the control
process, and a random part, which corresponds to an innova-
tions process. Via this decomposition a separation principle
is established. The deterministic control part is shown to
be directly related to the role of optimal control strategies
of linear-quadratic-Gaussian control theory, to control output
processes, and, in general, to the feedback control theory of
linear stochastic systems; the random or innovations part is
shown to be directly related to role of encoders to achieve
capacity, by transmitting new information over the channel.
Moreover, whether feedback capacity exists, and feedback
increases capacity is shown to be directly linked to the role of
the deterministic part of randomized strategies to control the
channel output process.

APPENDIX

A. Proof of Theorem 6.

(a) By Theorem 1, (1), the optimal channel input distribu-
tions belong to P

A
[0,n] = {πi (dai |bi−1) ≡ PAi |Bi−1(ai |bi−1) :

i = 0, 1, . . . , n}, and satisfy the transmission cost constraint.
An application of Lemma 3 implies CON(a.1) holds. More-
over, by assumption (III.73), the property of optimal channel
input distribution, and by virtue of (III.80), CON(a.2), also
holds. Clearly, ii) and iii) imply the processes {Ui : i =

0, . . . , n} and {Vi : i = 0, . . . , n} are independent. (III.81)-
(III.83) are direct consequences, because for each channel
input distribution P

A
[0,n] there exists a randomized strategy

{eA
i (·, ·) : i = 0, 1, . . . , n} which realizes it.
(b) The first part follows from Remark 4, i.e., the quan-

tize representation of distributions, as follows. Set zi
�=

G(u) = I[FZi ](ui ), i = 0, . . . , n. Then from (a) it follows
that eA

i (bi−1, ui ) = eA
i (bi−1, G(ui )). Hence, for each eA

i (·, ·)
there exists another function eA

i (·, ·) driven by zi such that
ai = eA

i (bi−1, zi ), i = 0, . . . , n. Since {Ui : i = 0, . . . , n}
are independent then Zi = G(Ui ) are independent, and (a)
holds as claimed. Moreover, (III.85) is obtained because,
the distributions are expressed in terms of the randomized
strategy {eA

i (·, ·) : i = 0, . . . , n} and {Zi : i = 0, . . . , n}. Next,
it shown that (III.89) holds, for the restricted class of random-
ized strategies E I L−A

[0,n] (κ) defined by (III.88). Recall that for
channels of Class A, I (An → Bn) = n

i=0 I (Ai ; Bi |Bi−1) =n
i=0 I (Ai ; Bi |Bi−1), i = 0, . . . , n, as defined by (II.58),

without the supremum. For any {eA
i (·, ·) : i = 0, 1, . . . , n} ∈

E I L−A
[0,n] (κ), and for a fixed bi−1, by the bijective property

of the map eA
i (bi−1, ·) and the measurability of its inverse,

for i = 0, . . . , n, then the following sequence of identities
hold (see Pinsker [32, Th. 3.7.1], and Corollary following
it, or Ihara [7, Th. 1.6.3, (I.3)]).

I (Ai ; Bi |Bi−1 = bi−1)

(a)= I (Ai , Zi ; Bi |Bi−1 = bi−1)

(b)= I (Ai ; Bi |Bi−1 = bi−1, Zi ) + I (Zi ; Bi |Bi−1 = bi−1)

(c)= I (Zi ; Bi |Bi−1 = bi−1), ∀bi−1, i = 0, . . . , n

(A.244)

where (a) holds because for a fixed bi−1, then ai = eA
i (bi−1, ·)

uniquely defines zi , (b) is due to the chain rule of mutual infor-
mation, (c) is due to I (Ai ; Bi |Bi−1 = bi−1, Zi ) = 0, which
follows from {eA

i (·, ·) : i = 0, . . . , n} ∈ E I L−A
[0,n] (κ) implies

PBi |Bi−1,Ai ,Zi
= PBi |Bi−1,Zi

= 0, i.e., ai = eA
i (bi−1, zi ),

i = 0, . . . , n. Moreover, by using

I (Ai ; Bi |Bi−1) =
�

I (Ai ; Bi |Bi−1 = bi−1)PBi−1(dbi−1)

then from (A.244) it follows that

I (Ai ; Bi |Bi−1)

= I (Ai , Zi ; Bi |Bi−1)

= I (Ai ; Bi |Bi−1, Zi ) + I (Zi ; Bi |Bi−1)

= I (Zi ; Bi |Bi−1), i = 0, . . . , n

if {eA
i (·, ·) : i = 0, . . . , n} ∈ E I L−A

[0,n] (κ). (A.245)

The above identities establish (III.89), (III.90), where the
supremum is taken over all information lossless randomized
strategies E I L−A

[0,n] (κ) and {PZi : i = 0, . . . , n}. This completes
the prove.
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B. Proof of Theorem 8.

(a) This is obtained by utilizing the information structure
of the optimal channel input distribution {πi (dai |bi−1

i−J ) ≡
PAi |Bi−1

i−J
(ai |bi−1

i−J ) : i = 0, 1, . . .}, and Lemma 3. (b) The rest
of the derivation follows from that of Theorem 6.

C. Proof of Theorem 10.

(a) By Assumption A, the channel distribution is condi-
tionally Gaussian, given by

P

�
Bi ≤ bi

��
�Bi−1 = bi−1, Ai = ai

�

= P

�
Vi ≤ bi −

i−1�

j=0

Ci, j b j − Di,i ai

�

, (A.246)

∼ N
�
(

i−1�

j=0

Ci, j b j + Di,i ai ), KVi

�
, i = 0, 1, . . . , n

(A.247)

that is, the conditional mean of Bi is linear in {b j−1, ai }
and the conditional covariance is constant. The conditional
probability distribution of

�
Bi : i = 0, . . . , n

�
is given by

P

�
Bi ≤ bi

�
��Bi−1 = bi−1

�

=
�

Ai

P

�
Vi ≤ bi −

i−1�

j=0

Ci, j b j − Di,i ai

�

πi (dai |bi−1), i = 0, 1, . . . , n. (A.248)

In view Assumption A, and properties of conditional
entropy, then H (Bi |Bi−1, Ai ) = H (Vi |Bi−1, Ai ) = H (Vi),
i = 0, . . . , n, and directed information is given by

I (An → Bn) =
n�

i=0

�
H (Bi |Bi−1) − H (Bi |Bi−1, Ai )

�

=
n�

i=0

H (Bi |Bi−1) −
n�

i=0

H (Vi). (A.249)

Hence, the characterization of FTFI Feedback Capacity is
given by the following expression.

C A
An→Bn (κ)

�= sup�
πi (dai |bi−1),i=0,...,n:

1
n+1

n
i=0 E

�
�Ai ,Ri,i Ai �+�Bi−1,Qi (i−1)Bi−1�

�
≤κ
�

�

H (Bn) − H (V n)
�
. (A.250)

By the entropy maximizing property of the Gaussian distri-
bution the right hand side of (A.250) is bounded above by

the inequality H (Bn) ≤ H (Bg,n), where Bg,n �= {Bg
i :

i = 0, 1, . . . , n} is jointly Gaussian distributed, and the
average transmission cost constraint is satisfied. Suppose the
channel input distribution is conditionally Gaussian, denoted
by {πg

i (dai |bi−1) ≡ Pg
Ai |Bi−1(ai |bi−1) : i = 0, 1, . . . , n},

with conditional mean which is a linear combination of
�

Bi :
i = 0, . . . , n − 1

�
, and conditional covariance which is

non-random, i.e., independent of the channel output process

{Bi−1 : i = 0, . . . , n}. Then for such conditionally Gaussian
distributions there exists an orthogonal realization Ai =i−1

j=0 �i, j B j + Zi , i = 0, . . . , n, where �i, j are non-
random, and {Zi : i = 0, . . . , n} is independent Gaussian,
satisfying (IV.109), (IV.110) (these follow from Assump-
tion A and the information structure of the maximizing
channel input distribution,

�
PAi |Ai−1,Bi−1(ai |ai−1, bi−1) =

Pg
Ai |Bi−1(ai |bi−1) : i = 0, 1, . . . , n

�
or CON(a.2)). This

implies the joint process is jointly Gaussian, i.e., {(Ai , Bi ) ≡
(Ag

i , Bg
i ) : i = 0, . . . , n}, hence the upper bound H (Bn) ≤

H (Bg,n) holds with equality.
(b) This follows from (a). However, it can be established via

the alternative characterization given in Theorem 6, (III.83),
as follows. Since any candidate of the optimal channel input
distribution is

�
PAi |Bi−1(ai |bi−1) : i = 0, 1, . . . , n

�
, by

Theorem 6 there exists a measurable function eA
i : B

i−1 ×
Zi → Ai , Zi , ai = eA

i (bi−1, zi ), i = 0, 1, . . . , n such that

PAi |Bi−1(dai |bi−1) = PZi

	
zi : eA

i (bi−1, zi ) ∈ dai


,

i = 0, 1, . . . , n. (A.251)

Substituting the randomized strategy into the channel
model (IV.96), then

Bi =
i−1�

j=0

Ci, j B j + Di,i eA
i (Bi−1, Zi ) + Vi , i = 1, . . . , n,

(A.252)

E A[0,n](κ)

�=
�

eA
i (Bi−1, Zi ), i = 0, . . . , n : Theorem 6,

CON(a.2) holds with
�
Ui : i = 0, . . . , n

�
replaced by

{Zi : i = 0, . . . , n},
1

n + 1
EeA

� n�

i=0

��eA
i (Bi−1, Zi ), Ri,i e

A
i (Bi−1, Zi )�

+ �Bi−1, Qi (i − 1)Bi−1��
�

≤ κ
�
. (A.253)

By the entropy maximizing property of the Gaussian distribu-
tion the right hand side of (A.249) (with {ai = eA

i (bi−1, zi ) :
i = 0, . . . , n}) is bounded above by the inequality11

H eA
(Bn) ≤ H eA

(Bg,n), where Bg,n �= {Bg
i : i =

0, 1, . . . , n} is jointly Gaussian distributed. The upper bound
is achieved if eA

i (bi−1, zi ) is a linear combination of (bi−1, zi )
for i = 0, . . . , n,

�
Zi : i = 0, . . . , n} is independent

Gaussian satisfying (IV.109), (IV.110) and the average trans-

mission cost constraint is satisfied. Hence, An = Ag,n �=
{Ag

i : i = 0, 1, . . . , n}, Bn = Bg,n are jointly Gaussian
distributed. Thus, the alternative characterization of the FTFI
capacity is given by (IV.102)-(IV.110) are obtained. Note
that (IV.109), (IV.110) follows from Assumption A and the
information structure of the maximizing channel input distri-
bution,

�
PAi |Ai−1,Bi−1(ai |ai−1, bi−1) = Pg

Ai |Bi−1(ai |bi−1) :
i = 0, 1, . . . , n

�
or CON(a.2).

11The superscript indicates the distribution depends on the strategy {eA
i (·) :

i = 0, . . . , n}.
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D. Proof of Theorem 14

(a) (IV.154), (IV.156), follow directly from the
re-formulation of the problem.

(b) Clearly, (IV.157) is the cost-to-go for (IV.154).
(c) The dynamic programming recursions follow directly

from (IV.157), and these are generalizations of classical
dynamic programming solutions [5, Ch. 5], [4, Ch. 7].
It should be noted that, in general, the cost-to-go (IV.157)
can be computed in two steps; in the first step the cost-
to-go (IV.157) is defined without the optimization over
{K Zi : i = 0, . . . , n}, which implies C B.1

i (bi−1) is replaced
by C B.1

i (bi−1; K Z j , j = i, . . . , n), while in the second step
the optimization C B.1

0 (b−1; K Z0, j = 0, . . . , n) is carried out
over K Z j , j = 0, . . . , n.

(d)-(e) The derivation is based on solving the dynamic
programming equations, as done for LQG stochastic optimal
control problems [5], with some modifications to account
for the fact that the strategies are randomized (instead
of deterministic). An alternative shorter derivation is given
in Remark 15, (a). Let C B.1

n (bn−1) = −s�bn−1, Qn,n−1bn−1�+
r(n), P(n) = Qn,n−1, and r(n) given by (IV.170). It can
be verified this is indeed the solution at the last stage of
the dynamic programming recursions, i.e., (IV.158), and that
gB.1,∗

n (bn−1) = 0. Then P(n) = PT (n) � 0. Suppose for
j = i + 1, i + 2, . . . , n, P( j) = PT ( j) � 0, C B.1

j (b j−1) =
−s�b j−1, P( j)b j−1� + r( j). It will be shown that P(i) =
PT (i) � 0, C B.1

i (bi−1) = −s�bi−1, P(i)bi−1�+r(i), as stated
in (d), (e).

The following calculations follow directly from Assump-
tions B (i.e., Eg B.1

�
Zi

��
�Bi−1

�
= 0, Eg B.1

�
Vi

��
�Bi−1

�
= 0,

and Zi independent of Vi ).

−s
�
�ui , Ri,i ui � + �bi−1, Qi,i−1bi−1�

�

+ Eg B.1
�

C B.1
i+1(Bg

i )
��
�Bg

i−1 = bi−1

�
(A.254)

= −s
�
�ui , Ri,i ui � + �bi−1, Qi,i−1bi−1�

�

+ Eg B.1
�

C B.1
i+1(Ci,i−1 Bg

i−1 + Di,i U
g
i + Di,i Zi

+ Vi )
�
��Bg

i−1 = bi−1

�
(A.255)

= −s

�
bi−1

ui

�T � Qi,i−1 0
0 Ri,i

� �
bi−1

ui

�
+ r(i + 1)

− sEg B.1
�
�Ci,i−1 Bg

i−1 + Di,i U
g
i + Di,i Zi

+ Vi , P(i + 1)
�

Ci,i−1 Bg
i−1 + Di,i U

g
i + Di,i Zi

+Vi

�
�
�
��Bi−1 = bi−1

�
(A.256)

= −s

�
bi−1

ui

�T

.

 
CT

i,i−1 P(i +1)Ci,i−1 +Qi,i−1 CT
i,i−1 P(i +1)Di,i

DT
i,i P(i + 1)Ci,i−1 DT

i,i P(i + 1)Di,i + Ri,i

!

.

�
bi−1

ui

�
+r(i +1)

− tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��
(A.257)

= −s

�
bi−1

ui

�T � H11(i) H12(i)
H T

12(i) H22(i)

� �
bi−1

ui

�

+ r(i + 1) − tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��
.

(A.258)

Note that

H11(i) = H T
11(i) � 0, (A.259)

H22(i) = H T
22(i) = Di,i P(i + 1)Di,i + Ri,i � Ri,i � 0.

(A.260)

By the induction hypothesis and Ri,i ∈ Sq×q
++ , Qi,i−1 ∈ S p×p

+ ,
the following hold.

sup
(ui ,K Zi )∈Rq×Sq×q

+

�1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
− tr

�
s Ri,i K Zi

�
− s

�
�ui , Ri,i ui � + �bi−1, Qi,i−1bi−1�

�

+ Eg B.1
�

C B.1
i+1(Bg

i )
�
�
�Bg

i−1 = bi−1

��

= sup
(ui ,K Zi )∈Rq×Sq×q

+

�1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
− tr

�
s Ri,i K Zi

�

− tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��

− s

�
bi−1
ui

�T � H11(i) H12(i)
H T

12(i) H22(i)

� �
bi−1
ui

�
+ r(i + 1)

�

(A.261)

= sup
K Zi ∈Sq×q

+
sup

ui ∈Rq

�
− s

�
bi−1

ui + H −1
22 (i)H T

12(i)bi−1

�T

.

�
H11(i) − H12(i)H −1

22 (i)H T
12(i) 0

0 H22(i)

�

.

�
bi−1

ui + H −1
22 (i)H T

12(i)bi−1

�

+ 1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
− tr

�
s Ri,i K Zi

�

− tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��
+ r(i + 1)

�

(A.262)

= sup
K Zi ∈Sq×q

+

�
− s�bi−1, [H11(i)

− H12(i)H −1
22 (i)H T

12(i)]bi−1�

+ 1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
− tr

�
s Ri,i K Zi

�

− tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��
+ r(i + 1)

�

(A.263)

(because H22(i) � 0, and the optimal control is

ui = −H −1
22 (i)H T

12(i)bi−1),

= −s�bi−1, [H11(i) − H12(i)H −1
22 (i)H T

12(i)]bi−1�
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+ sup
K Zi ∈Sq×q

+

�1

2
log

|Di,i K Zi DT
i,i + KVi |

|KVi |
− tr

�
s Ri,i K Zi

�

− tr
�

s P(i + 1)
�

Di,i K Zi DT
i,i + KVi

��
+ r(i + 1)

�

(A.264)

= −s�bi−1, P(i)bi−1� + r(i),

if (I V .163), (I V .169) hold. (A.265)

Note that P(·) �= H11(·) − H12(·)H −1
22 (i)H T

12(·) is
precisely (IV.163), and it is not affected by {K Zi : i =
0, . . . , n}, that is, the deterministic part of the strategy is
separated from the random part of the strategy. For each
i = 0, 1, . . . , n − 1, define gB.1,∗

i (·) by

gB.1,∗
i (bi−1)

�= −H −1
22 (i)H T

12(i)bi−1

= −
�

Di,i P(i + 1)Di,i + Ri,i

�−1

×DT
i,i P(i + 1)Ci,i−1bi−1. (A.266)

Then

C B.1
i (bi−1)

= −s�bi−1, P(i)bi−1� + r(i), (since P(·) does not

depend on K Zi , then)

= −s�bi−1, P(i)bi−1� + s(n + 1)κ

+ sup
K Z j ∈Sq×q

+ : j=i,...,n

�1

2

n�

j=i

log
|D j, j K Z j DT

j, j + KVj |
|KVj |

−
n�

j=i

tr
�

s R j, j K Z j + s P( j +1)
�
D j, j K Z j DT

j, j +KVj

���

(A.267)

where the supremum in (A.267) follows from (A.264). Finally,

since P(·) �= H11(·) − H12(·)H −1
22 (i)H T

12(·), then the Riccati
difference equation (IV.164) is obtained.

(f), (g) follow from the constraint and expression of
cost-to-go.

(h) By definition, the minimum cost for zero information
rate corresponds to K Zi = 0, i = 0, . . . , n, hence the
statement. This completes the prove.

E. Lyapunov & Riccati Equations of Gaussian Linear
Stochastic Systems and LQG Theory

In this section, some of the basic concepts of linear systems
are introduced, and fundamental theorems relating Lyapunov
stability and Riccati equations to stability of linear systems
are given. These are found in [4], [5], and [41].

The open unit disc of the space of complex number C,

is defined by Do
�= �

c ∈ C : |c| < 1
�
. The Spectrum of a

matrix A ∈ R
q×q (the set of all its eigenvalues), is denoted

by spec(A) ⊂ C. A matrix A ∈ R
q×q is called exponentially

stable if all its eigenvalues are within the open unit disc, that
is, spec(A) ⊂ Do.

Consider the time-invariant representation of a finite-
dimensional Gaussian system described by the following

equations.

Xi+1 = AXi + BWi , X0 = x0, i = 1, . . . , n, (A.268)

Yi = C Xi + NVi , i = 0, . . . , n (A.269)

X0 ∈ R
q , X0 ∼ N(0, K X0 ), Wi ∼ N(0, KW ), Wi ∈ R

k,

Yi ∈ R
p, Vi ∼ N(0, KV ), Vi ∈ R

m , i = 0, . . . , n

and {(Wi , Vi ) : i = 0, . . . , n} mutual independent (A.270)

and independent of X0. (A.271)

Answers to questions of convergence of covariance matrices
and existence of invariant distribution of the joint process
{(Xi , Yi ) : i = 0, . . . , n} (and its marginals), and conver-
gence of conditional covariances and existence of conditional
invariant distribution of minimum mean-square error estimates
of {Xi : i = 0, . . . , n} from data {Yi : i = 0, 1, . . . , },
governed by the Kalman filter recursions, are directly related
to certain properties of the matrices {A, B, C, N, KW , KV }.
These are defined below.

Definition 26 (Stabilizablity and Detectability): Let
(A, B, C) ∈ R

q×q × R
q×k × R

p×q .
(a) The pair of matrices (A, B) is called stabilizable if there

exists an matrix K ∈ R
k×q such that the eigenvalues of A −

B K lie in Do (i.e., spec
	
A − B K


 ⊂ Do).
(b) The pair of matrices (C, A) is called detectable if

(AT , CT ) is stabilizable, i.e., there exists an matrix L ∈
R

q×p such that the eigenvalues of A − LC lie in Do (i.e.,
spec

	
A − LC


 ⊂ Do).
(c) The pair of matrices (A, B) is called controllable if

rank
�
C
�

= q, C
�= �

B AB . . . Aq−1 B
� ∈ R

q×qk .

(A.272)

(d) The pair of matrices (C, A) is called observable
if (AT , CT ) is controllable, i.e., if

rank
�
O
�

= q, O
�=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C

C A

...

C Aq−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
pq×q . (A.273)

Note that (A, B) controllable pair implies (A, B) stabiliz-
able pair, and (C, A) observable pair implies (C, A) detectable
pair.

The next theorem relates covariances of time-invariant finite
dimensional Gaussian systems (A.268)-(A.271) to Lyapunov
equations. It is borrowed from [5].

Theorem 27 (Properties of Lyapunov Equations [5]):
Consider the covariance function � : {0, 1, . . . , n} → R

q×q

of the process {Xi : i = 0, . . . , n} satisfying the recursion

�i = A�i−1 AT + B KW BT , �0 = given, i = 1, . . . , n.

(A.274)

Consider the discrete Lyapunov equation for � ∈ R
q×q :

� = A�AT + B KW BT . (A.275)

The following hold.
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(a) If A is an exponentially stable matrix then
limi−→∞ �i = � exists and � is a solution
of the equation (A.275) (irrespectively of initial
condition).

(b) If A is an exponentially stable matrix then (A.275) has
an unique solution, which satisfies � = �T � 0.

(c) Let r ∈ {1, 2, . . . , }, G ∈ R
q×r be such that B KW BT =

GGT . Assume that {A, G} is a stabilizable pair and
there exists a � ∈ R

q×q which satisfies

� = A�AT + B KW BT , and � = �T � 0.

(A.276)

Then A is an exponentially stable matrix.
(d) Let � ∈ R

q×q be a solution of (A.275). Any two of the
following three statements implies the third:

1) A is an exponentially stable matrix (spec(A) ⊂
Do);

2)
	

A, G



is a controllable pair (Rank(C ) = q);
3) � � 0.

Note that if the initial condition of (A.274) is set to
�0 = �, where � is a solution of (A.275), then �i =
�, i = 1, 2, . . . , n, that is, the solution of the discrete
recursion (A.274) is stationary.

Consider the problem of estimating {Xi : i = 0, . . . , }
from {Yi : i = 0, 1, . . . , }, for the time-invariant finite
dimensional Gaussian system (A.268)-(A.271), with respect
to the following criterion.

inf
gi (·):i=0,...,n

E
�
||Xi − gi(Y

i−1)||2
Rq

�
, where gi(·) is a

measurable function of yi−1, i = 0, . . . , n. (A.277)

Then the optimal estimator exists, it is unique, and it is
given by the conditional expectation

g∗
i (yi−1) = E

�
Xi |yi−1� =

�
xP(dx |yi−1), i = 0, . . . , n.

The conditional distribution
�
P(dx |yi−1) : i = 0, . . . , n

�
is

finite dimensional, and it is described by only two statis-
tics, the conditional mean and the conditional covariance,
defined by

(Xi|i−1
�= E

�
Xi |Y i−1

�
,

Qi|i−1
�= E

��
Xi − (Xi|i−1

��
Xi − (Xi|i−1

�T ��
�Y i−1

�
,

i = 0, . . . , n.

The conditional covariance is independent of the data and it
is equal to the unconditional covariance,

Qi|i−1 = E
��

Xi − (Xi|i−1

��
Xi − (Xi|i−1

�T �
i = 0, . . . , n.

Moreover,
�(Xi|i−1 : i = 0, . . . , n

�
satisfies a recursive

equation known as the Kalman-filter equation, and
�

Qi|i−1 :
i = 0, . . . , n

�
satisfies a recursive equation, known as the

filtering Riccati difference matrix equation.
The properties of the Kalman-filter, such as, the convergence

of the covariance (of the error) and the existence of invariant
conditional distribution are determined from the properties of
Riccati difference and algebraic equations.

The following theorem is borrowed from [5]; it summarizes
properties of matrix Riccati difference and algebraic equa-
tions.

Theorem 28 (Properties of Riccati Equations [5]): Assume
N KV NT � 0. Let f : R

q×q → R
q×q , G ∈ R

q×q be defined
by

f (Q)
�= AQ AT +B KW BT − AQCT �C QCT +N KV NT �−1

	
AQCT 
T

, GGT �= B KW BT . (A.278)

Let F : R
q×q → R

q×p, Q → F(Q), and A : R
q×q →

R
q×q , A → A(Q) be defined by

F(Q)
�= AQCT �C QCT + N KV NT �−1

,

A(Q) = A − F(Q)C (A.279)

Define the discrete-time Riccati recursion for Q :
{0, 1, . . . , n} → R

q×q by

Qi+1 = f (Qi ), Q0 = given, i = 1, . . . , n. (A.280)

and the algebraic Riccati equation for the matrix Q ∈ R
q×q:

Q = f (Q). (A.281)

The following hold.
(a) If (C, A) is a detectable pair and (A, G) is a stabilizable

pair, then there exists a positive semidefinite solution Q ∈
R

q×q to the algebraic Riccati equation

Q = f (Q), Q = QT � 0. (A.282)

(b) If (A, G) is a stabilizable pair then the algebraic Riccati
equation (A.282) has at most one solution.

(c) Under the assumptions of (a) the limit limn−→∞ Qi =
Q exists and Q is the positive semidefinite solution of the
algebraic Riccati equation (A.281).

(d) If (A, G) is a stabilizable pair and if there exists
a positive semidefinite solution Q to the algebraic Riccati
equation (A.281), then spec

	
A(Q)


 ⊂ Do.
(e) Consider the algebraic Riccati equation for Q ∈ R

q×q

given by (A.281), with the conditions that C QCT +N KV NT �
0 and spec

	
A(Q)


 ⊂ Do (but without the condition that Q =
QT � 0). The algebraic Riccati equation with these conditions
has at most one solution Q ∈ R

q×q .
(f) Assume (A, G) is a controllable pair and that there exists

a Q ∈ R
q×q such that Q = f (Q) and Q = QT � 0. Then

Q � 0.
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