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Abstract— We characterize the n−finite time feedback in-
formation (FTFI) control-coding capacity of decision models
(DMs) driven by correlated noise. Under information stability
the per unit limit, called control-coding (CC) capacity of the
DM is operational, and analogous to Shannon’s coding capacity
of noisy communication channels, with the encoder replaced by
a controller-encoder.

We also analyze application examples of recursive linear DMs
driven by correlated Gaussian noise, subject to an average cost
constraint of quadratic form, called linear-quadratic Gaussian
DMs (LQG-DMs). In one of the main theorems we show
that the optimal randomized control strategies that achieve
the n−FTFI CC capacity of the LQG-DMs, consist of mul-
tiple parts, that include control, estimation, and information
transmission/signalling strategies, and that these strategies are
determined using decentralized optimization techniques.

I. INTRODUCTION

Our main goal in this paper is to further develop Shannon’s
operational definition of coding capacity, in different scien-
tific communities, which are motivated by feedback control
system applications [1]. Hence, our underlying assumptions
differ from those often imposed in the information the-
ory literature of feedback capacity of noisy communication
channels. Specifically, in control theory and its applications,
the dominant mathematical models are unstable dynamical
systems, and the role of feedback control inputs is to control
output signals, and to achieve optimal performance.

Our main objectives are:
(1) to determine the characterization of n−finite time

feedback information (FTFI) control-coding (CC) capacity
of general nonlinear recursive decision models (DMs), driven
by correlated noise, subject to average cost constraints.

Under the technical conditions of information stability
then the per unit limit of the n−FTFI CC capacity, called
CC capacity of the DM, is operational. This means, for any
message set with rate in bits/second below the CC capacity,
then randomized control strategies can be transformed into
controllers-encoders that simultaneously control outputs, and
signal messages to the decoder that reconstructs them with
arbitrary small asymptotic error probability.

(2) to briefly analysize recursive linear DMs with past de-
pendence on both inputs and output, and driven by correlated
Gaussian noise, subject to an average cost of quadratic form,
called LQG-DMs.
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Previous work on the characterization of CC capacity of
DMs with past dependence only on outputs is found in [2],
while the analysis of linear DMs, stable or unstable, driven
by independent Gaussian noise, is found in [3]. Specifically,
in [2] (see Theorem 4.1, Theorem 5.2) it is shown that the
optimal randomized strategy that achieves the CC capacity
of the DM consists of a control part that controls the
outputs, and an innovations part that is responsible to encode
messages. We note that [1]–[3] demonstrate that Shannon’s
coding capacity extends naturally to unstable DMs, such
as, stochastic control systems and unstable communication
channels with memory. In [3], it is also shown that for
unstable DMs, the operational definition of achievable rate is
a variant of Shannon’s coding rate, with the encoder replaced
by a controller-encoder, called control-coding (CC) rate.
Further, [4] demonstrates that optimal randomized strategies
can be transformed into controller-encoders that simultane-
ously control outputs, encode Gaussian messages, and signal
the messages to the decoder that reconstructs them with
asymptotic arbitrary small error.

A. Mathematical Problem and Main Results

The optimization problems of CC capacity of the DMs
considered in this paper are generalizations of stochastic
optimal control problems with partial information, contrary
to the DMs in [2], [3], which are generalizations of stochastic
optimal control problems with complete information.

Definition 1.1: (Nonlinear decision model)
The DM is denoted by DM{M,L, T}, and defined by

Bi = hi(B
i−1
i−M , A

i
i−L, Vi), i = 0, . . . , n, (1)

S
4
= (B−1

−M , A
−1
−L) = (b−1

−M , a
−1
−L) is the initial state, (2)

1

n+ 1
E
{ n∑
i=0

γi(V
i
i−T , A

i
i−L, B

i
i−M )

}
≤ κ ∈ [0,∞), (3)

PVi|V i−1,Ai,Bi−1(dvi|vi−1, ai, bi−1)

= PVi|V i−1
i−T

(dvi|vi−1
i−T ), i = 0, . . . , n. (4)

The realizations of the RVs are Ai = ai ∈ Ai, Bi = bi ∈
Bi, Vi = vi ∈ Vi,∀i ∈ {. . . ,−1, 0, 1, . . . , n}, where the
spaces are finite-dimensional. We use the notation zmk

4
=

{zk, zk+1, . . . , zm} ∈ Zmk
4
= ×mj=kZmk , and convention

zm
4
= {. . . , z1, z0, z1, . . . , zm}. We assume the following.

(a.i) hi : Bi−1
i−M × Aii−L × Vi 7−→ Bi, γi : Vii−T × Aii−L ×

Bii−M 7−→ Ai are measurable functions, i = 0, . . . , n.
(a.ii) The inverse of the map vi ∈ Vi 7−→
h(bi−1

i−M1
, aii−L1

, vi) exists and it is measurable.
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DM{M,L, T} includes nonlinear autoregressive models that
can be expressed in state space form [5], and may correspond
to unstable control systems or communication channels.
Next, we introduce the application example we discuss in
the paper.

Definition 1.2: (Linear-Quadratic Gaussian DM)
The Linear-Quadratic Gaussian DM, denoted by LQG-

DM{M = 1, L = 1, T = 1}, is defined by

Bi = Ci,i−1Bi−1 +Di,iAi +Di,i−1Ai−1 + Vi, (5)
Vi = Fi−1Vi−1 +Wi, {Wi : i = 0, . . . , n} ind. seq., (6)

Wi ∼ N(0,KWi) independent Gaussian, indep. of S, (7)

S
4
= (B−1, Ai−1, V−1) = (b−1, a−1, v−1), (8)

γi(ai, bi−1)
4
= 〈ai, Ri,iai〉+ 〈bi−1, Qi,i−1bi−1〉, (9)

Ci,i−1 ∈ Rp×p, (Di,i, Di,i−1) ∈ Rp×q × Rp×q, (10)

Ri,i ∈ Sq×q++ , Qi,i−1 ∈ Sp×p+ , i = 0, . . . , n (11)

where 〈·, ·〉 denotes inner product, Sp×p+ (resp. Sp×p++ ) the
set of p × p symmetric positive semidefinite (resp. positive
definite) matrices, and N(µ,Σ) means Gaussian distribution
with mean µ and covariance Σ.

Main Results. Now, we describe the main results.
(a) Theorem 2.5 gives the converse CC theorem, i.e., that

any achievable CC rate is bounded above by an extremum
problem of an information measure, maximized over all
randomized strategies PAi|Ai−1,Bi−1,V i−1 , i = 0, . . . , n that
satisfy the average power constraints, and conditions for the
direct CC theorem.

(b) Theorem 2.6 gives the information structures of the
maximizing distributions of the extremum problem in (a).

(c) Section III shows that, for the LQG-DM{M = 1, L =
1, T = 1}, the optimal input process An of the n−FTFI
capacity is generated by multiple linear strategies, given by

Ai = ei(B
i−1
0 , Ai−1, Vi−1, Zi, s), i = 0, . . . , n (12)

= Ui + Λ1
i,i−1Ai−1 + Λ2

i,i−1Vi−1 + Zi (13)

≡ Ui + Λi,i−1Si−1 + Zi, (14)

Ui = ei(B
i−1
0 , s) = Γ1

i,i−1Bi−1 + Γ2
i,i−1Ŝi−1|i−1, (15)

Ŝi−1|i−1
4
= Es

{
Si−1

∣∣∣Bi−1
0

}
, (16)

i) Zi indep. of
{
S,Bi−1

0 , Ai−1
0 , V i−1

0

}
, i = 0, . . . , n, (17)

ii) Zi0 indep. of V i0 , i = 0, . . . , n, (18)

iii)
{
Zi ∼ N(0,KZi

) : i = 0, . . . , n
}

independent, (19)

Λi,i−1
4
=
[

Λ1
i,i−1 Λ2

i,i−1

]
, Si

4
=

[
Ai
Vi

]
(20)

where Si, i = 0, . . . , n is the state process, that is available
to controller-encoder, but not the decoder.
The characterization of n−FTFI CC capacity is given by

C0,n(κ) = sup
ei(·):i=0,...,n:

{
H(Bn0 |s)−H(V n0 |v−1)

}
, (21)

KZi
� 0, i = 0, . . . , n, Es

{ n∑
i=0

γi(Ai, Bi−1)
}
≤ κ (22)

where H(X|s) is the entropy of RV X . We note that
ei = (ei(·),Λ1

i,i−1,Λ
2
i,i−1,KZi), with {Λ1

i,i−1,Λ
2
i,i−1} de-

terministic matrices, is the strategy of the input process,
that controls the output process Bi, and unless this ensures
information stability or asymptotic stationarity and ergodicity
of the output process, then the CC capacity does not exist,
as shown in [2], [3], for Di,i−1 = 0, Fi−1 = 0, i = 0, . . . , n.

Special Case. If Ci,i−1 = 0, Di,i−1 = 0, Qi,i−1 = 0,
and the noise is described by a unit memory autoregressive
AR(1) model, i.e., T = 1, then (13) degenerates to

Ai = Λ2
i,i−1

(
Vi−1 −Es

{
Vi−1

∣∣∣Bi−1
0

})
+ Zi. (23)

i.e., it consists of estimation and innovation parts.

B. Related Literature in Information Theory

Our main results (a)-(c), extend the most general frame-
work found in information theory literature, specifically
the Cover and Pombra [6] characterization of the n−FTFI
capacity of the scalar-valued, additive Gaussian noise (AGN)
channel, defined by

Bi = Ai + Vi, i = 0, . . . , n, (24)

1

n+ 1
E
{ n∑
i=0

|Ai|2
}
≤ κ, V n0 ∼ N(0,KV n

0
) (25)

where the distribution of the Gaussian noise is PV n
0

, i.e., not
of finite memory. The computation of the n−FTFI capacity,
remained to this date an open problem. Special cases of
the scalar AGN channel (24), (25), when the noise is finite
memory and stable, are analyzed in [7], [8], using frequency
domain methods.

II. CHARACTERIZATION OF n−FTFI CC CAPACITY

The main results of this section are, the converse CC The-
orem 2.5, that identifies an upper bound on any achievable
CC rate, and Theorem 2.6 that establishes a tighter bound, by
determining the information structures of input distributions.

We start with the basic notation. A sequence measurable
spaces is denoted by {(Xi,B(Xi)) : i ∈ Z} while their
product measurable space is denoted by (XZ,B(XZ)). The
probability distribution of a RV X : (Ω,F) 7−→ (X,B(X))
is denoted1 by P{X(ω) ∈ ·} = P(·) ≡ PX(·). The
conditional distribution of RV Y given X = x is denoted
by PY |X(dy|X = x) ≡ PY |X(dy|x).

A. Control-Coding Capacity

By Definition 1.1, (a.ii), then

P
{
Bi ∈ db

∣∣∣Bi−1 = bi−1, Ai = ai
}

= Qi(db|bi−1
i−M , a

i
i−L, v

i−1
i−T ), i = 1, . . . , n (26)

and for i = 0, Q0(db|a0, s), s
4
= (a−1

−L, b
−1
−M , v

−1
−T ).

Next, we introduce the operational definition of CC ca-
pacity of the DM that explains the term “control-coding”.

1The subscript on X is often omitted.
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Definition 2.1: (CC Capacity of DM{M,L, T})
For DM{M,L, T}, the operational definition for reli-

able communication or information signalling, and con-
trol performance, with noiseless feedback is a sequence
of controller-encoder and decoder strategies, denoted by
{(n,M(n), εn, s, κ) : n = 0, 1, . . . } that consists of the
following items.
(a) A set of uniformly distributed messages X(n) with
alphabet space M(n) 4= {1, . . . ,M (n)}, known to both the
controller-encoder and decoder.
(b) A set of controller-encoder strategies mapping messages,
the state s, and noiseless feedback into inputs, defined by2

E[0,n](κ) ,
{
gi :M(n) × S× Ai−1

0 × Bi−1
0 7−→ Ai,

a0 = g0(w, s), . . . , an = gn(w, s, an−1
0 , bn−1

0 ), w ∈Mn :

1

n+ 1
Egs

{ n∑
i=0

γi(V
i
i−T , A

i
i−L, B

i
i−M ) ≤ κ

}
(27)

i.e, satisfying a cost constraint. The information structure of
the controller-encoder is Iei

4
= {W,S,Ai−1

0 , Bi−1
0 }, Ai =

gi(Iei ).
(c) A decoder measurable mapping d0,n(s, ·) : Bn0 7−→M(n)

with average probability of decoding error

P (n)
error(s) ,

1

M (n)

∑
w∈M(n)

Pg
{
d0,n(S,Bn0 ) 6= w|W = w,

S = s
}
≡ Pgs

{
d0,n(S,Bn0 ) 6= W

}
≤ εn, εn ∈ [0, 1]. (28)

The CC rate is defined by rn , 1
n+1 logM (n).

A rate R is called an achievable rate, if there ex-
ists a controller-encoder and decoder sequence satisfy-
ing limn−→∞ εn = 0 and lim infn−→∞

1
n+1 logM (n) ≥

R. The operational definition of the CC capacity of the
DM{M,L, T} is C(κ) , sup{R : R is achievable}.
In general, C(κ) ≡ C(κ, s) depends on initial state S = s.

B. Converse and Direct CC Theorems for DM{M,L, T}
We shall identify an upper bound on C(κ), via the

converse CC Theorem 2.6, using two lemmas.
Lemma 2.2: (Mutual information)

Consider the DM{M,L, T}. Given a strategy g(·) ∈
E[0,n](κ), define the mutual information between messages
W ∈M(n) to Bn0 conditioned on S = s by

Ig(W ;Bn0 |s)
4
= Egs

{
log
(dPg

Bn
0 |W,S

(·|S,W )

Pg
Bn

0 |S
(·|S)

(Bn0 )
)}
∈ [0,∞].

Further, define Iei
4
= {W,S,Ai−1

0 , V i−1
0 , Bi−1

0 }, i =
0, . . . , n, and the set of controller-encoder strategies

E [0,n](κ)
4
=
{
Ai = gi(I

e

i ), i = 0, . . . , n :

1

n+ 1
Egs

( n∑
i=0

γi(V
i
i−T , A

i
i−L, B

i
i−M ) ≤ κ

)}
. (29)

2The subscript/superscript on expectation operator Eg
s indicates that the

corresponding distribution P = Pg
s depends the encoding strategy g, and

that S = s is fixed.

Then the following hold.

E [0,n](κ) = E[0,n](κ), and (30)
Ig(W ;Bn0 |s) =

Egs

{ n∑
i=0

log
(dQi(·|Bi−1

i−M , {gj(I
e

j)}ij=i−L, V
i−1
i−T )

Pg(·|Bi−1
0 , S)

(Bi)
)}

≡
n∑
i=0

Ig(Aii−L, V
i−1
i−T ;B0|Bi−1

0 , s). (31)

Proof: Follows from the chain rule of mutual informa-
tion, and the invertibility condition of Definition 1.1, (a.ii).

n−Finite Time Feedback Information CC Capacity. Next,
we derive the analog of Lemma 2.2, for directed information
I(An0 → Bn0 |s), for the larger class of randomized strategies

P[0,n](κ)
4
=
{
Pi(dai|ai−1

0 , bi−1
0 , s), i = 0, . . . , n :

1

n+ 1
EPs

( n∑
i=0

γi(V
i
i−T , A

i
i−L, B

i
i−M ) ≤ κ

)}
. (32)

Lemma 2.3: (Directed information)
Consider the DM{M,L, T} and randomized strategies from
P[0,n](κ). Given a P (·|·) ∈ P[0,n](κ), define the directed
information from An0 to Bn0 conditioned on S = s by

IP (An0 → Bn0 |s)

4
= EPs

{ n∑
i=0

log
(dPBi|Bi−1

0 ,Ai
0,S

(·|Bi0, Ai0, S)

PP
Bi|Bi−1

0 ,S
(·|Bi0, S)

(Bi)
)}
.

Further, define the randomized strategies

P [0,n](κ)
4
=
{
P i(dai|ai−1

0 , vi−1
0 , bi−1

0 , s), i = 0, . . . , n :

1

n+ 1
EP
s

( n∑
i=0

γi(V
i
i−T , A

i
i−L, B

i
i−M ) ≤ κ

)}
(33)

and directed information from (An0 , V
n−1
0 ) to Bn0 for S = s:

IP (An0 , V
n−1
0 → Bn0 |s)

4
=

n∑
i=0

IP (Aii−L, V
i−1
i−T ;B0|Bi−1

0 , s).

Then the following equality holds.

P [0,n](κ) = P[0,n](κ), and (34)

IP (An0 → Bn0 |s) = IP (An0 → Bn0 |s) (35)

= EPs

{ n∑
i=0

log
(dQi(·|Bi−1

i−M , A
i
i−L, V

i−1
i−T )

PP (·|Bi−1
0 , S)

(Bi)
)}

(36)

= IP (An0 , V
n−1
0 → Bn0 |s). (37)

Proof: The derivation is similar to Lemma 2.2.
In view of the above lemma, we define the n−FTFI CC

capacity that will play a role in the identification of C(κ).
Definition 2.4: (n−FTFI CC Capacity)

The n−FTFI CC capacity for DM{M,L, T} is defined by

CAn
0 ,V

n−1
0 →Bn

0 |s
(κ)

4
= sup
P[0,n](κ)

n∑
i=0

IP (Aii−L, V
i−1
i−T ;Bi|Bi−1

0 , s). (38)
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Theorem 2.5: (Converse and direct CC theorem)
Consider the DM{M,L, T}.

(a) Converse CC Theorem. If there exists a sequence of
controller-encoder-decoder strategies {(n,M(n), εn, s, κ) :
n = 0, 1, . . . } given in Definition 2.1, then3

R ≤ lim inf
n−→∞

1

n+ 1
logM (n) (39)

≤ lim inf
n−→∞

sup
E[0,n](κ)

1

n+ 1

n∑
i=0

Ig(Aii−L, V
i−1
i−T ;Bi|Bi−1

0 , s)

≤ lim inf
n−→∞

1

n+ 1
CAn

0 ,V
n−1
0 →Bn

0 |s
(κ) (40)

provided the following conditions hold.
(i) The supremum of

∑n
i=0 I

P (Aii−L, V
i−1
i−T ;Bi|Bi−1

0 , s)

over P [0,n](κ) in (40) for any finite n in achieved in the
set (i.e., the maximizing distribution exists).
(ii) The lim infn−→∞ in (40) is finite.
(b) Direct CC Theorem. Under the assumptions of Theo-
rem 5.2 in [2] (with slight variation) then the CC capacity
is C(κ) = lim infn−→∞

1
n+1CAn

0 ,V
n−1
0 →Bn

0 |s
(κ).

Proof: (a) Suppose R is achievable, and hence
limn−→∞ εn = 0, lim infn−→∞

1
n+1 logM (n) ≥ R. Then,

for each n, since W = w ∈ M(n) is uniformly distributed,
by invoking Fano’s inequality [9], the following hold.

logM (n) = H(W |s) = Hg(W |Bn0 , s)
+ Ig(W ;Bn0 |s), ∀g(·, ·) ∈ E[0,n](κ)

≤h(εn) + εn logMn + Ig(W ;Bn0 |s) (41)

where h(z)
4
= −z log z − (1 − z) log(1 − z), z ∈ [0, 1].

By Lemma 2.2 and Lemma 2.3, and standard arguments we
obtain the claims. (b) This follows from Theorem 5.2 in [2].

C. Information Structures of n−FTFI CC Capacity
Now, we give the information structures of optimal distri-

butions for the n−FTFI CC capacity of Definition 2.4.
Theorem 2.6: (Information structures of DM{M,L, T})

Consider the DM{M,L, T}. Then we have the following.
(a) The optimal distribution of problem CAn

0 ,V
n−1
0 →Bn

0 |s
(κ)

defined by (38) satisfies conditional independence

P i(dai|ai−1
0 , vi−1

0 , bi−1
0 , s) = πi(dai|ai−1

i−L, v
i−1
i−T , b

i−1
−M )

and the charactrization of the n−FTFI CC capacity is

CM,L,T

An
0 ,V

n−1
0 →Bn

0 |s
(κ)

4
= sup
PM,L,T

[0,n] (κ)

Eπs

{
n∑
i=0

log
(dQi(·|Bi−1

i−M , A
i
i−L, V

i−1
i−T )

Pπ(·|Bi−1
0 , S)

(Bi)
)}

(42)

PM,L,T

[0,n] (κ)
4
=
{
πi(dai|ai−1

i−L, v
i−1
i−T , b

i−1
−M ), i = 0, . . . , n :

1

n+ 1
Eπs

( n∑
i=0

γi(V
i
i−T , A

i
i−L, B

i
i−M )

)
≤ κ

}
(43)

3The superscript notation Ig(·; ·|·) indicates that the distributions depend
on encoding strategies from the set E [0,n](κ).

where s = (b−1
−M , a

−1
−L, v

−1
−T ) is the initial state.

Proof: Follows by applying the tools from [2].
By Theorem 2.6, for each i the controller-encoder ob-

serves the sequence {Ai−1
i−L, V

i−1
i−T , B

i−1
i−M} and the initial

state s, while the decoder observes Bi−1
i−M and s. Hence,

{Ai−1
i−L, V

i−1
i−T } needs to be estimated at the decoder using

the á posteriori distribution PAi−1
i−L,V

i−1
i−T |B

i−1
0 ,s.

III. LQG-DM DRIVEN BY CORRELATED NOISE

Consider the LQG-DM{M = 1, L = 1, T = 1} defined
by (5)-(11). By Theorem 2.6, the optimal input distribution
is πi(dai|ai−1, vi−1, b

i−1
−1 ), i = 0, . . . , n. Moreover, the char-

acterization of the n−FTFI CC capacity reduces to

C1,1,1

An
0 ,V

n−1
0 →Bn

0 |s
(κ) = sup

P1,1,1
[0,n] (κ)

n∑
i=0

I(Aii−1, Vi−1;Bi|Bi−1
0 , s)

= sup
P1,1,1

[0,n] (κ)

H(Bn0 |s)−H(V n0 |v−1) (44)

with γ = γ. The material of this section are generalizations
of those found in [3] for DMs with Di,i−1 = 0, i = 0, . . . , n
and Vi, i = 0, . . . , n an independent Gaussian process.
(a) Gaussian Maximizing Distribution and Orthogonal
Decomposition. By the maximum entropy principle of Gaus-
sian distributions, then the supremum in (44) is confined to
the orthogonal realization of a Gaussian process An, given
by (12)-(20), and the power constraint is,

P1,1,1

[0,n] (κ)
4
=
{(
e(·),Λi,i−1,KZi

� 0
)
, i = 0, . . . , n :

1

n+ 1
Ees

( n∑
i=0

γi(Ai, Bi−1)
)
≤ κ

}
. (45)

where {(Bi, Si) : i = 0, . . . , n} satisfy the recursions

Si = Hi,i−1Si−1 +Gi,i−1Ui +M1
i,i−1Zi

+M2
i,i−1Wi, S−1 = s−1, i = 0, . . . , n, (46)

Bi = Ci,i−1Bi−1 +Di,iUi + Λi,i−1Si−1 +Di,iZi +Wi,
(47)

Hi,i−1
4
=

[
Λ1
i,i−1 Λ2

i,i−1

0 Fi−1

]
, Gi,i−1

4
=

[
I
0

]
,

M1
i,i−1

4
=

[
I
0

]
,M2

i,i−1
4
=

[
0
I

]
,

Λi,i−1
4
= Di,iΛi,i−1 +Di,i−1.

(c) Characterization of FTFI Capacity. By (44) to compute
H(Bn0 |s) =

∑n
i=0H(Bi|Bi−1

0 , s), we use

B̂i|i−1
4
= Ees

{
Bi

∣∣∣Bi−1
0

}
, Ŝi|i

4
= Ees

{
Si

∣∣∣Bi0},
Ŝi|i−1

4
= Ees

{
Si

∣∣∣Bi−1
0

}
,

KBi|Bi−1
0

4
= Ees

{(
Bi − B̂i|i−1

)(
Bi − B̂i|i−1

)T ∣∣∣Bi−1
0

}
,

Pi|i = Ees

{(
Si − Ŝi|i

)(
Si − Ŝi|i

)T ∣∣∣Bi0}, i = 0, . . . , n.
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By (46), (47) the Kalman-filter recursions [5] are:

Ŝi|i = Hi,i−1Ŝi−1|i−1 +Gi,i−1Ui

+ ∆i|i−1ν
e
i , Ŝ−1|−1 = s, i = 0, . . . , n, (48)

B̂i|i−1 = Ci,i−1Bi−1 +Di,iUi + Λi,i−1Ŝi−1|i−1, (49)

νei
4
= Bi − B̂i|i−1 = Λi,i−1

(
Si−1 − Ŝi−1|i−1

)
+Di,iZi +Wi, (50)

KBi|Bi−1
0

= Λi,i−1Pi−1|i−1Λ
T

i,i−1 +Di,iKZiD
T
i,i +KWi

and Pi|i solves the matrix Riccati difference equation (RDE)

Pi|i = Hi,i−1Pi−1|i−1H
T
i,i−1 +M1

i,i−1KZiM
1,T
i,i−1

+M2
i,i−1KWiM

2,T
i,i−1 −

(
M1
i,i−1KZiD

T
i,i +M2

i,i−1KWi

+Hi,i−1Pi−1|i−1Λ
T

i,i−1

)
Φi|i−1

.
(
M1
i,i−1KZiD

T
i,i +M2

i,i−1KWi +Hi,i−1Pi−1|i−1Λ
T

i,i−1

)T
,

Φi|i−1
4
=
[
Di,iKZiD

T
i,i +KWi + Λi,i−1Pi−1|i−1Λ

T

i,i−1

]−1

,

∆i|i−1
4
=
(
M1
i,i−1KZi

DT
i,i +M2

i,i−1KWi

+Hi,i−1Pi−1|i−1Λ
T

i,i−1

)
Φi|i−1. (51)

The innovations process, νei , of the controlled process Bn0 ,
in (48) is an orthogonal Gaussian process, and independent
of the strategy e(·) (by (13), (48)), and

νei
4
= Bi − B̂i|i−1 = νei

∣∣∣
ei=0

≡ ν0
i , (52)

ν0
i ∼ N(0,Kν0

i
), Kν0

i
= KBi|Bi−1

0
, i = 0, . . . , n (53)

Pes(Bi ≤ bi|Bi−1
0 ) ∼ N(B̂i|i−1,Kν0), i = 0, . . . , n. (54)

From the above and (44) we obtain, for i = 0, . . . , n,

I(Aii−1, Vi−1;Bi|Bi−1
0 , s) = log

|KBi|Bi−1
0
|

|KWi |
. (55)

The average cost is given by

1

n+ 1

n∑
i=0

Ees

{
γi(Ai, Bi−1)

}
=

1

n+ 1

n∑
i=0

Ees

{
〈Ui, Ri,iUi〉

+ 2〈Λi,i−1Ŝi−1|i−1, Ri,iUi〉

+ 〈Λi,i−1Ŝi−1|i−1, Ri,iΛi,i−1Ŝi−1|i−1〉+ tr
(
KZi

Ri,i

)
+ tr

(
ΛTi,i−1RiΛi,i−1Pi−1|i−1

)
+ 〈Bi−1, Qi,i−1Bi−1〉

}
≡ 1

n+ 1

n∑
i=0

Ees

{
γ̂i(Ui, Ŝi−1|i−1, Bi−1,Λi,i−1,KZi)

}
.

Hence, the characterization of FTFI CC capacity is given by

C1,1,1
An

0→Bn
0 |s

(κ) =
1

2
sup

P1,1,1
[0,n] (κ)

{
(56)

n∑
i=0

log
|Λi,i−1Pi−1|i−1Λ

T

i,i−1 +Di,iKZiD
T
i,i +KWi |

|KWi
|

}
P1,1,1

[0,n] (κ)
4
=
{
ei(·)

4
=
(
ei(·, ·),Λi,i−1,KZi

)
, i = 0, . . . , n :

1

n+ 1

n∑
i=0

Ees

(
γi(Ai, Bi−1)

)
≤ κ

}
. (57)

For problem (56), we prove a decentralized separation prin-
ciple between the computation of the strategies {ei(·) : i =
0, . . . , n} and {(Λi,i−1,KZi) : i = 0, . . . , n}: it states that
problem (56) is equivalent to a decentralized optimization
problem, with multiple decision makers (DMs), each having
access to different information [10].

Theorem 3.1: (Decentralized separation principle)
Consider the LQG-DM{M = 1, L = 1, T = 1} of

Definition 1.2. Then the following hold.
(a) The Cost-Rate, i.e., dual of C0,n(κ) ≡ C1,1,1

An
0→Bn

0 |s
(κ), is

κ0,n(C)
4
= inf(

ei(·),Λi,i−1,KZi
�0
)
,i=0,...,n

Ees

{ n∑
i=0

γi(Ai, Bi−1)
}

such that
1

2

n∑
i=0

log
|KBi|Bi−1

0
|

|KWi
|
≥ (n+ 1)C. (58)

(b) Decentralized Separation Principle. Let {e∗(·) ≡
(e∗i (·),Λ∗i,i−1,K

∗
Zi

) : i = 0, . . . , n} denote then optimal
strategy of C0,n(κ) ≡ CAn

0→Bn
0 |s(κ), defined by (56).

Then the following decentralized separation principle holds.
(i) For a fixed {(Λi,i−1,KZi) : i = 0, . . . , n}, determine
the optimal strategy {e∗i (·,Λ,KZ) : i = 0, . . . , n} from the
solution of the stochastic optimization problem

JSC0,n (Λ,KZ , e
∗)
4
= inf
ei(·):i=0,...,n

Ees

{ n∑
i=0

γi(Ai, Bi−1)
}
. (59)

(ii) Determine the optimal strategy {(Λ∗i,i−1,K
∗
Zi

) : i =
0, . . . , n} from (56), when {ei(·) = e∗i (·) : i = 0, . . . , n}.
(c) Optimal Decentralized Strategies. Define an augmented
state variable as follows.

Bi−1
4
=

[
Bi−1

Ŝi−1|i−1

]
, i = 1, . . . , n. (60)

{ei(·,Λ,KZ) : i = 0, . . . , n} of (59) is of the form

ei(B
i−1
0 ,Λ,KZ , s) =Γ1

i,i−1Bi−1 + Γ2
i,i−1Ŝi−1|i−1, (61)

=Γi,i−1Bi−1, i = 0, . . . , n. (62)

where the components of {Bi : i = 0, . . . , n} satisfy (48),
(53), and the augmented system is

Bi =F i,i−1Bi−1 + Ei,i−1Ui +Gi,i−1ν
e
i , (63)

F i,i−1
4
=

[
Ci,i−1 Λi,i−1

0 Hi,i−1

]
, Ei,i−1

4
=

[
Di,i

Gi,i−1

]
(64)

Gi,i−1
4
=

[
I

∆i|i−1

]
. (65)
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The average cost is of quadratic form, given by

Ees

{ n∑
i=0

γi(Ai, Bi−1)
}
≡ Ees

{ n∑
i=0

γ̂i(Ui, Bi−1,Λi,i−1,KZi
)
}

4
= Ee

b−1

{ n∑
i=0

([
Bi−1

Ui

]T [ M i,i−1 Li,i−1

L
T

i,i−1 N i,i−1

] [
Bi−1

Ui

]
+ tr

(
KZi

Ri,i
)

+ tr
(
ΛTi,i−1Ri,iΛi,i−1Pi−1|i−1

))}
, (66)

M i,i−1
4
=

[
Qi,i−1 0

0 ΛTi,i−1Ri,iΛi,i−1

]
, (67)

Li,i−1
4
=

[
0

ΛTi,i−1Ri,i

]
, N i,i−1

4
= Ri,i. (68)

Moreover, the following hold.
(i) For a fixed {(Λi,i−1,KZi

) : i = 0, . . . , n}, the optimal
strategy {U∗i = e∗i (B

i−1
0 ,Λ,KZ , s) ≡ e∗i (Bi−1,Λ,KZ , s) :

i = 0, . . . , n} is given by the following equations.

e∗i (bi−1,Λ,KZ , s) = Γ
∗
i,i−1bi−1 (69)

Γ
∗
i,i−1 = −

(
N i,i−1+E

T

i,i−1Σ(i+1)Ei,i−1

)−1(
L
T

i,i−1

+ E
T

i,i−1Σ(i+1)F i,i−1

)
, i = 0, . . . , n− 1, (70)

Γ
∗
n,n−1 = −N−1

n,n−1L
T

n,n−1 (71)

where the symmetric positive semi-definite matrix {Σ(i) :
i = 0, . . . , n} satisfies the matrix difference Riccati equation

Σ(i)=F
T

i,i−1Σ(i+1)F i,i−1−
(
F
T

i,i−1Σ(i+1)Ei,i−1+Li,i−1

)
.
(
N i,i−1 + E

T

i,i−1Σ(i+ 1)Ei,i−1

)−1(
F
T

i,i−1Σ(i+1)Ei,i−1

+Li,i−1

)T
+M

T

i,i−1, i = 0, . . . , n− 1, (72)

Σ(n) = diag{Mn,n−1, 0} (73)

and the optimal pay-off is given by

JSC(e∗(·),Λ,KZ) = 〈b0|−1,Σ(0)b0|−1〉+

n∑
j=0

{
tr
(
KZj

Rj,j
)

+ tr
(
ΛTj,j−1Rj,jΛj,j−1Pj−1|j−1

)}
+

n−1∑
j=0

tr
(
KBj |Bj−1

G
T

j,j−1Σ(j + 1)Gj,j−1

)
. (74)

(ii) The optimal strategy {(Λ∗i,i−1,K
∗
Zi

) : i = 0, . . . , n} is
determined from (56), for fixed e(·) = e∗(·).

Proof: The derivation follows from the structure of the
strategies.

Remark 3.2: (Decentralized structure of optimal channel
input process)

(1) Theorem 3.1 states that a decentralized separation
principle holds, and (13) is decomposed into the strategies

Ai =Γ1
i,i−1Bi−1 + Γ2

i,i−1Ŝi−1|i−1

+ Λ1
i,i−1Ai−1 + Λ2

i,i−1Vi−1 + Zi. (75)

This separation principle is more general than the cor-
responding separation of estimation and control, of LQG
stochastic optimal control theory [11].

(2) The direct control-coding theorem can be derived, as
in [2], Theorem 4.1, using the ergodic theory of Markov
decision problems.

Conjecture 3.3: For time-invariant (TI) LQG-DMs, and
strategies in (75) restricted to TI, (Γ1,Γ2,Λ1,Λ2,KZ),∀i,
and stable, in the sense that

lim
n←→∞

Pn|n = P, lim
n←→∞

Σ(n) = Σ (76)

exist and satisfy matrix Riccati algebraic equations, with
stabilizing solutions, then the CC capacity is the per unit
time limit of (56), evaluated at e(·) = e∗, i.e.,

C(κ) = lim
n←→∞

1

n+ 1
C1,1,1
An

0→Bn
0 |s

(κ) (77)

The conditions of the conjecture are sufficient to ensure the
analog of Theorem 4.1 in [2] holds.

IV. CONCLUSIONS

The results of the he paper extend Shannon’s operational
definition of coding capacity to control-coding capacity for
general unstable DMs, and provide answers to several open
problems in Shannon’s information theory, as applied to
communication systems.

The analysis of the n−FTFI control-coding capacity of the
LQG-DM given in Theorem 3.1, illustrates the decentralized
separation principle of optimal strategies. Further, optimal
strategies include control, estimation, and information trans-
mission/signalling strategies, that interact in a specific order.
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