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Secrecy rate maximization in Gaussian MIMO wiretap channels is considered. While
the optimality of Gaussian signaling and a general expression for the secrecy capacity
have been well established, closed-form solutions for the optimal transmit covariance
matrix are known for some special cases only, while the general case remains an open
problem. This chapter reviews known closed-form solutions and presents a numerical
algorithm for the general case with guaranteed convergence to the global optimum. The
known solutions include full-rank and rank-1 cases (which, when combined, provide
a complete solution for the case of two transmit antennas), the case of identical right
singular vectors for the eavesdropper and legitimate channels, and the cases of weak,
isotropic, and omnidirectional eavesdroppers, which also provide lower and upper
bounds to the general case. Necessary optimality conditions and a tight upper bound for
the rank of the optimal covariance matrix in the general case are discussed. Sufficient
and necessary conditions for the optimality of three popular signaling strategies over
MIMO channels, namely, isotropic and zero-forcing signaling as well as water-filling
over the legitimate channel eigenmodes, are presented. The chapter closes with a
detailed description of a numerical globally convergent algorithm to solve the general
case, and gives some illustrative examples.

5.1 Introduction

Due to their high spectral efficiency, wireless MIMO (multiple input, multiple output)
systems are widely adopted by academia and industry. The broadcast nature of wireless
channels stimulated significant interest in their security aspects and the Gaussian MIMO
wiretap channel (WTC) has emerged as a popular model to study information theoretic
secrecy aspects of wireless systems [1]. A number of results have been obtained for
this model, including the proof of optimality of Gaussian signaling [1–4], which is far
from trivial and significantly more involved than that of the regular (no wiretap) MIMO
channel. Once the functional form of the optimal input is established, the only unknown
is its covariance matrix since the mean is always zero. This latter part has not been
solved yet in the general case; only a number of special cases have been settled.

In this chapter, we review the well-known as well as recent results on an optimal
transmit covariance matrix for the MIMO WTC. Several new results will be reported as
well.
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110 S. Loyka and C. D. Charalambous

The optimal transmit covariance matrix under the total power constraint has been
obtained for some special cases (low/high signal to noise ratio (SNR), multiple input,
single output (MISO) channels, full-rank or rank-1 solutions) [2–12], but the general
case is still open. The main difficulty lies in the fact that, unlike the regular MIMO
channel, the underlying optimization problem for the MIMO WTC is not convex
in general, in addition to the fact that the respective Karush–Kuhn–Tucker (KKT)
optimality conditions are a system of non-linear matrix equalities and inequalities. It
was conjectured in [4] and proved in [3] using an indirect approach (via the degraded
channel) that the optimal signaling is on the positive directions of the difference channel.
A direct proof (based on the necessary KKT conditions) has been obtained in [10], while
the optimality of signaling on non-negative directions has been established in [7] via an
indirect approach. Closed-form solutions for MISO and rank-1 MIMO channels have
been obtained [2, 7, 10]. The low-SNR regime has been studied in detail in [9]. An
exact full-rank solution for the optimal covariance matrix has been obtained in [10]
and its properties have been characterized. In particular, unlike the regular channel (no
eavesdropper), the optimal power allocation does not converge to a uniform one at high
SNR and the latter remains sub-optimal at any finite SNR.

Finally, while no analytical solution is known in the general case, a globally
convergent numerical algorithm was proposed in [13] to find an optimal covariance
for any Gaussian MIMO wiretap channel (degraded or not), and its convergence to a
global optimum, which takes only a moderate or small number of steps in practice, was
proved.

The rest of this chapter is organized as follows. Section 5.2 introduces the MIMO
WTC model. Rank-1 and full-rank solutions are discussed in Sections 5.3 and 5.4. The
weak eavesdropper case is considered in Section 5.5, which is motivated by a scenario
where the Tx–Rx distance is much smaller than the Tx–Ev one. Section 5.6 discusses an
isotropic eavesdropper model, whereby the Tx does not know the directional properties
of the Ev and hence assumes it is isotropic. Section 5.7 studies an omnidirectional
eavesdropper , which may have a smaller number of antennas (and hence rank-deficient
channel) and which has the same gain in any direction of a given sub-space. The case of
identical right singular vectors of the Rx and Ev channels is investigated in Section 5.8.
In Sections 5.9–5.11, we consider three popular signaling techniques: zero-forcing (ZF),
standard water-filling (WF) over the eigenmodes of the legitimate channel, and isotropic
signaling (whereby the covariance matrix is a scaled identity), and discuss sufficient
and necessary conditions under which they are optimal for the MIMO WTC. These
techniques are appealing for a number of reasons, including their lower complexity and
existing solutions. Finally, Section 5.12 presents an algorithm for numerical evaluation
of the Tx covariance matrix with guaranteed convergence to a global optimum in the
general case.

Notation

λi(W) denotes eigenvalues of a matrix W; (x)+ = max{x,0} for a real scalar x; N(W)
and R(W) are the null space and the range of a matrix W; (W)+ denotes positive
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Secrecy Rate Maximization 111

eigenmodes of a Hermitian matrix W:

(W)+ =
∑

i:λi(W)>0

λiuiu
+
i , (5.1)

where λi is the ith largest eigenvalue of W and ui is its corresponding eigenvector. A>B
means that A−B is positive definite; |A| is the determinant of A, while A′ and A+ are
its transposition and Hermitian conjugation.

5.2 MIMO Wiretap Channel

Let us consider the standard wiretap Gaussian MIMO channel model,

y1 =H1x+ ξ1, y2 =H2x+ ξ2, (5.2)

where x = [x1,x2, ...xm]′ ∈ Cm,1 is the transmitted complex-valued signal vector of
dimension m×1, y1(2) ∈Cn1(2),1 are the received vectors at the receiver (eavesdropper),
ξ1(2) is the circularly symmetric additive white Gaussian noise at the receiver
(eavesdropper; normalized to unit variance in each dimension), H1(2) ∈ Cn1(2),m is the
n1(2) × m matrix of the complex channel gains between each Tx and each receive
(eavesdropper) antenna, and n1(2) and m are the numbers of Rx (eavesdropper)
and Tx antennas respectively; see Fig. 5.1. The channels H1(2) are assumed to be
quasi-static (i.e., constant for a sufficiently long period of time so that the infinite
horizon information theory assumption holds) and frequency-flat, with full channel state
information (CSI) at the Rx and Tx ends. With slight modifications, this model can also
include the case of spatially correlated noise.

The main performance indicator for a wiretap channel is its secrecy capacity,
defined as follows. A secrecy rate is achievable if it satisfies the secrecy criterion
(the information leakage to the eavesdropper approaches zero as the block length
increases) in addition to the traditional reliability criterion (the error probability of the
legitimate receiver approaches zero); see [1] for more details. The secrecy capacity is
the supremum of all achievable secrecy rates, subject to the total power constraint.

1H

2H 2

1
1y

2y

x

Figure 5.1 A block diagram of the Gaussian MIMO wiretap channel. Full channel state information is
available at the transmitter. H1(2) is the channel matrix to the legitimate receiver (eavesdropper);
x is the transmitted signal and y1(2) is the received (eavesdropper) signal; ξ1(2) is the additive
white Gaussian noise at the receiver (eavesdropper). The information leakage to the
eavesdropper is required to approach zero asymptotically.
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Gaussian signaling is known to be optimal for the Gaussian MIMO WTC (the proof
of this is significantly more complicated than for the regular (no eavesdropper) Gaussian
MIMO channel) [2–4], so that the only unknown part is its covariance (since the mean
is always zero). For a given transmit covariance matrix R = E

{
xx+

}
, where E {·} is

statistical expectation, the maximum achievable secrecy rate between the Tx and Rx (so
that the rate between the Tx and eavesdropper is zero) is [3, 4]

C(R)= ln
|I+W1R|
|I+W2R| = C1(R)−C2(R), (5.3)

where negative C(R) is interpreted as zero rate, Wi = H+
i Hi. The secrecy capacity

subject to the total Tx power constraint is

Cs =max
R≥0

C(R) s.t. trR≤ PT, (5.4)

where PT is the total transmit power (also the SNR since the noise is normalized). It is
well known that the problem in (5.4) is not convex in general and an explicit solution for
the optimal Tx covariance is not known for the general case, but only for some special
cases (e.g., low/high SNR, MISO channels, full-rank or rank-1 cases [2–13]). In fact,
the problem in (5.4) is still open even for the degraded (and hence convex) but otherwise
general case of W1 ≥W2.

The optimization problem in (5.4) is the main subject of this chapter. The following
theorem gives the necessary optimality conditions in the general case, which are
instrumental for further development and allow one to established closed-form solutions
for the optimal covariance in many cases.

T H E O R E M 5.1 Let R∗ be an optimal covariance in (5.4),

R∗ = argmax
R≥0

C(R) s.t. trR≤ PT,

and let ui+ be its active eigenvector (i.e., corresponding to a positive eigenvalue). Then,

U+r+(W1−W2)Ur+ > 0, (5.5)

where the columns of semi-unitary matrix Ur+ are the active eigenvectors {ui+}, so
that x+(W1 −W2)x > 0 ∀x ∈ span{ui+}, i.e., a necessary condition for an optimal
signaling strategy in (5.4) is to transmit into the positive directions of W1−W2 (where
the legitimate channel is stronger than the eavesdropper).

Proof Based on the necessary KKT optimality conditions ; see [10] for details.

It was demonstrated in [4] that rank(R∗) < m unless W1 > W2, i.e., an optimal
transmission is of low rank over a non-degraded channel. The corollary below gives
a more precise characterization based on the necessary optimality condition above.

C O RO L L A RY 5.1 Let W1 − W2 = W+ + W−, where W+(−) collects positive
(negative and zero) eigenmodes of W1−W2 (found from its eigenvalue decomposition).
Then,

rank(R∗)≤ rank(W+)≤m, (5.6)
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Secrecy Rate Maximization 113

i.e., the rank of an optimal covariance R∗ does not exceed the number of strictly positive
eigenvalues of W1−W2 (the rank of W+).

5.3 Rank-1 Solution

Using Corollary 5.1, one immediately obtains an optimal covariance when rank(W+)=
1, e.g., for MISO or MIMO rank-1 channels.

C O RO L L A RY 5.2 Let rank(W+) = 1. The secrecy capacity and optimal covariance
are

Cs = lnλ1, R∗ = PTu1u+1 , (5.7)

where λ1, u1 are the largest eigenvalue and corresponding eigenvector of (I +
PTW2)

−1(I+ PTW1) or, equivalently, the largest generalized eigenvalue and corre-
sponding eigenvector of (I+PTW1,I+PTW2), so that transmit beamforming on u1 is
the optimal strategy.

Proof Corollary 5.1 ensures that rank(R∗) = 1; the optimal covariance R∗ in (5.7)
follows in the same way as in [2].

Note that MISO channels (single-antenna channel at the receiver or eavesdropper)
considered in [2, 6, 8] are special cases of this corollary with, e.g., W1 = h1h+1 . The
corollary allows not only MIMO channels with rank(W1)= 1 but also any higher-rank
W1 and W2 provided that rank (W+)= 1.

Furthermore, the signaling in (5.7) is also optimal for any rank(W+) ≥ 1 at
sufficiently small SNR, where λ1, u1 become the largest eigenvalue and corresponding
eigenvector of the difference channel W1 −W2. The appeal of this signaling is due to
its low complexity.

It should be emphasized that the solution in (5.7) is not zero-forcing (i.e., W2u1 
= 0)
in general, i.e., the Tx does not form null in the Ev direction. Intuitively, doing so results
in loss of power at the Rx and hence is not optimal in general. Such a solution may be
optimal in some special cases; see Section 5.9.

5.4 Full-Rank Solution

The full-rank solution of the optimization problem in (5.4) is given by the following
theorem.

T H E O R E M 5.2 Let W1 >W2 and PT > PT0, where PT0 is a threshold power given by
(5.12). Then, R∗ is of full rank and is given by

R∗ =U�1U+−W−1
1 , (5.8)
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114 S. Loyka and C. D. Charalambous

where the columns of the unitary matrix U are the eigenvectors of Z=W2+W2(W1−
W2)

−1W2, �1 = diag{λ1i}> 0 is a diagonal positive-definite matrix,

λ1i = 2

λ

(√
1+ 4μi

λ
+ 1

)−1

, (5.9)

and μi ≥ 0 are the eigenvalues of Z; λ > 0 is found from the total power constraint
trR∗ = PT as a unique solution of the equation

2

λ

∑
i

(√
1+ 4μi

λ
+ 1

)−1

= PT+ trW−1
1 . (5.10)

The corresponding secrecy capacity is

Cs = ln
|W1| |�1|

|I−W2(W
−1
1 −U�1U+)| = ln

|W1|
|W2| + ln

|�1|
|�2| , (5.11)

where�2=�1+diag{μ−1
i } and the second equality holds when W2 is positive definite,

W2 > 0. PT0 can be expressed as follows:

PT0 = 2(μ1+λmin)

λ2
min

∑
i

(√
1+ 4μi(μ1+λmin)

λ2
min

+ 1

)−1

− trW−1
1 , (5.12)

where λmin is the minimum eigenvalue of W1 and μ1 is the maximum eigenvalue of Z.

Proof Based on the KKT conditions , which are sufficient for optimality in this case
(since the channel is degraded and hence the problem is convex); see [10] for details.

It should be pointed out that Theorem 5.2 gives an exact (not approximate) optimal
covariance at finite SNR (PT →∞ is not required) since PT0 is a finite constant that
depends only on W1 and W2 and this constant is small in some cases: it follows from
(5.12) that PT0 → 0 if λmin →∞, i.e., PT0 is small if λmin is large. In particular, PT0

can be bounded above as

PT0 ≤ mμ1

λ2
min

+ m− 1

λmin
, (5.13)

and if λmin �μ1, then

PT0 ≈ m

λmin
− trW−1

1 ≤ m− 1

λmin
≤ 1, (5.14)

where the last inequality holds if λmin ≥ m− 1. Figure 5.2 illustrates this case. On the
other hand, when W1−W2 approaches a singular matrix, it follows that PT0 →∞, so
that PT0 is large iff W1−W2 is close to singular.

Theorem 5.2, in combination with the rank-1 solution, provides the complete solution
for the optimal covariance in the m = 2 case: if the channel is not strictly degraded or
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Secrecy Rate Maximization 115

if the SNR is not above the threshold, the rank-1 solution in (5.7) applies; otherwise,
Theorem 5.2 applies. Figure 5.2 illustrates this for the following channel:

W1 =
[

1.5 0.5
0.5 1.5

]
, W2 =

[
0.35 0.15
0.15 0.35

]
. (5.15)

Note that the transition to full-rank covariance takes place at low SNR of about −6 dB,
i.e., PT0 is not high at all in this case.

We further observe that the first term in (5.11), C∞ = ln |W1||W2| , is independent of

SNR, and the second one, �C = ln |�1||�2| < 0, monotonically increases with the SNR.
Furthermore, Cs → C∞, �C → 0 as PT →∞, in agreement with Theorem 2 in [3].
This is also clear from Fig. 5.2.

Note also that the second term in (5.8) de-emphasizes weak eigenmodes of W1.
Since λ is monotonically decreasing as PT increases [this follows from (5.10)], λ1i

monotonically increases with PT, and approaches λ1i ≈ 1/
√
μiλ, i = 1, . . . ,m, at

sufficiently high SNR, which is in contrast with the conventional WF solution, where
the uniform power allocation is optimal at high SNR. Furthermore, it follows from (5.9)
that λ1i decreases with μi, i.e., stronger eigenmodes of W−1

2 −W−1
1 = Z−1 (which

correspond to larger eigenmodes of W1 and weaker ones of W2) get allocated more
power, which follows the same tendency as the conventional WF. It further follows
from (5.8) that when W1 and W2 have the same eigenvectors, R∗ also has the same
eigenvectors, i.e., the optimal signaling is on the eigenvectors of W1(2).

The case of singular W1 can also be included by observing that, under certain
conditions, R∗ puts no power on the null space of W1 so that all matrices can be
projected, without loss of generality, on the positive eigenspace of W1 and Theorem 5.2
will apply to the projected channel.

It is instructive to consider the case when the required channel is much stronger than
the eavesdropper one, W1 �W2, meaning that all eigenvalues of W1 are much larger
than those of W2.

SNR [dB]

−10 0 10 20 30
0

1

2

3

Capacity
rank

Figure 5.2 Secrecy capacity and the rank of R∗ vs. SNR [dB] for the channel in (5.15). The transition to
full-rank covariance takes place at about −6 dB.
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116 S. Loyka and C. D. Charalambous

C O RO L L A RY 5.3 Consider the MIMO WTC in (5.2) under the conditions of
Theorem 5.2 and when the eavesdropper channel is much weaker than the required
one,

λ1(W2)�m(PT+ trW−1
1 )−1/4≤m/(4PT), (5.16)

where λi(W2) is ith largest eigenvalue of W2, e.g., when W2 → 0 with fixed W1. Then
the optimal covariance in (5.8) becomes

R∗ ≈ (λ−1I−W−1
1 )−λ−2W2. (5.17)

Proof See [10].

The approximation in (5.17) should be understood in Frobenius or any other norm
(since all norms are equivalent). An interpretation of (5.17) is immediate: the first term

RWF = λ−1I−W−1
1 (5.18)

is the standard water-filling on the eigenmodes of W1 (which is the capacity-achieving
strategy for the regular MIMO channel) and the second term is a correction due to the
secrecy requirement: those modes that spill over into the eavesdropper channel get less
power to accommodate the secrecy constraint.

Let us now consider the high-SNR regime.

C O RO L L A RY 5.4 When W2 > 0, the optimal covariance R∗ in (5.8) in the high-SNR
regime

PT �μ−1/2
m

∑
i
μ
−1/2
i (5.19)

(e.g., when PT →∞), where μm =miniμi, simplifies to

R∗ ≈Udiag{di}U+, di = PTμ
−1/2
i∑

iμ
−1/2
i

. (5.20)

The corresponding secrecy capacity is

Cs ≈ ln
|W1|
|W2| −

1

PT

(∑
i

1√
μi

)2

, (5.21)

where we have neglected the second- and higher-order effects in 1/PT.

Proof Follows from Theorem 5.2 along the same lines as that of Corollary 5.3.

Note that the optimal signaling is on the eigenmodes of W−1
2 −W−1

1 with the optimal
power allocation given by {di}. This somewhat resembles the conventional water-filling,
but also has a remarkable difference: unlike the conventional WF, the secure WF in
(5.20) does not converge to the uniform allocation in the high-SNR regime.1 However,
strong eigenmodes of W−1

2 − W−1
1 (which correspond to weak modes of W2 and

strong ones of W1) do get more power, albeit in a form different from that of the
conventional WF.

1 The sub-optimality of the isotropic signaling suggested in Theorem 2 of [3] is hidden in the o(1) term.
The second term of Eq. (5.21) above refines that o(1) term.
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5.5 Weak Eavesdropper

Motivated by a scenario where the legitimate receiver is closer to the transmitter than
the eavesdropper so that its path loss is large, see, e.g., Fig. 5.4, the case of a weak
eavesdropper is considered in this section. There are no additional assumptions here
(e.g., for the channel to be degraded, etc.). The weak Ev case provides a lower bound to
the secrecy capacity in the general case, which is tight when the eavesdropper path loss
is large and hence serves as an approximation to the true capacity. It also captures the
capacity saturation effect at high SNR observed in [3, 10].

T H E O R E M 5.3 Consider the problem in (5.4) when the eavesdropper is weak,
λi(W2R)� 1, e.g., when λ1(W2)� 1/PT. The optimal covariance is given by

R∗ ≈W−1/2
λ (λ−1I− Ŵ−1

1 )+W−1/2
λ , (5.22)

where Wλ = I+ λ−1W2, Ŵ1 =W−1/2
λ W1W−1/2

λ , λ≥ 0 is found from the total power
constraint,2

trR∗ = PT if PT < P∗T, (5.23)

and λ= 0 otherwise; the threshold power

P∗T = trW−1
2 (I−W1/2

2 W−1
1 W1/2

2 )+ (5.24)

if W2 is non-singular; P∗T = ∞ if W2 is singular and N(W2) 
⊆ N(W1). The
corresponding secrecy capacity is

Cs ≈
∑

i:̂λ1i>λ

ln(̂λ1i/λ)− trŴ2(I− Ŵ−1
1 )+ (5.25)

where λ̂1i = λi(Ŵ1), Ŵ2 =W−1/2
λ W2W−1/2

λ .

Proof The proof is based on the weak eavesdropper approximation

C(R)≈ ln |I+W1R|− tr(W2R), (5.26)

which holds if λi(W2R)� 1, and on the respective KKT optimality conditions. See [12]
for details.

R E M A R K 5.1 It may appear that (5.22) requires Ŵ1 and thus W1 to be positive
definite, i.e., the singular case is not allowed. This is not so: the (·)+ operator makes
sure that zero eigenmodes of Ŵ1 are eliminated so that singular W1 is allowed. The
same observation also applies to (5.24) and (5.25).

R E M A R K 5.2 One way to ensure that the Ev is weak, i.e., λi(W2R)� 1, is to require

λ1(W2)� 1/PT (5.27)

2 Here we implicitly assume that Wλ is non-singular, i.e., either W2 is non-singular or λ > 0 if it is singular.
If this is not the case, a pseudo-inverse should be used instead.
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Figure 5.3 Weak eavesdropper approximation in (5.25) and exact secrecy capacity (via MC) versus SNR.
W1,2 are as in (5.28), α = 0.1. The approximation is accurate if SNR < 10 dB. Note the capacity
saturation effect at high SNR in both cases.

[since λi(W2R)≤ λi(W2)λ1(R)≤ PTλ1(W2)], from which it follows that this holds as
long as the power (or SNR) is not too large, i.e., PT � 1/λ1(W2); see also Fig. 5.3.
It should be noted, however, that this approximation extends well beyond the low-SNR
regime provided that the eavesdropper path loss is sufficiently large (i.e., λ1(W2) is
small). For the scenario in Fig. 5.3, it works well up to about 10 dB and can extend to
larger SNR for smaller α.

R E M A R K 5.3 When the optimal covariance in (5.22) is full rank , it takes on the
same form as in (5.17), thus revealing similarity with the standard water-filling over the
channel eigenmodes in (5.18).

To illustrate Theorem 5.3, and also to see how accurate the approximation is, Fig. 5.3
shows the secrecy capacity obtained from the theorem for

W1 =
(

2 0
0 1

)
, W2 = α

(
2 1
1 1

)
. (5.28)

In addition, its exact values (without the weak eavesdropper approximation) obtained
by brute force Monte Carlo (MC) based approach (where a large number of covariance
matrices are randomly generated, subject to the total power constraint, and the best
one is selected) are shown for comparison. To validate the analytical solution in
Theorem 5.3, the approximate problem has also been solved by the MC-based approach.
It is clear that the approximation is accurate in this case provided that SNR < 10 dB.
Also note the capacity saturation effect, for both the approximate and exact values. This
saturation effect has already been observed in [3,10], and, in the case of W1 >W2 > 0,
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the saturation capacity is

C∗s = ln |W1|− ln |W2|, (5.29)

which follows directly from (5.3) by neglecting I. In the weak eavesdropper approxima-
tion, the saturation effect is due to the fact that the second term in (5.26) is linear in PT

while the first is only logarithmic. So using the full available power is not optimal when
that power is sufficiently high. Roughly speaking, the approximation is accurate before
it reaches the saturation point, i.e., for PT < P∗T. The respective saturation capacity is
obtained from (5.25) by setting λ= 0. In the case of W1 >W2 > 0, it is given by

C∗ = ln |W1|− ln |W2|− tr(I−W2W−1
1 ). (5.30)

By comparing (5.29) and (5.30), one concludes that the thresholds are close to each
other when tr W2W−1

1 ≈m.

R E M A R K 5.4 In the general case, the approximated capacity and corresponding
optimal covariance in Theorem 5.3 provide a lower bound to the true secrecy capacity
in (5.4) at any SNR/power and for any eavesdropper channel (weak or not):

Cs ≥ C(R∗), (5.31)

where C(R) is as in (5.26), which follows from ln(1+ x)≤ x ∀x≥ 0. The sub-optimality
gap can be bounded above as follows:

0≤ Cs−C(R∗)≤ P2
T

2
λ2

1(W2), (5.32)

so that the bound is tight for a weak eavesdropper or/and low SNR .

To obtain further insight in the weak eavesdropper regime, let us consider the case
when W1,2 have the same eigenvectors. This is a broader case than it may first appear
as it requires H1,2 to have the same right singular vectors while leaving the left ones
unconstrained (see Section 5.8 for more details on this scenario). In this case, the results
of Theorem 5.3 simplify as follows.

C O RO L L A RY 5.5 Let W1 and W2 have the same eigenvectors. Then, under the
conditions of Theorem 5.3, the optimal covariance is

R∗ =U�∗U+, (5.33)

where U is found from the eigenvalue decompositions Wi = U�iU+ so that the
eigenvectors of R∗ are the same as those of W1,2. The diagonal matrix �∗ collects
the eigenvalues of R∗:

λi(R∗)=
(

1

λ+λ2i
− 1

λ1i

)
+

, (5.34)

where λki is ith eigenvalue of Wk.
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120 S. Loyka and C. D. Charalambous

Note that the power allocation in (5.34) resembles the standard water-filling solution,
except for the λ2i term. In particular, only sufficiently strong eigenmodes are active:

λi(R∗) > 0 iff λ1i > λ+λ2i. (5.35)

As PT increases, λ decreases so that more eigenmodes become active; legitimate
channel eigenmodes are active provided that they are stronger than those of the
eavesdropper: λ1i > λ2i. Only the strongest eigenmode (for which the difference
λ1i−λ2i is largest) is active at low SNR.

5.6 Isotropic Eavesdropper and Capacity Bounds

The model above requires full eavesdropper CSI at the transmitter. This becomes
questionable if the eavesdropper does not cooperate (e.g., when it is hidden in order
not to compromise its eavesdropping ability). One approach to address this issue is
via a compound channel model [14–16]. In this section, an alternative approach is
considered in which the eavesdropper is characterized by a channel again assumed to be
identical in all directions. We term this an “isotropic eavesdropper.” This minimizes the
amount of CSI to be available at the transmitter (one scalar parameter and no directional
properties). Based on this, lower and upper (tight) capacity bounds are given for the
general case, which are achievable by an isotropic eavesdropper.

A further physical justification for this model comes from an assumption that the
eavesdropper cannot approach the transmitter too closely due to, e.g., some minimum
protection distance, see Fig. 5.4. This ensures that the gain of the eavesdropper channel
does not exceed a certain threshold in any transmit direction due to the minimum
propagation path loss (induced by the minimum distance constraint). Since the channel
power gain in the transmit direction x is x+W2x= |H2x|2 (assuming |x| = 1), and since
max|x|=1 x+W2x= ε1 (from the variational characterization of eigenvalues [17]), where
ε1 is the largest eigenvalue of W2, W2 ≤ ε1I ensures that the eavesdropper channel
power gain does not exceed ε1 in any direction.

In combination with the matrix monotonicity of the log-det function, the latter
inequality ensures that ε1I is the worst possible W2 that attains the capacity lower
bound in (5.39), i.e., the isotropic eavesdropper with the maximum channel gain is the
worst possible one among all eavesdroppers with a bounded spectral norm. Referring to
Fig. 5.4, the eavesdropper channel matrix H2 can be presented in the form

H2 =
√
α

Rν2
H̃2, (5.36)

where α/Rν2 represents the average propagation path loss, R2 is the
eavesdropper–transmitter distance, ν is the path loss exponent (which depends on
the propagation environment), α is a constant independent of distance (but dependent
on frequency, antenna height, etc.) [18], and H̃2 is a properly normalized channel
matrix (includes local scattering/multipath effects but excludes the average path loss)
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2 minR

B

BS
U

E

Figure 5.4 Physical scenario for a secret communication system: base station BS (the transmitter) is located
on the rooftop of a secure building B, legitimate user U (the receiver) is inside the building B,
and eavesdropper E is beyond the fence so that R2 ≥ R2min.

so that tr H̃+
2 H̃2 ≤ n2m [19]. With this in mind, one obtains

W2 =H+
2 H2 = α

Rν2
H̃+

2 H̃2 ≤ α

Rν2min
H̃+

2 H̃2 ≤ αn2m

Rν2min
I, (5.37)

so that one can choose ε1 = αn2mR−ν2min in this scenario, where R2min is the minimum
transmitter–eavesdropper distance. Note that the model captures the impact of the
number of transmit and eavesdropper antennas, in addition to the minimum distance
and propagation environment. In our view, the isotropic eavesdropper model is more
practically relevant than the full Tx CSI model.

The isotropic eavesdropper model is closely related to the parallel channel setting
in [20,21]: even though the original channel is not parallel, it can be transformed (via an
information-preserving transformation) into a parallel channel, for which independent
signaling is known to be optimal [20,21]. This shows that signaling on the eigenvectors
of W1 is optimal in this case, while an optimal power allocation is different from the
standard water-filling [21]. These properties in combination with the bounds in (5.38)
are exploited below.

While it is a challenging analytical task to evaluate the secrecy capacity in the general
case, one can use the isotropic eavesdropper model given above to construct lower and
upper capacity bounds for the general case using the standard matrix inequalities

εmI≤W2 ≤ ε1I, (5.38)

where εi = λi(W2) denotes the ith largest eigenvalue of W2, and the equalities are
achieved when ε1 = εm, i.e., by the isotropic eavesdropper. This is formalized below.

P RO P O S I T I O N 5.1 The MIMO WTC secrecy capacity in (5.4) is bounded as follows:

C∗(ε1)≤ Cs ≤ C∗(εm), (5.39)
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122 S. Loyka and C. D. Charalambous

where C∗(ε) is the secrecy capacity Cs when W2 = εI, i.e., for the isotropic
eavesdropper,

C∗(ε)= max
R≥0, trR≤PT

ln
|I+W1R|
|I+ εR| =

∑
i

ln
1+ giλ

∗
i

1+ ελ∗i
, (5.40)

gi = λi(W1), and λ∗i = λi(R∗) are the eigenvalues of the optimal transmit covariance
R∗ =U1�

∗U+1 ,

λ∗i =
ε+ gi

2εgi

(√
1+ 4εgi

(ε+ gi)2

(
gi− ε
λ

− 1

)
+
− 1

)
, (5.41)

and λ > 0 is found from the total power constraint
∑

iλ
∗
i = PT.

The bounds gap in (5.39) can be bounded above as

�C= C∗(εm)−C∗(ε1)≤m+ ln
1+ ε1PT/m+
1+ εmPT/m+

≤m+ ln
ε1

εm
, (5.42)

where m+ is the number of eigenmodes such that gi > εm. Both bounds are tight
(achieved with equality) at high SNR if gm+ > ε1.

Proof Use the matrix monotonicity of the log-det function and a unitary transforma-
tion to put this model into the parallel channel setting; see [11] for details.

Thus, the optimal signaling is on the eigenvectors of W1 (or right singular vectors
of H1), identically to the regular MIMO channel, with the optimal power allocation
somewhat similar (but not identical) to conventional water-filling. The latter is further
elaborated for the high and low SNR regimes below. Unlike the general case (of
non-isotropic eavesdropper), the secrecy capacity of the isotropic eavesdropper case
does not depend on the eigenvectors of W1 (but the optimal signaling does) but only
on its eigenvalues, so that the optimal signaling problem here separates into two
independent parts: (1) optimal signaling directions are selected as the eigenvectors of
W1, and (2) optimal power allocation is done based on the eigenvalues of W1 and the
eavesdropper channel gain ε. It is the lack of this separation that makes the optimal
signaling problem so difficult in the general case.

The bounds in (5.39) coincide when ε1 = εm, thus giving the secrecy capacity of the
isotropic eavesdropper. Furthermore, as follows from (5.42), they are close to each other
when the condition number ε1/εm of W2 is not too large, thus providing a reasonable
estimate of the secrecy capacity, see Fig. 5.5. Referring to Fig. 5.4, one can also set
ε1 = αn2mR−ν2min and proceed with a conservative system design to achieve secrecy
rate C∗(ε1). Note that this design requires only the knowledge of n2 and R2min at the
transmitter instead of the full CSI (W2), and hence is more realistic. This signaling
strategy does not incur significant penalty (compared to the full CSI case) provided that
the condition number ε1/εm is not too large, as follows from (5.42). It can be further
shown that C∗(ε1) is the compound secrecy capacity for the class of eavesdroppers with
bounded spectral norm (maximum channel gain), W2 ≤ ε1I, and that signaling on the
worst-case channel (W2 = ε1I) achieves the capacity [16].
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We note that the power allocation in (5.41) has properties similar to those of the
conventional water-filling, which are as follows.

P RO P O S I T I O N 5.2 Properties of the optimum power allocation:

1. λ∗i is an increasing function of gi (strictly increasing unless λ∗i = 0 or PT = 0) , i.e.,
stronger eigenmodes get allocated more power (as in the standard WF ).

2. λ∗i is an increasing function of PT (strictly increasing unless λ∗i = 0). λ∗i = 0 for i> 1
and λ∗1 = PT as PT → 0 if g1 > g2, i.e., only the strongest eigenmode is active at low
SNR, and λ∗i > 0 if gi > ε as PT →∞, i.e., all sufficiently strong eigenmodes are
active at high SNR.

3. λ∗i > 0 only if gi > ε, i.e., only the eigenmodes stronger than the eavesdropper ones
can be active.

4. λ is a strictly decreasing function of PT and 0< λ< g1− ε; λ→ 0 as PT →∞ and
λ→ g1− ε as PT → 0.

5. There are m+ active eigenmodes if the following inequalities hold:

Pm+ < PT ≤ Pm++1, (5.43)

where Pm+ is a threshold power (to have at least m+ active eigenmodes):

Pm+ =
m+−1∑

i=1

ε+ gi

2εgi

(√
1+ 4εgi

(ε+ gi)2

gi− gm+
(gm+ − ε)+

− 1

)
,m+ = 2, . . . ,m, (5.44)

and P1 = 0, so that m+ is an increasing function of PT.

It follows from Proposition 5.2 that there is only one active eigenmode, i.e.,
beamforming is optimal, if g2 > ε and

PT ≤ ε+ g1

2εg1

(√
1+ 4εg1

(ε+ g1)2

g1− g2

g2− ε − 1

)
. (5.45)

For example, this holds in the low SNR regime (note, however, that the single-mode
regime extends well beyond low SNR if ε→ g2 and g1 > g2), or at any SNR if g1 > ε

and g2 ≤ ε.
While it is difficult to evaluate λ analytically from the power constraint, Property 4

ensures that any suitable numerical algorithm (e.g., the Newton–Raphson method) will
do so efficiently.

As a side benefit of Proposition 5.2, one can use (5.43) as a condition for having m+
active eigenmodes under the regular eigenmode transmission (no eavesdropper) with
standard water-filling by taking ε→ 0 in (5.44),

Pm+ =
m+−1∑

i=1

(
1

gm+
− 1

gi

)
, (5.46)

and (5.46) approximates (5.44) when the eavesdropper is weak, ε � gm+. To the
best of our knowledge, the expression (5.46) for the threshold powers of the standard
water-filling has not previously appeared in the literature.
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124 S. Loyka and C. D. Charalambous

5.6.1 High SNR Regime

Let us now consider the isotropic eavesdropper model when the SNR grows large, so
that giλ

∗
i � 1, ελ∗i � 1. In this case, (5.40) simplifies to

C∗∞ =
∑
i+

ln
gi

ε
, (5.47)

where the summation is over all active eigenmodes, i+ = {i : gi > ε}, so that the
secrecy capacity is independent of the SNR (saturation effect) and the impact of the
eavesdropper is the multiplicative SNR loss, which is never negligible. To obtain a
threshold value of PT at which the saturation takes place, observe that λ → 0 as
PT →∞, so that (5.41) becomes

λ∗i =
PT

√
ε−1− g−1

i∑
i+

√
ε−1− g−1

i

(1+ o(1)), (5.48)

where
√
λ= 1

PT

∑
i+

√
ε−1− g−1

i (1+ o(1)) (5.49)

from the total power constraint. Using (5.48), the secrecy capacity becomes

C∗(ε)=
∑
i+

ln
gi

ε
− 1

PT

⎛⎝∑
i+

√
1

ε
− 1

gi

⎞⎠2

+ o

(
1

PT

)
, (5.50)

which is a refinement of (5.47). The saturation takes place when the second term is
much smaller than the first one, so that

PT �
∑

i+

√
ε−1− g−1

i∑
i+ ln gi

ε

(5.51)

and C∗(ε)≈ C∗∞ under this condition. This effect is illustrated in Fig. 5.5.
Note that, from (5.48), the optimal power allocation behaves almost like water-filling

in this case, due to the
√
ε−1− g−1

i term.
Using (5.47), the gap �C∗∞ between the lower and upper bounds in (5.39) becomes

�C∗∞ = C∗∞(εm)−C∗∞(ε1)=m1 ln
ε1

εm
+

m2∑
i=m1+1

ln
gi

εm
, (5.52)

where m1(2) is the number of active eigenmodes when ε = ε1(m). Note that this gap is
SNR independent, and if m1 =m2 =m+, which is the case if gm+ > ε1, then

�C∗∞ =m+ ln
ε1

εm
, (5.53)

i.e., also independent of the eigenmode gains of the legitimate user, and is determined
solely by the condition number of the eavesdropper channel and the number of active
eigenmodes. Note that, in this case, the upper bounds in (5.42) are tight.
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Figure 5.5 Secrecy capacity for the isotropic eavesdropper and the capacity of the regular MIMO channel
(no eavesdropper, ε = 0) vs. the SNR (= PT since the noise variance is unity); g1 = 2, g2 = 1.
Note the saturation effect at high SNR, where the capacity strongly depends on ε but not on the
SNR, and the negligible impact of the eavesdropper at low SNR.

5.6.2 When Is the Eavesdropper Negligible?

It is clear from (5.40) that under fixed {gi}, PT, the secrecy capacity converges to the
conventional one C∗(0) as ε → 0. However, no fixed ε (does not matter how small)
can ensure by itself that the eavesdropper is negligible since one can always select
sufficiently high PT to make the saturation effect important (see Fig. 5.5). To answer
the question in the section’s title, we use (5.40) to obtain:

C∗(ε)=max{λi}
∑

i

ln

(
1+ 1+ (gi− ε)λi

1+ ελi

)
s.t. λi ≥ 0,

∑
i

λi = PT

(a)≈max{λi}
∑

i

ln(1+ (gi− ε)λi) (5.54)

(b)≈max{λi}
∑

i

ln(1+ giλi)= C∗(0),

where (a) holds if

PT � 1/ε (5.55)

(since λi ≤ PT), i.e., if the SNR is not too large, and (b) holds if

ε� gi+, (5.56)

where i+ is the set of active eigenmodes, i.e., if the eavesdropper eigenmodes are much
weaker than the active eigenmodes of the legitimate channel. It is the combination of
(5.55) and (5.56) that ensures that the eavesdropper is negligible. Neither condition
alone is able to do so. Figure 5.5 illustrates this point. Equation (5.54) also indicates
that the impact of the eavesdropper is the per-eigenmode gain loss of ε. Unlike the high

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316450840.006
Downloaded from https://www.cambridge.org/core. University of Ottawa - Library Network, on 17 Feb 2018 at 21:08:36, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316450840.006
https://www.cambridge.org/core


126 S. Loyka and C. D. Charalambous

SNR regime in (5.47), where the loss is multiplicative (i.e., very significant and never
negligible), here it is additive (mild or negligible in many cases).

5.6.3 Low SNR Regime

Let us now consider the low SNR regime, which is characteristic for CDMA-type
systems [22]. Traditionally, this regime is defined via PT → 0. We, however, use a
more relaxed definition requiring that m+ = 1, which holds under (5.45). In this regime,
assuming g1 > ε,

C∗(ε)= ln
1+ g1PT

1+ εPT
= ln

(
1+ (g1− ε)PT

1+ εPT

)
(a)≈ ln(1+ (g1− ε)PT), (5.57)

where (a) holds when PT � 1/ε. It is clear from the last expression that the impact
of the eavesdropper is an additive SNR loss of εPT, which is negligible when ε� g1.
Note a significant difference to the high SNR regime in (5.47), where this impact is
never negligible. Figure 5.5 illustrates this difference.

Note further from (5.57) that the difference between the lower and upper bounds in
(5.39) is the SNR gap of (ε1 − εm)PT, which is negligible if g1 � ε1 − εm. This may
be the case even if the condition number ε1/εm is large. Therefore, we conclude that
the impact of the eavesdropper is more pronounced in the high SNR regime and is
negligible in the low SNR one if its channel is weaker than the strongest eigenmode of
the legitimate user.

When g1− ε� PT, (a) in (5.57) gives C∗(ε)≈ (g1− ε)PT, which is linear in PT. A
similar capacity scaling at low SNR has been obtained in [23] for an i.i.d. block-fading
single-input single-output (SISO) WTC, without, however, explicitly identifying the
capacity but via establishing upper/lower bounds. Also note that the first two equalities
in (5.57) do not require PT → 0 but only to satisfy (5.45).

5.7 Omnidirectional Eavesdropper

In this section, we consider a scenario where the eavesdropper has equal gain in
all directions of a certain sub-space. This model accounts for two points: (1) when
the transmitter has no particular knowledge about the directional properties of the
eavesdropper, which is most likely from the practical perspective, it is reasonable
to assume that its gain is the same in all directions; (2) on the other hand, when
the eavesdropper has a small number of antennas (less than the number of transmit
antennas), its channel rank, which does not exceed the number of transmit or receive
antennas, is limited by this number so that the isotropic model of the previous section
does not apply.3

3 This was pointed out by A. Khisti.
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For an omnidirectional eavesdropper, the channel gain is the same in all directions of
its active sub-space, i.e.,

|H2x|2 = x+W2x= const. ∀x ∈N(W2)
⊥, (5.58)

where N(W2)
⊥ is the sub-space orthogonal to the nullspace N(W2) of W2, i.e., its

active sub-space, whose dimensionality is r2 = rank(W2). In particular, when the
eavesdropper is isotropic, N(W2) is an empty set so that N(W2)

⊥ is the entire space
and r2 =m. The condition in (5.58) implies that

W2 = εU2+U+2+, (5.59)

where U2+ is a semi-unitary matrix that collects active eigenvectors of W2, and
N(W2)

⊥ = span{U2+}. Note that the model in (5.59) allows W2 to be rank-deficient:
r2 <m is allowed. ε can be evaluated from, e.g., (5.37): ε = αn2mR−ν2min.

T H E O R E M 5.4 Consider the omnidirectional eavesdropper in (5.58), (5.59) and let
R(W1)⊆R(W2). Then the MIMO WTC secrecy capacity can be expressed as

Cs = max
trR≤PT

ln
|I+W1R|
|I+W2R| = max

trR≤PT
ln
|I+W1R|
|I+ εR| = C∗(ε). (5.60)

Proof See Appendix.

Note that the secrecy capacity as well as the optimal signaling for an omnidirectional
eavesdropper in Theorem 5.4 is the same as for the isotropic one in Proposition 5.1,
i.e., the fact that the rank of the eavesdropper channel is low has no impact provided
that R(W1) ⊆ R(W2) holds (which is not the case in general, as can be shown via
examples).

Since R(W) collects directions where the channel gain is not zero,

|Hx|2 = x+Wx 
= 0 ∀x ∈R(W); (5.61)

the condition R(W1)∈R(W2)means that |H2x|= 0 implies |H1x|= 0 (but the converse
is not true in general) and hence |H1x| 
= 0 implies |H2x| 
= 0, i.e., the eavesdropper can
“see” in any direction where the receiver can “see” (but there is no requirement here for
the eavesdropper to be degraded with respect to the receiver, so that the channel is not
necessarily degraded).

Further note that the condition in (5.58) does not require U2 = U1, i.e., the
eigenvectors of the legitimate channel and of the eavesdropper can be different.

5.8 Identical Right Singular Vectors

In this section, we consider the case when H1,2 have the same right singular vectors
(SV), so that their singular value decomposition takes the form

Hk =Uk�kV+, (5.62)

where the unitary matrices Uk,V collect left and right singular vectors, respectively, and
diagonal matrix �k collects singular values of Hk. In this model, the left singular vectors
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128 S. Loyka and C. D. Charalambous

can be arbitrary. This is motivated by the fact that right singular vectors are determined
by scattering around the Tx, while left ones are determined by scattering around the
Rx and Ev, respectively. Therefore, when the Rx and Ev are spatially separated, their
scattering environments may differ significantly (and hence the different left SVs) while
the same scattering environment around the Tx induces the same right SVs. This is
similar to the popular Kronecker MIMO channel correlation model [24], where the
overall channel correlation is a product of the independent Tx and Rx parts, which are
induced by respective sets of scatterers. In this section, we make no weak eavesdropper
or any other assumptions.

After unitary (and thus information-preserving) transformations, this scenario can be
put into the parallel channel setting of [20, 21]. In this case, the secrecy capacity and
optimal covariance can be explicitly characterized.

P RO P O S I T I O N 5.3 Consider the wiretap MIMO channel in (5.2), (5.62). The optimal
Tx covariance for this channel takes the form

R∗ =V�∗V+, (5.63)

where the diagonal matrix �∗ collects its eigenvalues λ∗i :

λ∗i =
λ2i+λ1i

2λ2iλ1i

(√
1+ 4λ2iλ1i

(λ2i+λ1i)2

(
λ1i−λ2i

λ
− 1

)
+
− 1

)
(5.64)

where λki = σ 2
ki and σki denotes a singular value of Hk; λ > 0 is found from the total

power constraint
∑

iλ
∗
i = PT.

Proof After a unitary transformation, the problem can be put into the parallel channel
setting; see [12] for details.

In fact, Eq. (5.63) says that optimal signaling is on the right SVs of H1,2, and (5.64)
implies that only those eigenmodes are active for which

σ 2
1i > σ

2
2i+λ. (5.65)

If λ2i = 0, then (5.64) reduces to

λ∗i =
(

1

λ
− 1

λ1i

)
+

, (5.66)

i.e., as for standard WF. This implies that when λ2i = 0 for all active eigenmodes, then
the standard WF power allocation is optimal.

It should be stressed that the original channels in (5.62) are not parallel (diagonal).
They become equivalent to a set of parallel independent channels after performing
information-preserving transformations. Also, there is no assumption of degradedness
here and no requirement for the optimal covariance to be of full rank or rank 1.
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5.9 When Is ZF Signaling Optimal?

In this section, we consider the case when popular ZF signaling is optimal for the MIMO
WTC, i.e., when active eigenmodes of optimal covariance R∗ are orthogonal to those of
W2: W2R∗ = 0.4 It is clear that this does not hold in general. However, the importance
of this scenario comes from the fact that such signaling does not require wiretap
codes: since the eavesdropper gets no signal, regular coding on the required channel
suffices. Hence, the system design follows the well-established standard framework and
the secrecy requirement imposes no extra complexity penalty but is rather ensured by
well-established ZF signaling.

P RO P O S I T I O N 5.4 Consider the wiretap MIMO channel in (5.2) and let W1 and W2

have the same eigenvectors [so that H1 and H2 have the same right singular vectors as
in (5.62)] and

λ1i ≤ λ2i+λ if λ2i > 0, (5.67)

where λ is found from the total power constraint
∑

iλ
∗
i = PT,

λ∗i = λi(R∗)=
(

1

λ
− 1

λ1i

)
+

if λ2i = 0, (5.68)

and 0 otherwise. Then, the Gaussian ZF signaling is optimal, i.e., W2R∗ = 0 so that
active eigenmodes of R∗ are orthogonal to those of W2 and the optimal covariance is
as in (5.63), so that its eigenvectors are those of W1,2.

The necessary condition of ZF optimality is that active eigenvectors of R∗ are also
the active eigenvectors of W1 and inactive eigenvectors of W2, and that the power
allocation is given by (5.68).

Proof Based on the necessary KKT conditions, which, under the ZF condition
W2R = 0, have a unique solution; see [12] for details.

R E M A R K 5.5 The optimal power allocation in (5.68) is the same as standard WF.
However, a subtle difference here is the condition for an eigenmode to be active, λ∗i > 0:
while standard WF requires λ1i > λ, the solution above additionally requires λ2i = 0,
so that the set of active eigenmodes is generally smaller; the smaller the set of active
eigenmodes, the larger the set of eavesdropper positive eigenmodes.

It is gratifying to see that the standard WF over the eigenmodes of the required
channel is optimal if ZF is optimal. In a sense, the optimal transmission strategy in this
case is separated into two independent parts: part 1 ensures that the Ev gets no signal
(via the ZF), and part 2 is the standard signaling and WF on the active eigenmodes of the
legitimate channel as if the Ev were not there. No new wiretap codes need to be designed
as regular coding on the required channel suffices, so that the secrecy requirement does

4 This simply means that the Tx antenna array puts null in the direction of the eavesdropper, which is
known as null forming in antenna array literature [25]. This can also be considered as a special case of
interference alignment, so that Proposition 5.4 establishes its optimality.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316450840.006
Downloaded from https://www.cambridge.org/core. University of Ottawa - Library Network, on 17 Feb 2018 at 21:08:36, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316450840.006
https://www.cambridge.org/core


130 S. Loyka and C. D. Charalambous

not impose an extra complexity penalty (beyond the standard ZF). This is reminiscent
of the classical source–channel coding separation [26].

5.10 When Is Standard Water-Filling Optimal?

Motivated by the fact that the transmitter may be unaware of the presence of an
eavesdropper and hence uses the standard transmission on the eigenmodes of W1 with
power allocated via the WF algorithm, we ask the question: is it possible for this strategy
to be optimal for the MIMO WTC? The affirmative answer and conditions for this to
happen are given below.

To this end, let RWF be the optimal Tx covariance matrix for transmission on W1

only, which is given by standard WF over the eigenmodes of W1:

RWF =U1�
∗U+1 , λ∗i =

{
1

λ
− 1

λ1i

}
+

, (5.69)

where �∗ = diag{λ∗i } is a diagonal matrix of the eigenvalues of RWF, and λ is found
from the total power constraint

∑
iλ
∗
i = PT. Alternatively, one can consider PT as

parameterized by λ, where PT(λ) is monotonically decreasing in λ, with PT → 0 as
λ→ λ11 and PT →∞ as λ→ 0.

T H E O R E M 5.5 The standard WF transmit covariance matrix in (5.69) is also optimal
for the Gaussian MIMO WTC if:

1. the eigenvectors of W1 and W2 are the same: U1 =U2;
2. for active eigenmodes λ∗i > 0, their eigenvalues λ1i and λ2i are related as

λ2i = λ1i

1+αλ1i
< λ1i, for some α > 0, (5.70)

or, equivalently, λ−1
2i = λ−1

1i +α;
3. for inactive eigenmodes λ∗i = 0, the eigenvalues λ1i and λ2i are related either as in

(5.70) or λ1i ≤ λ2i.

Proof See Appendix.

Note that the conditions of Theorem 5.5 do not require W1 = aW2 for some scalar
a > 1; they also allow for the WTC to be non-degraded. However, the condition in
(5.70) implies that larger λ1i corresponds to larger λ2i, so that, over the active signaling
subspace, the channel is degraded.

The first condition in Theorem 5.5 implies that H1 and H2 have the same right
singular vectors but imposes no constraints on their left singular vectors. This may
represent a scenario where the transmitter is a base station and the legitimate channel
as well as the eavesdropper experience the same scattering with their own individual
scatterers around their own receivers (which determine the left singular vectors), as in
Section 5.8.
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5.11 When Is Isotropic Signaling Optimal?

In the regular MIMO channel (W2 = 0), isotropic signaling is optimal (R∗ = aI) iff
W1= bI, i.e., W1 has identical eigenvalues. Since this transmission strategy is appealing
due to its low complexity (all antennas send independent, identically distributed
codewords, so that no precoding, no Tx CSI, and thus no feedback is required), we
consider isotropic signaling over the wiretap MIMO channel and characterize the set of
channels on which it is optimal. It turns out to be much richer than that of the regular
MIMO channel.

P RO P O S I T I O N 5.5 Consider the MIMO wiretap channel in (5.2). The isotropic
signaling is optimal, i.e., R∗ = aI in (5.4), for the set of channels {W1,W2} that can
be characterized as follows:

1. W1 and W2 have the same (otherwise arbitrary) eigenvectors, U1 =U2.
2. W1 > W2 so that λi(W1) = a−1

i > λi(W2) = b−1
i , where λi(W) are the ordered

eigenvalues of W.
3. Take any b1 > 0 and a1 < b1, and set

λ= (a1+ a)−1− (b1+ a)−1 > 0. (5.71)

4. For i= 2, . . . ,m, take any bi such that

bi > λa2(1−λa)−1 > 0, (5.72)

and set

ai =−a+ (λ+ (bi+ a)−1)−1 > 0. (5.73)

This gives the complete characterization of the set of channels for which isotropic
signaling is optimal.

Proof See [11].

Note that a special case of this proposition is when W1 and W2 have identical
eigenvalues, as in the case of the regular MIMO channel. Unlike the regular channel,
however, there is also a large set of channels with distinct eigenvalues which dictate
the isotropic signaling as well. It is the interplay between the legitimate user and
the eavesdropper that is responsible for this phenomenon, i.e., a non-isotropic nature
of the first channel is compensated for by a carefully adjusted non-isotropy of the
second one.

5.12 An Algorithm for Global Maximization of Secrecy Rates

Although a number of analytical solutions are available for an optimal Tx covariance
matrix in the MIMO WTC (as discussed above), the general case remains an open
problem. In this section, we introduce an algorithm for the global maximization of
secrecy rates with guaranteed convergence [13].
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132 S. Loyka and C. D. Charalambous

Due to the non-convex nature of the optimization problem in (5.4) in the general case,
constructing a numerical algorithm faces an immediate difficulty as global convergence
cannot be guaranteed (see, e.g., [27, 28] for such algorithms).

Instead, we adopt an equivalent minimax reformulation of (5.4) [3]:

Cs =max
R

min
K

f (R,K)=min
K

max
R

f (R,K), (5.74)

where5

f (R,K)= 1

2
ln
|I+K−1HRH′|
|I+W2R| ≥ C(R), (5.75)

K=
(

I K′
21

K21 I

)
≥ 0, H=

(
H1

H2

)
, (5.76)

and the optimization is over the set S of all feasible R,K:

S= {(R,K) : trR≤ P, R,K≥ 0, K as in (5.76)}. (5.77)

Even if this reformulation may appear to be more difficult to solve (since it involves
both min and max), this is not the case: the problem in (5.74) is convex (since f (R,K)
is convex–concave in the right way) so that the KKT conditions are sufficient for global
optimality and the global convergence of a numerical algorithm for this reformulated
problem is within reach. The KKT conditions (of which there are two sets: one for min
and one for max; see [13] for details) are solved below via a numerical algorithm, which
is based on the barrier method and the primal/dual version of the Newton method.

To account for the positive semi-definite constraints R,K ≥ 0, we use the barrier
function ψt(R)= t−1 ln |R| so that the modified objective ft is

ft(R,K)= f (R,K)+ψt(R)−ψt(K), (5.78)

where t > 0 is the barrier parameter (see [13, 29]). Let us introduce the following
variables and gradients/Hessians [13]:

z=
[

x
y

]
, ∇ft =

[ ∇xft
∇yft

]
, ∇2ft =

[
∇2

xxft ∇2
xyft

∇2
yxft ∇2

yyft

]
, (5.79)

where x = vech(R) and vech stacks column-wise all lower-triangular entries into a
single column vector, and we use only K21 as independent variables: y = vec(K21).
The expressions for gradients ∇x(y)ft and Hessians ∇2

xx(yy)ft can be found in [13]
(alternatively, they can be evaluated numerically). The total power constraint tr R= PT

can be expressed in the following form: a′z = PT, where a = [vech(Im)
′,0′]′, 0 is the

n1n2× 1 all-zero vector, and Im is the m×m identity matrix.
With this choice of variables and new objective in (5.78), the barrier method

transforms the inequality-constrained problem in (5.74)–(5.77) into the following

5 In this section, we use the real-valued channel model, so that all entries of H,R,K are real. Equivalently,
one can consider real and imaginary parts as independent variables.
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problem without inequality constraints:

max
x

min
y

ft(x,y), s.t. a′z= PT. (5.80)

To solve this problem via the primal/dual Newton method, let w= [z′,λ]′ be the vector
of aggregated (primal/dual) variables, where λ ≥ 0 is the dual variable (Lagrange
multiplier responsible for the power constraint), and �w = (�z′,�λ)′ is its update,
which is found as the solution of the following system of linear equations at each step:

T�w=−r(w), (5.81)

where T is the KKT matrix,

T=
[ ∇2ft a

a′ 0

]
, (5.82)

and r(w) is the residual

r(w)= [(∇ft+ aλ)′,(a′z−PT)]′. (5.83)

The solution of the KKT conditions corresponds to r(w)= 0. At each step, the variables
are updated as w→w+�w.

Since the algorithm requires an initial point to begin with, we use the following point:

R0 =m−1PI→ x0 = vech(R0), K0 = I→ y0 = 0, λ0 = 0, (5.84)

which is clearly feasible (R0 corresponds to isotropic signaling).
With this choice of variables and initial points, Algorithm 5.3, in combination with

Algorithms 5.1 and 5.2, can now be used to solve numerically the minimax problem in
(5.80); α,β in Algorithms 5.1–5.3 are backtracking line search parameters, s is the step
size, ε is the desired accuracy, and μ is the barrier increase parameter [13, 29]. Global
convergence of this algorithm has been proved in [13].

Algorithm 5.1 Backtracking line search

Require: w, 0< α < 1/2, 0< β < 1, s= 1.
while |r(w+ s�w)|> (1−αs)|r(w)| do s := βs
end while

Algorithm 5.2 Newton method for minimax optimization

Require: z0,λ0,α,β,ε
repeat

1. Find �z,�λ using Newton step in (5.81).
2. Find s using the backtracking line search (Algorithm 5.1).
3. Update variables: zk+1 = zk+ s�z,λk+1 = λk+ s�λ.

until |r(zk+1,λk+1)| ≤ ε.
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134 S. Loyka and C. D. Charalambous

Algorithm 5.3 Barrier method

Require: z,λ,ε > 0, t> 0,μ> 1
repeat

1. Solve the problem in (5.80) using the Newton method (Algorithm 5.2) starting
at z,λ.

2. Update variables: z := z∗(t),λ := λ∗(t), t :=μt.
until 1/t< ε.

To demonstrate the algorithm’s performance, we consider the following example:

H1 =
[

0.77 −0.30
−0.32 −0.64

]
, H2 =

[
0.54 −0.11
−0.93 −1.71

]
. (5.85)

Convergence of the Newton method for different values of the barrier parameter t is
demonstrated in Fig. 5.6, which shows the Euclidian norm of the residual r versus
Newton steps. Even though this channel is not degraded, since the eigenvalues of
W1 − W2 are {0.395,−3.293}, the algorithm does find the global optimum (this
particular channel was selected because it is “difficult” for optimization; note also that
the channel is not degraded so that the problem in (5.4) is not convex). Note the presence
of two convergence phases: linear and quadratic, which is typical for Newton methods
in general. After the quadratic phase is reached, the convergence is very fast (waterfall
region). It takes 10–20 Newton steps to reach a very low residual (at the level of machine
precision). This is in agreement with the observations in [29] (although obtained for
different problems).

Figure 5.7 shows the corresponding secrecy rate evaluated via the upper bound in
(5.75) and the actual achievable rate via C(R(t)) in (5.3), where R(t) is an optimal

Figure 5.6 Convergence of the Newton method for different values of t; m= 2, P= 10, α = 0.3, β = 0.5,
H1,H2 as in (5.85). Note the presence of two convergence phases: linear and quadratic. It takes
only 10 to 20 Newton steps to reach the machine precision level.
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Secrecy Rate Maximization 135

Figure 5.7 Secrecy rates for the same settings as in Fig. 5.6. Solid line: via the upper bound in (5.75)
(the lines coincide for different t); dashed line: via C(R) in (5.3). While t= 103 is sufficient for
accurate computation of the upper bound, t= 104–105 is needed for the accurate computation
of C(R).

covariance at a particular step of the Newton method and for a given t. As the algorithm
converges, they become almost equal if t is sufficiently large (in this case, about
104–105). While t has negligible impact on the upper bound, it significantly affects
the corresponding C(R(t)) so that the choice of t is not critical if the secrecy capacity is
the only quantity of interest (since the upper bound is quite tight even for moderate t).
However, if a transmitter is implemented with the optimal covariance R(t) returned
by the algorithm, it is C(R(t)) that determines the achievable rate and this choice is
important. We attribute this fact to higher sensitivity of C(R) to R compared to that of
f (R,K). Similar observations apply to the number of Newton steps required to achieve
a certain performance: if Cs is the quantity of interest, the upper bound converges to
it in 3–5 steps. However, when using R in a system design, C(R) should be used as a
performance metric and, in addition to proper choice of t, it takes 5–10 steps to achieve
the convergence for C(R). Note that in both cases the number of steps is not large and
the execution time is small (a few seconds). In general, larger t and m,n1,n2 require
more steps to achieve the same accuracy. As expected, the behavior of the upper bound
is not monotonic, while the residual norm decreases monotonically in each step.

5.13 Appendix

5.13.1 Proof of Theorem 5.4

First note that, for the omnidirectional eavesdropper, W2 ≤ εI so that |I+W2R| ≤
|I+ εR| and hence

Cs = max
trR≤PT

ln
|I+W1R|
|I+W2R| ≥ max

trR≤PT
ln
|I+W1R|
|I+ εR| = C∗(ε). (5.86)
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To prove the reverse inequality, let P2 be a projection matrix on R(W2), i.e., P2 =
U2+U+2+. Then, P2WkP2 =Wk,k= 1,2, so that

C(R)= ln
|I+P2W1P2R|
|I+P2W2P2R| = ln

|I+ W̃1R̃|
|I+ εR̃| = C̃(R̃), (5.87)

where R̃=U+2+RU2+ and likewise for W̃k, so that W̃2 = εI, where we used |I+AB| =
|I+BA|. Further note that

tr R̃= trU+2+RU2+ =
∑

i

λi(R)|u+2+iuRi|2 ≤
∑

i

λi(R)= trR≤ PT, (5.88)

where u2+i and uRi are ith eigenvectors of W2 and R, and we have used R =∑
iλi(R)uRiu

+
Ri and |u+2+iuRi|2 ≤ |u2+i|2|uRi|2 = 1. Hence, R̃ satisfies the power

constraint if R does, and thus

Cs = max
trR≤PT

C(R)≤ max
tr R̃≤PT

C̃(R̃)= max
λi≥0,

∑
i λi≤PT

∑
i

ln
1+ g̃iλi

1+ ελi
= C̃∗(ε), (5.89)

where g̃i = λi(W̃1), and C̃∗(ε) is the secrecy capacity under W̃1 and isotropic
eavesdropper W̃2 = εI. Note that

λi(W̃1)= λi(U
+
2+W1U2+)= λi([U+2 W1U2]r2×r2)≤ λi(U

+
2 W1U2)= λi(W1), (5.90)

where [A]k×k denotes the k×k principal sub-matrix of A, r2= rank(W2). The inequality
is due to the Cauchy eigenvalue interlacing theorem [17], and the last equality is due to
the fact that U2W1U+2 and W1 have the same eigenvalues. Based on this, one obtains

Cs ≤ C̃∗(ε)≤ max
λi≥0,

∑
i λi≤PT

∑
i

ln
1+ giλi

1+ ελi
= C∗(ε), (5.91)

thus establishing Cs = C∗(ε) under an omnidirectional eavesdropper with R(W1) ∈
R(W2).

5.13.2 Proof of Theorem 5.5

We assume that W1 and W2 are non-singular; the singular case will follow from
the standard continuity argument. The KKT conditions for the optimal covariance
R=RWF, which are necessary for optimality in (5.4), can be expressed as

(W−1
1 +R)−1− (W−1

2 +R)−1 = λ′I−M (5.92)

λ′(trR−PT)= 0, MR= 0 (5.93)

λ′ ≥ 0, M,R≥ 0, trR≤ PT, (5.94)

where M ≥ 0 is the Lagrange multiplier matrix responsible for the constraint R ≥ 0,
while λ′ ≥ 0 is the Lagrange multiplier responsible for the total power constraint tr R≤
PT. Multiplying both sides of (5.92) by U+1 on the left and by U1 on the right, one
obtains

(�−1
1 +�∗)−1− (�−1

2 +�∗)−1 = λ′I−U+1 MU1 = λ′I−�M , (5.95)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316450840.006
Downloaded from https://www.cambridge.org/core. University of Ottawa - Library Network, on 17 Feb 2018 at 21:08:36, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316450840.006
https://www.cambridge.org/core
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where �1,�2,�M are diagonal matrices of eigenvalues of W1,W2,M. The last equality
follows from the fact that all terms but U+1 MU1 are diagonal so that the last term has
to be diagonal too: U+1 MU1 = �M , i.e., M has the same eigenvectors as W1,W2,R.
The complementary slackness in (5.93) implies that λ∗i λMi = 0, where λMi is the ith
eigenvalue of M, i.e., if λ∗i > 0 (active eigenmode) then λMi = 0 so that, after some
manipulations, (5.95) can be expressed as

λ∗i =
1

(λ−1
2i +λ∗i )−1+λ′ −

1

λ1i

= λ−1−λ−1
1i (5.96)

for each λ∗i > 0, where the second equality follows from (5.69). Therefore,

λ= (λ−1
2i +λ∗i )−1+λ′ (5.97)

and hence

λ∗i = (λ−λ′)−1−λ−1
2i = λ−1−λ−1

1i , (5.98)

so that λ−1
2i = λ−1

1i +α with α = (λ−λ′)−1−λ−1 > 0 satisfies both equalities in (5.96).
For inactive eigenmodes λ∗i = 0, it follows from (5.95) that

λ1i−λ2i = λ′ −λMi ≤ λ′. (5.99)

Observe that this inequality is satisfied when λ1i ≤ λ2i (since λ′ > 0). To see that it also
holds under (5.70), observe that

λ1i−λ2i = αλ2
1i

1+αλ1i
≤ αλ2

1+αλ = λ
′, (5.100)

where the inequality is due to λ1i≤ λ (which holds for inactive eigenmodes) and the fact

that
αλ2

1i
1+αλ1i

is increasing in λ1i. Thus, one can always select λMi ≥ 0 to satisfy (5.99) and
hence the KKT conditions in (5.92)–(5.94) have a unique solution which also satisfies
(5.69). This proves the optimality of RWF.
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[15] I. Bjelaković, H. Boche, and J. Sommerfeld, “Secrecy results for compound wiretap
channels,” Probl. Inf. Transmission, vol. 49, no. 1, pp. 73–98, Mar. 2013.

[16] R. F. Schaefer and S. Loyka, “The secrecy capacity of compound MIMO Gaussian
channels,” IEEE Trans. Inf. Theory, vol. 61, no. 10, pp. 5535–5552, Dec. 2015.

[17] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press,
1999.

[18] T. S. Rappaport, Wireless Communications, 2nd edn. Upper Saddle River, NJ: Prentice Hall,
2002.

[19] S. Loyka and G. Levin, “On physically-based normalization of MIMO channel matrices,”
IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1107–1112, Mar. 2009.

[20] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting over fading channels,”
IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2453–2469, Jun. 2008.

[21] Z. Li, R. Yates, and W. Trappe, Securing Wireless Communications at the Physical Layer.
Boston, MA: Springer US, 2010, pp. 1–18.

[22] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge:
Cambridge University Press, 2005.

[23] Z. Rezki, A. Khisti, and M.-S. Alouini, “Ergodic secret message capacity of the wiretap
channel with finite-rate feedback,” IEEE Trans. Wireless Commun., vol. 13, no. 6,
pp. 3364–3379, Jun. 2014.

[24] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A
stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas
Commun., vol. 20, no. 6, pp. 1211–1226, Jun. 2002.

[25] H. L. van Trees, Optimum Array Processing. Chichester: Wiley, 2002.
[26] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edn. Chichester: Wiley

& Sons, 2006.
[27] Q. Li, M. Hong, H.-T. Wai, Y.-F. Liu, W.-K. Ma, and Z.-Q. Luo, “Transmit solutions for

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316450840.006
Downloaded from https://www.cambridge.org/core. University of Ottawa - Library Network, on 17 Feb 2018 at 21:08:36, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316450840.006
https://www.cambridge.org/core


Secrecy Rate Maximization 139

MIMO wiretap channels using alternating optimization,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 9, pp. 1714–1727, Sep. 2013.

[28] J. Steinwandt, S. A. Vorobyov, and M. Haardt, “Secrecy rate maximization for MIMO
Gaussian wiretap channels with multiple eavesdroppers via alternating matrix POTDC,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., Florence, Italy, May 2014,
pp. 5686–5690.

[29] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge University
Press, 2004.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316450840.006
Downloaded from https://www.cambridge.org/core. University of Ottawa - Library Network, on 17 Feb 2018 at 21:08:36, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316450840.006
https://www.cambridge.org/core

