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Abstract—Gaussian MIMO channel under total transmit and the number of Rx antennas is less than the number of Tx
interference power constraints (TPC and IPC) is consideredA  gntennas); the TPC is not included explicitly (rather, bein
_closed-_form so_Iutlon for the optimal transmit covariance matrix  »53nsorped” into the IPC), hence eliminating the importaage
is obtained using the KKT-based approach. While closed-frm fi tive IPC (si this is th | licit traint
solutions for optimal dual variables are possible in speciacases, ot Inactive (s_lnce is is the only explicit constrajnt)
an iterative bisection algorithm (IBA) is proposed to find the ~consequently, no interplay between the TPC and the IPC can
optimal dual variables in the general case and its convergee be studied.
is proved. Numerical experime_nts illustrate .itS efficient _par- In this paper, we obtain a closed-form expression for an
formance. Bounds for the optimal dual variables are given, . ima) covariance matrix of the Gaussian MIMO channel
which facilitate numerical solutions. An interplay between the der th C and th C usi h diti h
TPC and IPC is studied, including the transition from power- Under the TPC and the IPC using the KKT conditions. Bot
limited to interference-limited regimes as the total transnit power ~ Constraints are included explicitly and hence anyone st
increases. to be inactive. This allows us to study the interplay between
the power and interference constraints and, in partictier,
transition from power-limited to interference limited meges

. . o as the Tx power increases. As an added benefit, no limitations
Cognitive radio (CR) has recently attracted significargratt ;¢ placed on the rank of the channel to the PR, so that the

tion as a powerful approach to exploit underutilized speotr , \mber of PR antennas can be any. Under the added IPC,

and hence possibly resolve the spectrum scarcity problgfyenendent signaling is shown to be sub-optimal for pairall

[1][2]. Allowing secondary systems to use resources alfta -pannels to the intended receiver (Rx), unless the PR channe
to primary systems call for a careful management of possihj

. . . fe also parallel or if the IPC is inactive.
interference to the latter from the former. In this respeuilti- Optimal signaling for the Gaussian MIMO channel under

a.nte.n.na (MIMO) systems have signifi.c.a.nt p‘?te”“ﬁﬁ'd“?m th‘Ef'he TPC and the IPC has been also considered in [8] using
significant signal processing capabilities, includingeffer- o qyal problem approach. However, no closed-form soiutio
ence cancellation and precoding [3], which can also be don€ .« ohtained for optimal dual variables. Hence, various sub
an adaptive and distributed manner [7]. A promising apmoaSptimal solutions were proposed (e.g. partial channelegroj

is to limit interference to primary receivers (PR) by prdper i,y oy KKT-based approach includes explicit equatitams
designing secondary transmitters (Tx) while exploitingith optimal dual variables, which can be solved efficierfty.

multl-antenng capabllltl_es. : _ . this end, we propose an iterative bisection algorithm (IBAI
The capacity and optimal signalling for the Gausyaq MIMErove its convergence. Numerical experiments demonstsate
channel under_ the total power constraints _(TP_C) IS Weticient performance. In some cases, our KKT-based aphroac
known: the optimal (c_apaC|ty-ac_h|evmg) signaling is Gaas allows the optimal dual variables to be determined in a clese
and, under the TPC, is on the eigenvectors of the channel Wm analytically. Bounds to the optimal dual variables are

power allocation to the eigenmodes given by the water§llingejeq. which facilitate numerical solutions. Propestid the

(WF) [3]14]. Under per-antenna power constraints (PACbptimaI Tx covariance as a function of dual variables are

|n.”add|t'|on|ok: instead ththe hTPC' IGgussmn signalling I8 1ored: the total Tx power as well as interference power
still optimal but not on the channel eigenvectors anymotge shown to be decreasing functions of dual variables, whic

so that the standard water-filling solution over the channgl important part in the proof of the IBA convergence.
eigenmodes does not apply [5][6]. Much less is known unclerNotations: bold capitals denote matrice while bold lower-

tEe added |fn.terfefrence ppv(\;er Cgr;)Sltrr?mt (IPC()j, which tkm,' case letters denote column vectaRs! is the Hermitian con-
the power of interference induced by the secondary trar“‘““m't'ugation of R; R > 0 means thatR is positive semi-definite,

to a primary receiver. A game-theoretic approach to th §l| denotes determinant whils (R) is i-th eigenvalue of;

problem was proposed in [7], where a fixed-point equatiqfl, ocs indicated otherwise, eigenvalues are in decreasiteg,
was formulated from which the optimal covariance matrix A2 > .. [] denotes ceiling, whiléz), = max[0, z] is

can in principle be determined. Unfortunately, no closeqﬁle positive part of.
form solution is known for this equation. In addition, this
approach is limited in the following respects: the chana¢he

primary receiver is required to be full-rank (hence exahgdi Il. CHANNEL MODEL AND CAPACITY

the important case of single-antenna devices commun@atin | et ys consider the standard discrete-time model of the
to a multi-antenna base station or, in general, the caseeewhg 5,ssian MIMO channel:
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where y,,z,§, and H; are the received and transmittedvhere W, = I + poWo; pi,u2 > 0 are Lagrange
signals, noise and channel matrix respectively. The nasenultipliers (dual variables) responsible for the total Tx and
assumed to be Gaussian with zero mean and unit varianicegrference power constraints found as solutions of the fol-
so that the SNR equals to the signal power. Complex-valulmving non-linear equations:

channel model is assumed throughout the paper, with full N .

channel state information available both at the transmtel pa(trR” = Pr) =0, po(trWoR" = Pr) =0 (9)
the receiver. Gaussian signaling is known to be optimali® thsubject to trR* < Pr, triW,R* < P;. The capacity can be
setting [3][4] so that finding the channel capadityamounts expressed as follows:

to finding an optimal transmit covariance matif
C= Y loghu (10)
C = max C(R) ) iAaiol
-1

whereC(R) = In|I + W1 R|, W, = H{ Hy, R is the Tx Where Aui = (W "W).
covariance and'r is the constraint set. In the case of the totabroof. Since the problem is convex and Slater's condition
power constraint (TPC) only, it takes the form holds (e.g. takeR = al > 0, a = 5= min{Pr, P; /A (W3)},

Sp={R:R>0,trR < Pr}, 3) which is strictly feasible), the KKT conditions are both fsuf

cient and necessary for optimality [9]. They take the foilogv
where Pr is the maximum total Tx power. The solutionform:

to this problem is well-known: optimal signaling is on the o
eigenmodes oWV, so that they are also the eigenmodes of — (I + WiR)™ W1 — M + I +p,Wo =0 (11)
optimal covarianceR", and the optimal power allocation is MR =0, pui(trR— Pr) =0, p2(trWsR — Pr) =0,

via the water-filling (WF). This solution can be compactly (12)
expressed as follows: M>0, i1 >0, pa >0 (13)
R =Ryr 2 (u'I-wi), (4 trR*< Pr, trWyR* < P;, R>0 (14)

where p is the "water” level found from the total powerwhere M is Lagrange multiplier responsible for the positive
constraintrR* = Pr and(R), denotes positive eigenmodesemi-definite constrainR > 0. Denoting W, = I +
1

of Hermitian matrix R: p2Ws and introducing new variablez = WERW%,
(R)y = > Nuwwu/ (5) Wi= W, >W,W,? M =W,”MW,?, it follows

A >0 that M R = 0 so that (11) can be transformed to
where)\;, u; arei-th eigenvalue and eigenvector &. (I+W R)"'W,+M=1 (15)

In the case of cognitive radio system, there is a 2nd channel o
from the Tx to the primary receiver (PR), = Hox+£,, and for which the solution is
there is a limit of how much interference the Tx can induce B= (I - M)‘1 . W;l - W;1)+ (16)

(via ) to the PR:
g n Transforming back to the original variables results in (8).
E{z"Hj; Hyz} = trHy RHy < Py ©®) are complementary slackness conditions in (12); (10) fdlo
where P; is the maximum acceptable interference power arfter some manipulations, by usid@” of (8) in C(R). O
the I_eft-har_1d side is the a_ctual interference power at the PR, simplicity of exposition, we implicitly assumed above
In this setting, the constraint set becomes that W, is full-rank. If this is not the case, pseudo-inverse

Sp={R:R>0, trR< Pr, trW,R< P;}, (7) shouldbe used instead.
N ) ) o ) Note that (9) allow anyone of the dual variables to be
whereWy = Hjy H . The Gaussian signalling is still optimal;, 5 tive (.1 = 0 or uz = 0, but not simultaneously),

and the capacity subject to the TPC and IPC can still bgjike the standard WF solution, where the TPC is always
expressed as in (2) but the optimal covariance is Rotr  active. While it is not feasible to find dual variablgs, us in
anymore, as discussed in the next section. a closed form in general (since (9) is a system of coupled
non-linear equations), they can be found in such form in
some special cases. The next section develops an iterative
bisection algorithm (IBA) to find the optimal dual variables
The following Theorem gives a closed-form solution for thén the general case with any desired accuracy and proves its
optimal Tx covariance matrix under the TPC and the IPC igonvergence.
(7) in the general case.

IIl. OPTIMAL SIGNALLING UNDER INTERFERENCE
CONSTRAINT

Theorem 1. The optimal Tx covariance matrix to achieve the IV. I TERATIVE BISECTION ALGORITHM
capacity of the Gaussian MIMO channel in (2) under the joint Let f(z) be a function with the following property:(z) >
TPC and IPC in (7) can be expressed as follows: 0 foranyz < xo and f(x) < 0 for anyz > xo, wherez, is a

solution of f(z) = 0. Then, the following bisection algorithm
(BA) can be used to solvg(z) = 0, wherexz;, z, are the

R =W, (I-WIW['Wi),W,? (8
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upper and lower bounds t9y: z; < 29 < x,, ande > 0 whereR"(u1, u2) denotesR* in (8) for given p1, pe. Then,
is any desired accuracy. In fact, it is straightforward tovgh the optimal dual variableg?, 5 satisfy f1(uf, u5) = 0 and
that this algorithm will converge in a finite numbar of steps  f2(p3, u5) = 0. For a givenu}, one could use the BA to

such that
N < [log2 (u)} (17)
€

formally expressu} as

py = L[f(x) = fi(@, 13), p; paw, 0] (26)

where[.] denotes ceiling, so that the convergence is expone#dere, from (18),.; = 0, and likewise foru; (since the

tially fast and hence the algorithm is very efficient [9].

Algorithm 1 Bisection algorithm (BA)
Require: f(z), x, xy, €
repeat
1. Setz = $(z; + zy).
2. If f(z) < 0, setz, = =z. Otherwise, sety; = =z.
Terminate if f(z) = 0.
until |z, — x| <e.

convergence of the BA is exponentially fast, the inaccuracy
can be set to be arbitrary small in practice so that we disdega
here this small inaccuracy by settirng= 0 to simplify the
analysis; numerical experiments support this approachg T
following proposition shows that; (x, u2), f2(p1,z) have the
property needed for the convergence of the BA as stated above
To this end, |etP1(,u1,[l,2) = t’f’R*(/Ll,,ug), P2(/L1,,u2) =
trWoR" (111, u2), i.€. the transmit and interference powers
for given py, pio.

Proposition 2. Let p10 be a solution of fi(z, u2) = 0 for a

An alternative stopping criteria for this algorithm isgiven uo and subject to P (x, u2) < Pr. Then, f1(u, u2) >0

|f(z)] < e and the two criteria are equivalent wheifz) is
continuous. The BA can be used to solve for, uo in (9)

for any < pio and fi(pr,p2) < 0 for any py > puo.
Likewise, if pgoo is a solution of fo(u1,z) = 0 for a given uy

in an iterative way, as we show below. To this end, we neetid subject to P(u1,2) < Pr, then fo(uy, pe) > 0 for any

to establish lower and upper bounds to the solutiphs p3
required by the BA.

Proposition 1. Let u, ps be solutionsof (9), i.e. the optimal
dual variables. They can be bounded as follows:

0 <y < prw = m(Pr+ A7 (W)™
0 < iy < piow = (Pr/ro + An(Wa) /A (W)™

where ro is the rank of W5 and m is the number of Tx
antennas.

(18)
(19)

Proof. From the KKT conditions in (11),

(I+W,R)"'W ,R= R+ W3R (20)
so that
1 Pr+ poPr = tr(I + W R)"'W R (21)
Let A;; = A\ (W73). Since
tr(I + W1R)"'W R <mPr(\}! + Pr)~" (22)

2nd inequality in (18) follows from (21). Leta,, = Ay (Wa).
Using (8),

Pp=trWoR* <trWoW ' (1 — Ay (1 + pr2dam))
<ra(pyt = AemAry)
from which 2nd inequality in (19) follows. (I
To proceed further, let
we = Lf(x), 21,20, €] (23)

formally denote are-accurate solution of (z) = 0 given by
the BA and let

J1(pa, po) = pa (tr R (pa, pi2) — Pr)
fa(pr, p2) = po(trW o R (pa, pi2) — Pr)

(24)
(25)

p2 < 0 @nd fo(py, po) <0 for any ps > poo.

Proof. see the full version of this paper [10]. O

Thus, this proposition shows that the BA can be used
to solve fi(x,u2) = 0 for a given uy and likewise for
f2(u1, ) = 0. Unfortunately, neither of the optimal dual vari-
ables is known in advance. Hence, we propose the following
iterative bisection algorithm (IBA) which finds optimal dua
variables without such advance knowledge.

Algorithm 2 Iterative Bisection Algorithm (IBA)
ReqUire: fl(ulau2)7 f2(//517,“'2)7 Hiuy M2u, o
1. Set,ugo =0,k=1.
repeat
2. Setpir = L{f1(x, prak—1)), 0, 1w, 9]
3. Setﬂ2k - L[f2(.u1k7 CL'), 07 H2u, 6]
4. k:=k+1.
until stopping criterion is met.

Note that the BA used in steps 2 and 3 will converge, as
follows from Proposition 2. A possible stopping criteriar fo
this algorithm is| f1 (o) (p1r, t2r)] < € or when a number
of steps exceeds maximuhy,.... The following proposition
shows that the IBA generates converging sequences of dual
variables{ 11}, {p2r} under a mild technical condition; see
[10] for a proof.

Proposition 3. The sequences {1k } 22, {12k}, generated
by the IBA above converge if 6 = 0 and P g (p1, p2) are
decreasing functions of u1, uo. In particular, this holds in any
of the following cases:

1. The IPC is inactive, in which case the IBA converges in
1 iteration.

2. W and W, have the same eigenvectors.

3. R*(u1, p2) is full-rank.
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The following proposition shows that any stationary (and
hence convergence) point of the IBA solves the dual optiali
conditions in (9).

Proposition 4. Any stationary point of the IBA is a solution
of (9)if § = 0. Hence, the IBA converges to a solution of (9) 10'L
under the conditions of Proposition 3.

Proof. Let u15, pos be a stationary point of the IBA, so that

*

His = L[fl(x ///23): 07 Hiw, O]

0
p2s = L{f2(p1s, ), 0, pi2u, 0] 100 % % %

(27)

%%%%%*/

It follows from 1st equality thatfi(uis,p2s) = 0 and
fa(p1s, 2s) = 0 from 2nd one. Thusys, pes Solves (9).
Since a convergence point is stationary, it follows that the /

IBA converges to a solution of (9). O 10'110-1 0 ‘ {

max. transmit power PT

While the analytical convergence results above are lintiied
0 =0, 6 > 0is used in practice. Since the BA converges expo-
nentially fast, very smald can be selected in the IBA withoutFig. 1. Convergence of the IBA, i.e. the numbkerof iterations required
significant increase in computational complexity of eacelfpstig a}‘;h'e"fe *:arleo;so";;;fr; Wi and Wy are as in (28),° = 1.
and hence the analysis serves as a reasonable approximation””" " '
(due to the continuity of the problem and functions involved

Furthermore, numerous numerical experiments indicaté th . . - . . .
o c%anges ifW  is rank-deficient since the TPC is always active

the IBA always converges, even when the conditions 1-3 Of that case

Proposition 3 are not met (we were not able to observe a singriqt should ailso be noted that the optimal covariafeis not

case where it did not). In the majqrity gf the studieq Cases'd?agonal, even thount; is, when the IPC is active - a sharp
small to moderate number of IBA iterations (1...50) is n@edgyjgtinction to the TPC constraint only, wheR andW, have

to achle\(e a ,h'gh accuracy 6?0_5' while up to 257010|terat'|ons the same eigenvectors so that diagoWa} implies diagonal
are required in some exceptional cases with 10~ (which g+ Lance introducing the IPC makes independent signaling

is hardly required in practice).

sub-optimal for independent channels in general (uni®ss

is also diagonal or if the IPC is inactive).

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical results that
illustrate the performance of the IBA. In 1st examplg,= 1

and
} W= [ } 2

Fig. 1 shows the number of iterations of the IBA required to
solve (9) with the accuracy= 10~° vs. Pr; the optimal dual [3]
variablesu, pb as well as the actual Tx and interferenc?4]
powers (1 = trR*(uj,p3) and Py = trWoR"(uf, pi3)
respectively) are also shown. Note the transition from Hee t
Tx power-limited regime (inactive IPC) to the interference®
limited regime (inactive TPC) aBr increases, which is visible [g]

(1]
1 0
0 0.5

1
—0.5

-0.5

1 (28)

v |

when the respective dual variable sharply decreases to O.

In particular, the IPC is inactive whe®r < 1.1 and the 0
TPC is inactive whenP; > 1.8, while both constraints are
active otherwise. AsPr increases, the IPC becomes active
at aboutPr ~ 1.1, at which point the required number ofl8]
iteration sharply increases from 1 to 36, gradually dedngas
to a small number of 2...5. When the IPC is inactive, thg]
number of iterations is 1, in agreement with Proposition 8. A

this example demonstrates, anyone of the constraints can[lt:(a)leC
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