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Abstract—Gaussian MIMO channel under total transmit and
interference power constraints (TPC and IPC) is considered. A
closed-form solution for the optimal transmit covariance matrix
is obtained using the KKT-based approach. While closed-from
solutions for optimal dual variables are possible in special cases,
an iterative bisection algorithm (IBA) is proposed to find the
optimal dual variables in the general case and its convergence
is proved. Numerical experiments illustrate its efficient per-
formance. Bounds for the optimal dual variables are given,
which facilitate numerical solutions. An interplay between the
TPC and IPC is studied, including the transition from power-
limited to interference-limited regimes as the total transmit power
increases.

I. I NTRODUCTION

Cognitive radio (CR) has recently attracted significant atten-
tion as a powerful approach to exploit underutilized spectrum
and hence possibly resolve the spectrum scarcity problem
[1][2]. Allowing secondary systems to use resources allocated
to primary systems call for a careful management of possible
interference to the latter from the former. In this respect,multi-
antenna (MIMO) systems have significant potential due to their
significant signal processing capabilities, including interfer-
ence cancellation and precoding [3], which can also be done in
an adaptive and distributed manner [7]. A promising approach
is to limit interference to primary receivers (PR) by properly
designing secondary transmitters (Tx) while exploiting their
multi-antenna capabilities.

The capacity and optimal signalling for the Gaussian MIMO
channel under the total power constraints (TPC) is well-
known: the optimal (capacity-achieving) signaling is Gaussian
and, under the TPC, is on the eigenvectors of the channel with
power allocation to the eigenmodes given by the water-filling
(WF) [3][4]. Under per-antenna power constraints (PAC),
in addition or instead of the TPC, Gaussian signalling is
still optimal but not on the channel eigenvectors anymore
so that the standard water-filling solution over the channel
eigenmodes does not apply [5][6]. Much less is known under
the added interference power consitraint (IPC), which limits
the power of interference induced by the secondary transmitter
to a primary receiver. A game-theoretic approach to this
problem was proposed in [7], where a fixed-point equation
was formulated from which the optimal covariance matrix
can in principle be determined. Unfortunately, no closed-
form solution is known for this equation. In addition, this
approach is limited in the following respects: the channel to the
primary receiver is required to be full-rank (hence excluding
the important case of single-antenna devices communicating
to a multi-antenna base station or, in general, the cases where
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the number of Rx antennas is less than the number of Tx
antennas); the TPC is not included explicitly (rather, being
”absorbed” into the IPC), hence eliminating the important case
of inactive IPC (since this is the only explicit constraint);
consequently, no interplay between the TPC and the IPC can
be studied.

In this paper, we obtain a closed-form expression for an
optimal covariance matrix of the Gaussian MIMO channel
under the TPC and the IPC using the KKT conditions. Both
constraints are included explicitly and hence anyone is allowed
to be inactive. This allows us to study the interplay between
the power and interference constraints and, in particular,the
transition from power-limited to interference limited regimes
as the Tx power increases. As an added benefit, no limitations
is placed on the rank of the channel to the PR, so that the
number of PR antennas can be any. Under the added IPC,
independent signaling is shown to be sub-optimal for parallel
channels to the intended receiver (Rx), unless the PR channels
are also parallel or if the IPC is inactive.

Optimal signaling for the Gaussian MIMO channel under
the TPC and the IPC has been also considered in [8] using
the dual problem approach. However, no closed-form solution
was obtained for optimal dual variables. Hence, various sub-
optimal solutions were proposed (e.g. partial channel projec-
tion). Our KKT-based approach includes explicit equationsfor
the optimal dual variables, which can be solved efficiently.To
this end, we propose an iterative bisection algorithm (IBA)and
prove its convergence. Numerical experiments demonstrateits
efficient performance. In some cases, our KKT-based approach
allows the optimal dual variables to be determined in a closed-
form analytically. Bounds to the optimal dual variables are
derived, which facilitate numerical solutions. Properties of the
optimal Tx covariance as a function of dual variables are
explored: the total Tx power as well as interference power
are shown to be decreasing functions of dual variables, which
is an important part in the proof of the IBA convergence.

Notations: bold capitals denote matrice while bold lower-
case letters denote column vectors;R+ is the Hermitian con-
jugation ofR; R ≥ 0 means thatR is positive semi-definite,
|R| denotes determinant whileλi(R) is i-th eigenvalue ofR;
unless indicated otherwise, eigenvalues are in decreasingorder,
λ1 ≥ λ2 ≥ ..; ⌈·⌉ denotes ceiling, while(x)+ = max[0, x] is
the positive part ofx.

II. CHANNEL MODEL AND CAPACITY

Let us consider the standard discrete-time model of the
Gaussian MIMO channel:

y1 = H1x+ ξ1 (1)
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where y1,x, ξ1 and H1 are the received and transmitted
signals, noise and channel matrix respectively. The noise is
assumed to be Gaussian with zero mean and unit variance,
so that the SNR equals to the signal power. Complex-valued
channel model is assumed throughout the paper, with full
channel state information available both at the transmitter and
the receiver. Gaussian signaling is known to be optimal in this
setting [3][4] so that finding the channel capacityC amounts
to finding an optimal transmit covariance matrixR:

C = max
R∈SR

C(R) (2)

whereC(R) = ln |I +W 1R|, W 1 = H+
1 H1, R is the Tx

covariance andSR is the constraint set. In the case of the total
power constraint (TPC) only, it takes the form

SR = {R : R ≥ 0, trR ≤ PT }, (3)

where PT is the maximum total Tx power. The solution
to this problem is well-known: optimal signaling is on the
eigenmodes ofW 1, so that they are also the eigenmodes of
optimal covarianceR∗, and the optimal power allocation is
via the water-filling (WF). This solution can be compactly
expressed as follows:

R∗ = RWF , (µ−1I −W−1
1 )+ (4)

where µ is the ”water” level found from the total power
constrainttrR∗ = PT and(R)+ denotes positive eigenmodes
of Hermitian matrixR:

(R)+ =
∑

i:λi>0

λiuiu
+
i (5)

whereλi, ui are i-th eigenvalue and eigenvector ofR.
In the case of cognitive radio system, there is a 2nd channel

from the Tx to the primary receiver (PR),y2 = H2x+ξ2, and
there is a limit of how much interference the Tx can induce
(via x) to the PR:

E{x+H+
2 H2x} = trH+

2 RH2 ≤ PI (6)

wherePI is the maximum acceptable interference power and
the left-hand side is the actual interference power at the PR.
In this setting, the constraint set becomes

SR = {R : R ≥ 0, trR ≤ PT , trW 2R ≤ PI}, (7)

whereW 2 = H+
2 H2. The Gaussian signalling is still optimal

and the capacity subject to the TPC and IPC can still be
expressed as in (2) but the optimal covariance is notRWF

anymore, as discussed in the next section.

III. O PTIMAL SIGNALLING UNDER INTERFERENCE

CONSTRAINT

The following Theorem gives a closed-form solution for the
optimal Tx covariance matrix under the TPC and the IPC in
(7) in the general case.

Theorem 1. The optimal Tx covariance matrix to achieve the
capacity of the Gaussian MIMO channel in (2) under the joint
TPC and IPC in (7) can be expressed as follows:

R∗ = W
−

1

2

µ (I −W
1

2

µW
−1
1 W

1

2

µ )+W
−

1

2

µ (8)

where W µ = µ1I + µ2W 2; µ1, µ2 ≥ 0 are Lagrange
multipliers (dual variables) responsible for the total Tx and
interference power constraints found as solutions of the fol-
lowing non-linear equations:

µ1(trR
∗ − PT ) = 0, µ2(trW 2R

∗ − PI) = 0 (9)

subject to trR∗ ≤ PT , trW 2R
∗ ≤ PI . The capacity can be

expressed as follows:

C =
∑

i:λai>1

logλai (10)

where λai = λi(W
−1
µ W 1).

Proof. Since the problem is convex and Slater’s condition
holds (e.g. takeR = aI > 0, a = 1

2m min{PT , PI/λ1(W 2)},
which is strictly feasible), the KKT conditions are both suffi-
cient and necessary for optimality [9]. They take the following
form:

− (I +W 1R)−1W 1 −M + µ1I + µ2W 2 = 0 (11)

MR = 0, µ1(trR − PT ) = 0, µ2(trW 2R− PI) = 0,
(12)

M ≥ 0, µ1 ≥ 0, µ2 ≥ 0 (13)

trR∗ ≤ PT , trW 2R
∗ ≤ PI , R ≥ 0 (14)

whereM is Lagrange multiplier responsible for the positive
semi-definite constraintR ≥ 0. Denoting W µ = µ1I +

µ2W 2 and introducing new variables̃R = W
1

2

µRW
1

2

µ ,

W̃ 1 = W
−

1

2

µ W 1W
−

1

2

µ , M̃ = W
−

1

2

µ MW
−

1

2

µ , it follows
thatM̃R̃ = 0 so that (11) can be transformed to

(I + W̃ 1R̃)−1W̃ 1 + M̃ = I (15)

for which the solution is

R̃ = (I − M̃)−1 − W̃
−1

1 = (I − W̃
−1

1 )+ (16)

Transforming back to the original variables results in (8).(9)
are complementary slackness conditions in (12); (10) follows,
after some manipulations, by usingR∗ of (8) in C(R).

For simplicity of exposition, we implicitly assumed above
that W µ is full-rank. If this is not the case, pseudo-inverse
should be used instead.

Note that (9) allow anyone of the dual variables to be
inactive (i.e.µ1 = 0 or µ2 = 0, but not simultaneously),
unlike the standard WF solution, where the TPC is always
active. While it is not feasible to find dual variablesµ1, µ2 in
a closed form in general (since (9) is a system of coupled
non-linear equations), they can be found in such form in
some special cases. The next section develops an iterative
bisection algorithm (IBA) to find the optimal dual variables
in the general case with any desired accuracy and proves its
convergence.

IV. I TERATIVE BISECTION ALGORITHM

Let f(x) be a function with the following property:f(x) ≥
0 for anyx < x0 andf(x) ≤ 0 for anyx > x0, wherex0 is a
solution off(x) = 0. Then, the following bisection algorithm
(BA) can be used to solvef(x) = 0, wherexl, xu are the
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upper and lower bounds tox0: xl ≤ x0 ≤ xu, and ǫ > 0
is any desired accuracy. In fact, it is straightforward to show
that this algorithm will converge in a finite numberN of steps
such that

N ≤

⌈

log2

(

xu − xl

ǫ

)⌉

(17)

where⌈·⌉ denotes ceiling, so that the convergence is exponen-
tially fast and hence the algorithm is very efficient [9].

Algorithm 1 Bisection algorithm (BA)

Require: f(x), xl, xu, ǫ
repeat

1. Setx = 1
2 (xl + xu).

2. If f(x) < 0, set xu = x. Otherwise, setxl = x.
Terminate iff(x) = 0.
until |xu − xl| ≤ ǫ.

An alternative stopping criteria for this algorithm is
|f(x)| ≤ ǫ and the two criteria are equivalent whenf(x) is
continuous. The BA can be used to solve forµ1, µ2 in (9)
in an iterative way, as we show below. To this end, we need
to establish lower and upper bounds to the solutionsµ∗

1, µ∗

2

required by the BA.

Proposition 1. Let µ∗

1, µ
∗

2 be solutions of (9), i.e. the optimal
dual variables. They can be bounded as follows:

0 ≤ µ∗

1 ≤ µ1u = m(PT + λ−1
1 (W 1))

−1 (18)

0 ≤ µ∗

2 ≤ µ2u = (PI/r2 + λm(W 2)/λ1(W 1))
−1 (19)

where r2 is the rank of W 2 and m is the number of Tx
antennas.

Proof. From the KKT conditions in (11),

(I +W 1R)−1W 1R = µ1R + µ2W 2R (20)

so that

µ1PT + µ2PI = tr(I +W 1R)−1W 1R (21)

Let λ11 = λ1(W 1). Since

tr(I +W 1R)−1W 1R ≤ mPT (λ
−1
11 + PT )

−1 (22)

2nd inequality in (18) follows from (21). Letλ2m = λm(W 2).
Using (8),

PI = trW 2R
∗ ≤ trW 2W

−1
µ (1 − λ−1

11 (µ1 + µ2λ2m))

≤ r2(µ
−1
2 − λ2mλ−1

11 )

from which 2nd inequality in (19) follows.

To proceed further, let

xǫ = L[f(x), xl, xu, ǫ] (23)

formally denote anǫ-accurate solution off(x) = 0 given by
the BA and let

f1(µ1, µ2) = µ1(trR
∗(µ1, µ2)− PT ) (24)

f2(µ1, µ2) = µ2(trW 2R
∗(µ1, µ2)− PI) (25)

whereR∗(µ1, µ2) denotesR∗ in (8) for given µ1, µ2. Then,
the optimal dual variablesµ∗

1, µ
∗

2 satisfy f1(µ∗

1, µ
∗

2) = 0 and
f2(µ

∗

1, µ
∗

2) = 0. For a givenµ∗

2, one could use the BA to
formally expressµ∗

1 as

µ∗

1 = L[f(x) = f1(x, µ
∗

2), µl, µ1u, 0] (26)

where, from (18),µl = 0, and likewise forµ∗

2 (since the
convergence of the BA is exponentially fast, the inaccuracyǫ
can be set to be arbitrary small in practice so that we disregard
here this small inaccuracy by settingǫ = 0 to simplify the
analysis; numerical experiments support this approach). The
following proposition shows thatf1(x, µ2), f2(µ1, x) have the
property needed for the convergence of the BA as stated above.
To this end, letP1(µ1, µ2) = trR∗(µ1, µ2), P2(µ1, µ2) =
trW 2R

∗(µ1, µ2), i.e. the transmit and interference powers
for givenµ1, µ2.

Proposition 2. Let µ10 be a solution of f1(x, µ2) = 0 for a
given µ2 and subject to P1(x, µ2) ≤ PT . Then, f1(µ, µ2) ≥ 0
for any µ < µ10 and f1(µ1, µ2) ≤ 0 for any µ1 > µ10.
Likewise, if µ20 is a solution of f2(µ1, x) = 0 for a given µ1

and subject to P2(µ1, x) ≤ PI , then f2(µ1, µ2) ≥ 0 for any
µ2 < µ20 and f2(µ1, µ2) ≤ 0 for any µ2 > µ20.

Proof. see the full version of this paper [10].

Thus, this proposition shows that the BA can be used
to solve f1(x, µ2) = 0 for a given µ2 and likewise for
f2(µ1, x) = 0. Unfortunately, neither of the optimal dual vari-
ables is known in advance. Hence, we propose the following
iterative bisection algorithm (IBA) which finds optimal dual
variables without such advance knowledge.

Algorithm 2 Iterative Bisection Algorithm (IBA)

Require: f1(µ1, µ2), f2(µ1, µ2), µ1u, µ2u, δ
1. Setµ20 = 0, k = 1.
repeat

2. Setµ1k = L[f1(x, µ2(k−1)), 0, µ1u, δ].
3. Setµ2k = L[f2(µ1k, x), 0, µ2u, δ].
4. k := k + 1.

until stopping criterion is met.

Note that the BA used in steps 2 and 3 will converge, as
follows from Proposition 2. A possible stopping criteria for
this algorithm is |f1(2)(µ1k, µ2k)| ≤ ǫ or when a number
of steps exceeds maximumkmax. The following proposition
shows that the IBA generates converging sequences of dual
variables{µ1k}, {µ2k} under a mild technical condition; see
[10] for a proof.

Proposition 3. The sequences {µ1k}
∞

k=1, {µ2k}
∞

k=1 generated
by the IBA above converge if δ = 0 and P1(2)(µ1, µ2) are
decreasing functions of µ1, µ2. In particular, this holds in any
of the following cases:

1. The IPC is inactive, in which case the IBA converges in
1 iteration.

2. W 1 and W 2 have the same eigenvectors.
3. R∗(µ1, µ2) is full-rank.
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The following proposition shows that any stationary (and
hence convergence) point of the IBA solves the dual optimality
conditions in (9).

Proposition 4. Any stationary point of the IBA is a solution
of (9) if δ = 0. Hence, the IBA converges to a solution of (9)
under the conditions of Proposition 3.

Proof. Let µ1s, µ2s be a stationary point of the IBA, so that

µ1s = L[f1(x, µ2s), 0, µ1u, 0]

µ2s = L[f2(µ1s, x), 0, µ2u, 0] (27)

It follows from 1st equality thatf1(µ1s, µ2s) = 0 and
f2(µ1s, µ2s) = 0 from 2nd one. Thus,µ1s, µ2s solves (9).
Since a convergence point is stationary, it follows that the
IBA converges to a solution of (9).

While the analytical convergence results above are limitedto
δ = 0, δ > 0 is used in practice. Since the BA converges expo-
nentially fast, very smallδ can be selected in the IBA without
significant increase in computational complexity of each step
and hence the analysis serves as a reasonable approximation
(due to the continuity of the problem and functions involved).
Furthermore, numerous numerical experiments indicate that
the IBA always converges, even when the conditions 1-3 of
Proposition 3 are not met (we were not able to observe a single
case where it did not). In the majority of the studied cases, a
small to moderate number of IBA iterations (1...50) is needed
to achieve a high accuracy of10−5, while up to 250 iterations
are required in some exceptional cases withǫ = 10−10 (which
is hardly required in practice).

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical results that
illustrate the performance of the IBA. In 1st example,PI = 1
and

W 1 =

[

1 0
0 0.5

]

, W 2 =

[

1 −0.5
−0.5 1

]

(28)

Fig. 1 shows the number of iterations of the IBA required to
solve (9) with the accuracyǫ = 10−5 vs.PT ; the optimal dual
variablesµ∗

1, µ∗

2 as well as the actual Tx and interference
powers (P1 = trR∗(µ∗

1, µ
∗

2) and P2 = trW 2R
∗(µ∗

1, µ
∗

2)
respectively) are also shown. Note the transition from the the
Tx power-limited regime (inactive IPC) to the interference-
limited regime (inactive TPC) asPT increases, which is visible
when the respective dual variable sharply decreases to 0.
In particular, the IPC is inactive whenPT < 1.1 and the
TPC is inactive whenPT > 1.8, while both constraints are
active otherwise. AsPT increases, the IPC becomes active
at aboutPT ≈ 1.1, at which point the required number of
iteration sharply increases from 1 to 36, gradually decreasing
to a small number of 2...5. When the IPC is inactive, the
number of iterations is 1, in agreement with Proposition 3. As
this example demonstrates, anyone of the constraints can be
inactive depending on thePT , PI and channel matrices. This

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

max. transmit power P
T

 

 

k

P
1

P
2

µ
1

*

µ
2

*

Fig. 1. Convergence of the IBA, i.e. the numberk of iterations required
to achieveǫ = 10

−5 vs. PT ; W 1 and W 2 are as in (28),PI = 1.
P1, P2, µ

∗

1
, µ∗

2
are also shown.

changes ifW 2 is rank-deficient since the TPC is always active
in that case.

It should also be noted that the optimal covarianceR∗ is not
diagonal, even thoungW 1 is, when the IPC is active - a sharp
distinction to the TPC constraint only, whereR∗ andW 1 have
the same eigenvectors so that diagonalW 1 implies diagonal
R∗. Hence, introducing the IPC makes independent signaling
sub-optimal for independent channels in general (unlessW 2

is also diagonal or if the IPC is inactive).
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