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The Capacity of Gaussian MIMO Channels Under
Total and Per-Antenna Power Constraints

Sergey Loyka

Abstract— The capacity of a fixed Gaussian multiple-input
multiple-output (MIMO) channel and the optimal transmission
strategy under the total power (TP) constraint and full channel
state information are well known. This problem remains open
in the general case under individual per-antenna (PA) power
constraints, while some special cases have been solved. These
include a full-rank solution for the MIMO channel and a general
solution for the multiple-input single-output (MISO) channel.
In this paper, the fixed Gaussian MISO channel is considered and
its capacity and optimal transmission strategies are determined
in a closed form under the joint total and PA power constraints in
the general case. In particular, the optimal strategy is hybrid and
includes two parts: first is equal-gain transmission and second
is maximum-ratio transmission, which are responsible for the
PA and TP constraints, respectively. The optimal beamforming
vector is given in a closed form and an accurate yet simple
approximation to the capacity is proposed. Finally, the above
results are extended to the MIMO case by establishing the
ergodic capacity of fading MIMO channels under the joint power
constraints when the fading distribution is right unitary-invariant
(of which i.i.d. and semi-correlated Rayleigh fading are special
cases). Unlike the fixed MISO case, the optimal signaling is shown
to be isotropic in this case.

Index Terms— MIMO, channel capacity, power constraint.

I. INTRODUCTION

THE capacity of a fixed multiple-input multiple-output
(MIMO) Gaussian channel under the total power (TP)

constraint and full channel state information (CSI) at both ends
is well-known as well as the optimal transmission strategy to
achieve it [1]–[4]: the optimal strategy is Gaussian signaling
over the channel eigenmodes with power allocation given
by the water-filling (WF) algorithm. In the special case of
multiple-input single-output (MISO) channel, this reduces to
the rank-1 signalling, i.e. beamforming, where the beamform-
ing vector is proportional to the channel vector (i.e. stronger
channels get more power), which mimics the maximum ratio
combining (MRC) in diversity reception systems [2], [3],
which we term here “maximum ratio transmission” (MRT).
Recently, this problem was considered under individual per-
antenna (PA) power constraints [6]–[8], which is motivated
by the distributed design of active antenna arrays where
each antenna has its own RF amplifier with limited power
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(as opposed to a common amplifier and a passive beam-
forming network in the case of TP constraint),1 so that
powers of different antennas cannot be traded off with each
other. The optimal transmission strategy for a fixed channel
was established in [8], which corresponds to beamforming
(i.e. rank-1 transmission) with uniform amplitude distribution
across antennas and where the beamforming vector compen-
sates for channel phase differences so that all transmitted
signals are coherently combined at the receiver. This mimics
the well-known equal gain combining (EGC) in a diversity-
reception system. Hence, we term this strategy “equal gain
transmission” (EGT) here. A fixed multiple-input multiple-
output (MIMO) Gaussian channel under PA constraints was
considered in [9] and [13], where a numerical algorithm to
evaluate an optimal Tx covariance was developed based on
a partial analytical solution [9] and a closed-form full-rank
solution was obtained [13], while the general solution remains
illusive. This is in stark contrast to the capacity under the TP
constraint, for which the general solution is well-known for
this channel. The capacity of the ergodic-fading MISO channel
under the long-term average PA constraint and full CSI at both
ends was established in [12].

Single-user PA-constrained results were extended to multi-
user scenarios in [7] and [11], where a precoder was developed
that achieves a 2-user MISO Gaussian broadcast channel (BC)
capacity [7] and an iterative numerical algorithm was devel-
oped to obtain optimal covariance matrices to maximize
the sum-capacity of Gaussian MIMO multiple-access (MAC)
channel [11], for which no closed-form solution is known.

One may further consider a hybrid design of a Tx antenna
array where each antenna has its own power amplifier
and yet some power can be traded-off between antennas
(corresponding to a common beamforming network) under
the limited total power (e.g. due to the limitation of a
power supply unit). This implies individual (PA) as well as
total (TP) power constraints. Ergodic-fading MIMO channels
were considered in [10] under long-term TP and short-term
PA constraints and a sub-optimal signalling transmission
strategy was proposed. An optimal strategy to achieve
the ergodic capacity under the above constraints remains
unknown. A fixed (non-fading) MISO channel was considered
in [14] under full CSI at both ends and joint TP and PA
constrains. It was shown that beamforming is still an optimal

1The following further considerations make the TP constraint impor-
tant: (i) for battery-operated devices, the TP determines the battery life;
(ii) the TP constraint is important when a power/energy supply is significantly
limited; (iii) the growing importance of “green” communications makes the
TP important since it is the TP rather than the PA power that determines the
carbon footprint of the system.

0090-6778 © 2017 British Crown Copyright.
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strategy. A closed-form solution was established in the case
of 2 Tx antennas only and the general case remains an open
problem.2

The present paper provides a closed-form solution to this
open problem, which is based on Karush-Kuhn-Tucker (KKT)
optimality conditions for the respective optimization problem.
In particular, we show that the optimal strategy is hybrid
and consists of 2 parts: 1st part, which includes antennas
with stronger channel gains and for which PA constraints
are active, performs EGT (when PA constraints are the same
for all antennas) while 2nd part, which includes antennas
with weaker channel gains and for which PA constraints are
inactive, performs MRT. This mimics the classical equal gain
and maximum ratio combining (EGC and MRC) strategies of
diversity reception. Amplitude distribution across antennas as
well as the number of active PA constraints are explicitly deter-
mined. Sufficient and necessary conditions for the optimality
of the MRT and the EGT are given. In particular, the MRT
is optimal when channel gain variation among antennas is not
too large and the EGT is optimal for sufficiently large total
power constraint.

Based on the fact that the capacity under the joint (PA+TP)
constraints is upper bounded by the capacities under the
individual (either PA or TP) constraints, a compact yet accurate
approximation to the capacity is proposed.

While closed-form solutions for the optimal signaling
and the capacity of the fixed Gaussian MISO channel
under the joint power constraints are established in sec-
tions III and IV, one may wonder whether they can be
extended to the MIMO case and whether fading can be
included as well, which is important from the practical
perspective for modern wireless systems. Section V par-
tially addresses this question by considering a class of fad-
ing MIMO channels and establishing its ergodic capacity
under the joint power constraints when the fading distribu-
tion is right unitary-invariant (see section V for details), of
which i.i.d. and semi-correlated Rayleigh fading are special
cases. Unlike the fixed MISO case, the optimal signaling is
shown to be isotropic in this case. This extends the respec-
tive result in [19] established under the TP constraint and
i.i.d. Rayleigh fading to the joint PA and TP constraints
as well as to the class of right unitary-invariant fading
distributions.

Notations: bold lower-case letters denote column vectors,
h = [h1, h2, .., hm ]T , where T is the transposition, while
bold capital denote matrices; R+ is the Hermitian conjugation
of R; rii denotes the i -th diagonal entry of R; �x� is the
integer part while (x)+ = max[0, x] is the positive part
of x ; ∇R is the derivative with respect to R; R ≥ 0 means
that R is positive semi-definite; |h|p = (

∑
i |hi |p)1/p is

the l p-norm of vector h and |h| = |h|2 is the l2 norm.

2After the submission of this paper, the author was informed about
[20] where an algorithmic solution to this problem was presented. Unlike
the algorithmic solution in [20], Theorems 1 and 2 here give analytical
closed-form solutions and respective capacity expressions, which are quite
compact and do not require an elaborate algorithm (as [20, Algorithm 1])
to implement. A number of insights also follow from these closed-form
solutions.

II. CHANNEL MODEL AND CAPACITY

Discrete-time model of a fixed Gaussian MISO channel can
be put into the following form:

y = h+x + ξ (1)

where y, x, ξ and h are the received and transmitted sig-
nals, noise and channel respectively; h∗

i is i -th channel
gain (between i -th Tx antenna and the Rx). Without loss
of generality, we order the channel gains, unless indicated
otherwise, as follows: |h1| ≥ |h2| ≥ ..|hm | > 0, and m
is the number of transmit antennas. The noise is assumed
to be Gaussian with zero mean and unit variance, so that
the SNR equals to the signal power. Complex-valued channel
model is assumed throughout the paper, with full channel
state information available both at the transmitter and the
receiver. Gaussian signaling is known to be optimal in this
setting [1]–[4] so that finding the channel capacity C amounts
to finding an optimal transmit covariance matrix R:

C = max
R∈SR

ln(1 + h+ Rh) (2)

where SR is the constraint set. In the case of the TP constraint,
it takes the form

SR = {R : R ≥ 0, tr R ≤ PT }, (3)

where PT is the maximum total Tx power, and the MRT is
optimal [3] so that the optimal covariance R∗ is

R∗ = PT hh+/|h|22 (4)

and the capacity is

CM RT = ln(1 + PT |h|22) (5)

Under the PA constraints,

SR = {R : R ≥ 0, rii ≤ P}, (6)

where rii is i -th diagonal entry of R (the Tx power of i -th
antenna), P is the maximum PA power, and the EGT is
optimal [8] so that the optimal covariance R∗ is

R∗ = Puu+, (7)

where the entries of the beamforming vector u are
ui = e jφi , φi is the phase of hi , and the capacity is

CEGT = ln(1 + P|h|21) (8)

Note from (5) and (8) that it is the l1 norm of the
channel h that determines the capacity under the PA
constraint while the l2 norm does so under the total
power constraint. In the next section, we will see how
this observation extends to the case of the joint PA and
TP constraints.



LOYKA: CAPACITY OF GAUSSIAN MIMO CHANNELS UNDER TOTAL AND PA POWER CONSTRAINTS 1037

III. THE CAPACITY UNDER THE JOINT CONSTRAINTS

Following the same line of argument as for the total power
constraint [1]–[4], the channel capacity C under the joint
PA and TP constraints is as in (2) where SR is as follows:

SR = {R : R ≥ 0, tr R ≤ PT , rii ≤ P} (9)

and PT , P are the maximum total and per-antenna powers.
This is equivalent to maximizing the Rx SNR:

max
R

h+ Rh s.t. R ∈ SR (10)

The following Theorem gives a closed-form solution to this
open problem.

Theorem 1: The MISO channel capacity in (2) under the
per-antenna and total power constraints in (9) is achieved by
the beamforming with the following input covariance matrix

R∗ = P∗uu+ (11)

where P∗ = min(PT , m P) and u is a unitary (beamforming)
vector of the form:

ui = aie
jφi (12)

where φi is the phase of hi and ai represents amplitude
distribution across antennas:

ai =
{

c1, i = 1..k

c2|hi |, i = k + 1..m
(13)

and

c1 = 1√
m∗ , c2 =

√
1 − k/m∗
|hm

k+1|2
(14)

m∗ = P∗/P, hm
k+1 = [hk+1...hm]T is the truncated channel

vector, and k is the number of active per-antenna power
constraints, 0 ≤ k ≤ �m∗�, determined as the least solution
of the following inequality

|hk+1| ≤ hth = |hm
k+1|2√

m∗ − k
(15)

if PT < m P and k = m otherwise. The capacity is

C = ln(1 + γ ∗) (16)

where γ ∗ = h+ R∗h is the maximum Rx SNR under the TP
and PA constraints,

γ ∗ = P∗(c1|hk
1|1 + c2|hm

k+1|22)2 (17)

where the 2nd term is absent if k = m.
Proof: see Appendix. �

Note from (12) that the beamforming vector always com-
pensates for channel phases so that the transmitted signals
are combined coherently at the receiver, while the amplitude
distribution across Tx antennas depends on the number of
active PA constraints: amplitudes are always the same for
those antennas for which PA constraints are active (which
represent stronger channels) and they are proportional to chan-
nel gain when for inactive PA constraints (weaker channels).
In accordance with this, (17) has two terms: 1st term c1|hk

1|1
represents the gain due to the equal gain transmission (EGT,
|ui | = c1) for active PA constraints while 2nd one c2|hm

k+1|22 -

Fig. 1. The capacity of MISO channel under the PA, TP and joint PA+TP
constraints and the number of active PA constraints k vs. total power PT ;
P = 1, h = [3, 1, 0.5, 0.1]T .

due to the maximum ratio transmission (MRT, |ui | = c2|hi |)
for inactive PA constraints, which mimic the equal gain
combining (EGC) and maximum ratio combining (MRC) in
the case of diversity reception systems. These two terms are
represented by l1 and l2 norms respectively, which mimic the
respective observation for (8) and (5).

Eq. (15) facilitates an algorithmic solution to find the
number k of active PA constraints and hence the threshold hth :
the inequality is verified for k in increasing order, starting from
k = 0, and the algorithm stops when 1st solution is found (this
will automatically be the least solution, as required).

The following Corollary establishes conditions for the opti-
mality of the MRT, which corresponds to k = 0.

Corollary 1: All PA constraints are inactive and thus max-
imum ratio transmission is the optimal strategy if and only if

|h1| ≤ |h|2
√

P/PT (18)
Proof: Follows directly from Theorem 1 by using k = 0.

The necessary part is due to the necessity of the KKT
conditions for optimality. �

Note that this limits channel gain variance among antennas.
In particular, it always holds if all channel gains are the same.
It also implies that at least 1 PA constraint is active if

|h1| > |h|2
√

P/PT (19)

In a similar way, one obtains a condition for the optimality
of the EGT.

Corollary 2: All PA constraints are active and thus the
equal gain transmission is the optimal strategy if and only if

PT ≥ m P (20)
When the TP constraint is not active, i.e. PT ≥ m P and

hence k = m, Theorem 1 reduces to the respective result in [8]
under the identical PA constraints.

A. Examples
To illustrate the optimal solution, we consider the following

representative example: h = [3, 1, 0.5, 0.1]T . Note that this
example also applies to complex-valued channel gains since
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Fig. 2. The optimal amplitude distribution under the joint power constraints
for the scenario in Fig. 1.

the beamforming vector is always adjusted to compensate for
the channel phases and hence they do not affect the capacity
or the amplitude distribution, which will stay the same for the
more general case of

h = [3e jφ1, e jφ2, 0.5e jφ3, 0.1e jφ4]T (21)

where φ1...φ4 are (arbitrary) phases, which affect the beam-
forming vector phases as in (12). Fig. 1 shows the capacity
under the total and joint power constraints as the function
of the total power PT when P = 1. As the total power
increases, more and more PA constraints become active, start-
ing with antennas corresponding to strongest channels. Note
that the MRT is optimal (k = 0) if the total power is not too
large:

PT ≤ P|h|2/|h1|2 ≈ 1.1 (22)

while the EGT is optimal if

PT ≥ m P = 4 (23)

Fig. 2 shows the amplitude distribution for the scenario
in Fig. 1 under the joint PA+TP constraints. While weak
channels get less power at the beginning (when the MRT
is optimal), it gradually increases as the strongest channels
reach their individual power constrains until eventually all
channels have the same power (when the EGT is optimal).
Note that while the amplitudes a1 and a4 of the strongest and
weakest channels are monotonically decreasing/increasing, the
amplitudes a2, a3 of intermediate channels are not monotonic
in PT , increasing first until they reach the stronger level and
then decreasing.

In general, the capacity under the joint PA+TP constraints
can be upper-bounded by the EGT and MRT capacities under
the PA and TP constraints respectively:

C ≤ min(CM RT , CEGT ) (24)

where CM RT , CEGT are as in (5), (8), and the upper bound
is tight everywhere except in the transition region, so one can
approximate the capacity C as

C ≈ min(CM RT , CEGT ) (25)

Fig. 3. The capacity of MISO channel under the PA, TP and joint PA+TP
constraints and the number of active PA constraints k vs. total power PT ;
P = 1, h = [4, 3, 2.5, 2]T . Note that the approximation in (25) is accurate
over the whole range of PT .

Fig. 4. The optimal amplitude distribution under the joint power constraints
for the scenario in Fig. 3.

It is straightforward to show that (24) and (25) hold with strict
equality under (18) or (20) for any h, or if |h1|/|hm | = 1 for
any PT and P . The approximation is sufficiently accurate if
the variance in the channel gains is not large, i.e. if |h1|/|hm | is
not too large, as the following example demonstrates in Fig. 3,
where h = [4, 3, 2.5, 2]T . Fig. 4 shows the respective ampli-
tude distribution. Notice that the variance of the amplitude
distribution is smaller than that in Fig. 2, since the variance
in the channel gains is smaller as well, and that the range of
optimality of the MRT is larger while the range of optimality
of the EGT is exactly the same as in Fig. 2. In fact, it follows
from (22) and (23) that while the range of optimality of the
MRT depends on the channel, that of the EGT does not.

IV. DIFFERENT PA CONSTRAINTS

In a similar way, one may wish to consider a more general
case where individual antennas have different power con-
straints, so that the constraint set is

SR = {R : R ≥ 0, tr R ≤ PT , rii ≤ Pi } (26)

The channel capacity under these constraints is given in the
following.
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Theorem 2: The MISO channel capacity in (2) under the
per-antenna and total power constraints in (26) is achieved
by the beamforming with the input covariance matrix as
in (11) and (12) where

ai =
{

c1i , i = 1..k

c2|hi |, i = k + 1..m
(27)

c1i =
√

Pi

P∗ , c2 =
√

1 − k/m∗
|hm

k+1|2
(28)

and P∗ = min(PT ,
∑m

i=1 Pi ), m∗ = P∗/P0, P0 = 1
k

∑k
i=1 Pi

is the average power of the active PA constraints, k is the
number of active PA constraints, determined as the least
solution of the following inequality

|hk+1|√
Pk+1

≤ |hm
k+1|2√

PT − ∑k
i=1 Pi

(29)

if PT <
∑m

i=1 Pi and k = m otherwise, where channel
gains {hi } are ordered in such a way that {|hi |/√Pi } are in
decreasing order. The capacity is as in (16) and the optimal
SNR is

γ ∗ = P∗
(

k∑

i=1

c1i |hi | + c2|hm
k+1|22

)2

(30)

Proof: Follows along the same lines as that of Theorem 1.
�

Note that 1st term in (30) does not represent EGT any-
more; rather, the amplitudes are adjusted to match the PA
constraints. The conditions for optimality of the MRT can
be similarly obtained. When the TP constraint is inactive,
i.e. when PT ≥ ∑m

i=1 Pi , Theorem 2 reduces to the respective
result in [8], as it should be. The condition for the optimality
of the MRT is as follows.

Corollary 3: All PA constraints are inactive and thus
the MRT is optimal if and only if

|h1| ≤ |h|2
√

P1/PT (31)

and at least 1 PA constraint is active otherwise. All PA
constraints are active if and only if

PT ≥
m∑

i=1

Pi (32)

V. FADING MIMO CHANNELS

While the closed form solutions for the optimal signaling
and the capacity of fixed MISO channels under the joint
power constraints have been obtained above, one may wonder
whether they can be extended to the MIMO case and whether
fading can be included as well, which is of particular impor-
tance for modern wireless systems.

In this section, we partially answer this question by consid-
ering Gaussian fading MIMO channels of the form

y = H x + ξ (33)

where x, y are the transmitted and received (vector) signals,
ξ is the Gaussian i.i.d. noise and H is the channel matrix.
The entries of this matrix are random variables representing

fading channel gains between each transmit and each receive
antenna. We assume that the Tx has the channel distribution
information only (due to e.g. limitations of the feedback link
and the channel estimation mechanism, see e.g. [16]). A class
of ergodic fading distributions will be considered, of which
i.i.d. Rayleigh fading is a special case. The following definition
characterizes this class.

Definition 1: A fading distribution of H is right unitary-
invariant if HU and H are equal in distribution for any
unitary matrix U of appropriate size.

To see a physical motivation behind this definition, observe
that i.i.d. Rayleigh fading, where each entry of H is i.i.d. com-
plex Gaussian with zero mean, satisfies this condition. A more
general class of distributions which fit into this definition can
be obtained by considering the popular Kronecker correlation
model, see e.g. [17], where the overall channel correlation is a
product of the independent Tx and Rx parts, which are induced
by the respective sets of scatterers (e.g. around the base station
and mobile unit), so that the channel matrix is

H = R1/2
r H0 R1/2

t (34)

where Rr , Rt are the Rx and Tx end correlations and the
entries of H0 are i.i.d. complex Gaussian with zero mean.
While this model does not fit in general into Definition 1, its
special case of no Tx correlation, Rt = I , so that

H = R1/2
r H0 (35)

is indeed right unitary-invariant (since H0 and H0U have
the same distribution). Note that this model does allow an
(arbitrary) Rx correlation. The uncorrelated Tx end may rep-
resent a base station where the antennas are spaced sufficiently
widely apart of each other thereby inducing independence,
see e.g. [18].

The following Theorem establishes the ergodic capacity of a
Gaussian MIMO channel under a right unitary-invariant fading
distribution and the joint PA and TP constraints.

Theorem 3: Consider the ergodic-fading MIMO channel as
in (33) for which the fading distribution is right unitary-
invariant. Its channel capacity under the joint PA and TP
constraints in (9) is as follows:

C = EH {ln |I + P∗ H H+|} (36)

where EH is the expectation with respect to the fading distri-
bution, P∗ = min{P, PT /m}, and the optimal Tx covariance
matrix is R∗ = P∗ I , i.e. isotropic (independent) signaling is
optimal.

Proof: The proof consists of two parts. In Part 1,
we establish the optimality of isotropic signaling under the
TP constraint only, while in Part 2, we extend this result to
include the PA constraints as well.

Part 1: the ergodic capacity under the TP constraint can be
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presented in the following form:

C1 = max
R

EH {ln |I + H R H+|} (37)

= max
R

EH {ln |I + HU�U+ H+|} (38)

= max
R

EH̃ {ln |I + H̃�H̃
+|} (39)

= max
�

EH {ln |I + H�H+|} (40)

where the maximization is subject to R ≥ 0, tr R ≤ PT . (37)
is the standard expression for the ergodic MIMO channel
capacity, see e.g. [16], [19]; (38) follows from the eigen-
value decomposition R = U�U+, where the columns of
unitary matrix U are the eigenvectors of R and the diagonal
matrix � collects the eigenvalues of R; (39) follows from
H̃ = HU ; (40) follows since H̃ and H have the same
distribution and the constraint tr R = tr� ≤ PT depends
only on the eigenvalues and hence the eigenvectors can be
eliminated from the optimization. To proceed further, let

C(�) = EH {ln |I + H�H+|} (41)

and observe that this is a concave function (since ln | · | is
and EH preserves concavity, see e.g. [15]). Further observe
the following chain inequality:

C(�) = EH{ln |I + H�π H+|} (42)

= 1

m!
∑

π

EH {ln |I + H�π H+|} (43)

≤ EH

{

ln

∣
∣
∣
∣
∣
I + 1

m!
∑

π

H�π H+
∣
∣
∣
∣
∣

}

(44)

= EH{ln |I + P∗ H H+|} (45)

where �π is a diagonal matrix whose diagonal entries are
a permutation π of those in �, and P∗ = PT /m. (42)
follows from the fact that a permutation can be represented
by a unitary matrix (where each column and each row has all
zero entries except for one) and hence C(�) = C(�π ); (43)
follows since (42) holds for any π and the total number
of permutations is m!; the inequality in (44) is due to the
concavity of C(�); (45) follows from 1

m!
∑

π �π = P∗ I .
Since the inequality in (44) becomes equality when � = P∗ I ,
the optimal signaling under the TP constraint is R∗ = P∗ I so
that

C1 = max
�

C(�) = EH{ln |I + P∗ H H+|}, (46)

which establishes Part 1.
Part 2: consider first the case when P ≥ PT /m and observe

that the capacity under the joint constraints C2 cannot exceed
that under the TP constraint only, which hence serves as
an upper bound: C2 ≤ C1. Since the TP optimal covari-
ance R∗ = PT I/m also satisfies the PA constraints (under
the assumed condition), it is also optimal under the joint
constraints and hence the upper bound is achieved: C2 = C1.
If, on the other hand, P < PT /m, observe that the
TP constraint is redundant (since, due to the PA constraints,
the total power does not exceed m P < PT ) and hence the
jointly-constrained optimization with PT > m P is equivalent
to the PA-constrained optimization only, which in turn is

equivalent to the jointly-constrained optimization with new
total power P ′

T = m P (since the new TP constraint is also
redundant). However, the latter problem is just a special case
of P ≥ PT /m considered above, from which the optimality
of R∗ = P ′

T I/m = P I follows.
Combining two parts, it follows that R∗ = min{P, PT /m}I

is optimal under the joint constraints in general and hence
C1 = C2. This completes the proof. �

It follows from Theorem 3 and its proof that the same
capacity expression holds under the TP constraint, the PA
constraints and the joint PA and TP constraints (where P∗
is defined accordingly). This extends the earlier result in [19]
established for i.i.d. Rayleigh fading and the TP constraint
to the class of right unitary-invariant fading distributions
(including, as a special case, the semi-correlated model in (35))
and to the PA as well as the joint PA and TP constraints.
Note that the optimal signaling here is isotropic, so that
the optimal covariance matrix is full-rank, unlike that in
Theorem 1, which is of rank-1. The importance of isotropic
signalling is due to the fact that no channel state or distribution
information is needed at the Tx end (and hence the feedback
requirements are minimal).

Applying this Theorem to the semi-correlated channel
in (35), one obtains its ergodic capacity under the joint
PA and TP constraints:

C = EH0{ln |I + P∗ Rr H0 H+
0 |} (47)

Unlike the fixed MISO case, the optimal signaling here is
isotropic, R∗ = P∗ I , and hence independent of the Rx
correlation Rr . However, the capacity does depend on Rr but,
as it follows from (47), C depends on the eigenvalues of Rr

only, not on its eigenvectors:

C = EH0{ln |I + P∗Ur�r U+
r H0 H+

0 |}
= EH̃0

{ln |I + P∗�r H̃0 H̃
+
0 |} (48)

= EH0{ln |I + P∗�r H0 H+
0 |}

where Rr = Ur�r U+
r is the eigenvalue decomposition, and

H̃0 = U+
r H0. The last equality is due to the fact that

H̃0 and H0 are equal in distribution. Hence, different Rr

induce the same capacity provided that they have the same
eigenvalues.

These properties are ultimately due to the right unitary
invariance of the fading process. It can be further shown
(by examples) that Theorem 3 does not hold in general if
fading distribution is not right unitary-invariant: e.g. consider
Rt = diag{1, 0, ..., 0} for which the optimal covariance can
be shown to be R∗ = diag{min(PT , P), 0, ..., 0} (i.e. all the
power is allocated to the only non-zero eigenmode of Rt ).

VI. CONCLUSION

The Gaussian MISO channel has been considered under the
joint total and per-antenna power constraints. Its capacity as
well as the optimal transmission strategy have been established
in closed-form, thus extending earlier results established under
individual constraints only or, in the case of joint constraints,
for 2 Tx antennas only. It is interesting to observe that the
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optimal transmission strategy is hybrid, i.e. a combination of
equal gain (for stronger antennas) and maximum-ratio (for
weaker antennas) transmission strategies. If the variance of
channel gains across antennas is not too large, the maximum
ratio transmission is optimal and individual power constraints
are not active. Finally, the above results have been extended to
the MIMO case by establishing the ergodic capacity of fading
MIMO channels under the joint power constraints when the
fading distribution is right unitary invariant, which includes, as
special cases, i.i.d. and semi-correlated Rayleigh fading. The
optimal signaling in this case has been shown to be isotropic
and hence the feedback requirements are minimal.

APPENDIX
PROOF OF THEOREM 1

The problem in (2) under the constraints in (9) is convex
(since the objective is affine and the constraints are affine and
positive semi-definite). Since Slater’s condition holds, KKT
conditions are sufficient for optimality [15]. The Lagrangian
for this problem is:

L = −h+ Rh + λ(tr R − PT ) +
∑

i

λi (rii − P) − tr M R

(49)

where λ, λi ≥ 0 are Lagrange multipliers responsible for the
total and per-antenna power constraints, and M ≥ 0 is (matrix)
Lagrange multiplier responsible for the positive semi-definite
constraint R ≥ 0. The KKT conditions are

∇R L = −hh+ + λI − M + � = 0 (50)

λ(tr R − PT ) = 0, λi (rii − P) = 0, RM = 0 (51)

tr R ≤ PT , rii ≤ P, (52)

M ≥ 0, λi ≥ 0 (53)

where ∇R is the derivative with respect to R and � =
diag{λ1...λm} is a diagonal matrix collecting λi ; (50) is
the stationarity condition, (51) are complementary slackness
conditions; (52) and (53) are primal and dual feasibility
conditions.

Combining both inequalities in (52), one obtains:

tr R ≤ min(PT , m P) = P∗ (54)

and from (50)

hh+ + M = λI + � > 0 (55)

where the last inequality is due to the diagonal part of the
equality:

|hi |2 + mii = λ + λi > 0 (56)

since mii ≥ 0 and |hi | > 0. Therefore, hh+ + M is full-rank,
r(hh+ + M) = m. Since r(hh+) = 1 and M ≥ 0, it follows
that r(M) ≥ m − 1. Since r(M) = m implies M > 0 and
hence R = 0 - clearly not an optimal solution, one concludes
that r(M) = m − 1 and hence r(R) = 1 (this follows
from complementary slackness M R = 0), i.e. beamforming
is optimal:

R∗ = P∗uu+ (57)

where |u| = 1. It remains to find the beamforming vector u.
To this end, combining the last equation with M R = 0, one
obtains:

0 = Mu = −h+uh + (� + λI)u (58)

from which it follows that

ui = h+uhi/(λ + λi ) (59)

and hence

φui = φi + ϕ = φi (60)

where φui , ϕ are the phases of ui and h+u; since the common
phase ϕ does not affect R or the SNR, one can set ϕ = 0
without loss of generality to obtain

ui = ahi/(λ + λi ) (61)

where a = |h+u|.
If λi > 0 (active i -th per-antenna constraint), then

rii = P∗|ui |2 = P from (51) and (11) so that

|ui | = c1 = 1/
√

m∗ (62)

Since λi > 0, using (61),

c1 = |ui | = a|hi |/(λ + λi ) < a|hi |/λ (63)

so that

|hi | > λc1/a = hth (64)

where hth is a threshold channel gain, i.e. PA constraints are
active for all sufficiently strong channels.

When λi = 0 (inactive i -th PA constraint) for at least one i ,
it follows from (56) that λ > 0, i.e. the TP constraint is active:
tr R = PT , which implies PT ≤ m P . One obtains from (61)
in this case

ui = c2hi , c2 = a/λ (65)

which, when combined with the PA constraint
rii = PT |ui |2 ≤ P , requires

|hi | ≤ hth (66)

where c2 can be found from the TP constraint |u|2 = 1:

|u|2 = kc2
1 + c2

2|hm
k+1|2 = 1 (67)

and k < m is the number of active PA constraints,
i.e. when (64) holds, which implies

c2 =
√

1 − k/m∗
|hm

k+1|2
(68)

so that k ≤ m∗ and hth can be expressed as

hth = λc1

a
= c1

c2
= |hm

k+1|2√
m∗ − k

(69)

If k = m, i.e. all PA constraints are active, then one can
take hth = 0 for consistency with (64). This implies PT ≥ m P
so that m∗ = m (note that (69) is not defined in this case).
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To find the number k of active PA constraints when
PT < m P , so that m∗ = PT /P < m and hence k ≤ m∗ < m,
observe that (64) and (65) imply

|hk |
√

m∗ − k > |hm
k+1|2 (70)

while (66) implies

|hk+1|
√

m∗ − k ≤ |hm
k+1|2 (71)

both due to the ordering |h1| ≥ |h2| ≥ .. ≥ |hm |, so that k has
to satisfy both inequalities simultaneously.

The next step is to show that there exists unique k that
satisfies both inequalities. First, we show that there is at least
one solution of (71).

Lemma 1: There exists at least one solution k, 0 ≤ k ≤ m∗,
of (71).

Proof: If m∗ = m, then k = m clearly solves it, where we
take hm+1 = 0 for consistency (recall that all channels with 0
gain do not affect the capacity). If m∗ < m, then k = �m∗�
solves it. �

The next Lemma shows that, in general, a solution is not
unique.

Lemma 2: If k ≤ �m∗� satisfies (71), then all k ′ such that
k ≤ k ′ ≤ �m∗� also satisfy it, i.e. a solution is not unique in
general. Likewise, all k′ ≤ k solve (70) if k solves it.

Proof: Let (71) to hold for k < �m∗�, so that

|hk+1|2(m∗ − k) ≤ |hk+1|2 + .. + |hm |2 (72)

and hence

|hk+2|2(m∗ − (k + 1)) ≤ |hk+1|2(m∗ − (k + 1))

≤ |hk+2|2 + .. + |hm |2 (73)

i.e. (71) also holds for k ′ = k + 1. By induction, it holds for
all k ≤ k ′ ≤ �m∗�. To prove 2nd claim, note that it follows
from (70) that

|hk−1|2(m∗ − k + 1) ≥ |hk |2(m∗ − k + 1)

> |hk |2 + .. + |hm |2 (74)

�
Finally, we show that a unique k satisfying both inequalities

does exist.
Proposition 1: There exists a unique solution

of (70) and (71), which is also the least solution of (71).
Proof: Note, from Lemma 1, that a least solution k′ of (71)

exists, so that the following holds

|hk′+1|2(m∗ − k ′) ≤ |hk′+1|2 + .. + |hm |2 (75)

|hk′ |2(m∗ − k + 1) > |hk′ |2 + .. + |hm |2 (76)

where the last inequality is due to the fact that k ′ is the least
solution; this inequality implies

|hk′ |2(m∗ − k) > |hk′+1|2 + .. + |hm |2 (77)

i.e. (70) holds for k = k ′. �
It remains to show that M ≥ 0 (dual feasibility). To this

end, note that this is equivalent to x+Mx ≥ 0 ∀x. It follows

from (50), (61), (64), (65) and Caushy-Schwarz inequality that

x+Mx = −|h+x|2 + λ|x|2 + x+�x (78)

≥ −|h+x|2 + a

c1

m∑

i=1

|hi ||xi |2 (79)

≥ −|h+x|2 + |h1|
m∑

i=1

|hi ||xi |2 (80)

≥ −|h+x|2 +
m∑

i=1

|hi |2|xi |2 ≥ 0 (81)

This completes the proof.
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