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The Operational Secrecy Capacity of Cognitive
Radio MIMO Channel

L. Dong, S. Loyka, Y. Li

Abstract—Secure communications over cognitive radio (CR)
MIMO channels is studied. The secrecy capacity, defined op-
erationally as the maximum achievable secrecy rate subject
to reliability and secrecy constraints, of CR MIMO wiretap
channel is established under power and interference constraints,
including a number of closed-form expressions, bounds and
related properties. The secrecy capacity of this channel can be
expressed as a minimax game between the transmitter (who
selects the input covariance) and nature (who selects the noise
covariance). Neither player can deviate from an optimal strategy
without incurring a penalty.

I. INTRODUCTION

Widespread use of wireless systems and services puts ever
increasing demand on already overcrowded wireless spectrum.
Cognitive radio (CR) approach has recently emerged as a so-
lution to the spectrum scarcity problem by allowing secondary
systems to use a resource when not in use by primary spectrum
holder or when interference to primary users is not significant
[1]-[3].

Due to the broadcast nature of wireless channels, wireless
systems are especially vulnerable to various security threads.
This is especially true for CR systems due to their open
architecture and shared use of the same spectrum by primary
and secondary users. A number of possible threads have been
identified and studied, including primary user emulation, spec-
trum sensing data falsification, jamming and eavesdropping
[4].

Physical-layer security approach has emerged as a valuable
complement to cryptography-based approaches [5]. In this
approach, the secrecy of communications is ensured at the
physical layer by exploiting the properties of wireless channels
to ”hide” transmitted information from eavesdropping. Using
this approach in combination with multi-antenna (MIMO) sys-
tems offers significant opportunities for enhancing the secrecy
of wireless communications. The wiretap MIMO channel has
emerged as a popular model to establish information-theoretic
limits to secure communications [6]-[8]. The key performance
metric is the secrecy capacity, defined operationally as the
maximum achievable rate subject to reliability (low error
probability) and secrecy (low information leakage) criteria [5],
which is a counterpart of the regular channel capacity (without
the secrecy criterion). The secrecy capacity of the AWGN
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MIMO wiretap channel (WTC) has been established in [7][8],
where in particular the optimality of Gaussian signaling has
been shown while leaving the problem of optimal covariance
matrix open. This problem has been solved for a number of
special cases in e.g. [9][10].

In this paper, we extend the classical AWGN MIMO wiretap
channel model to the cognitive radio setting by adding an
interference constraint so that any signalling must ensure that
the interference generated to the primary receiver (PR) does
not exceed a ceratin threshold. This significantly changes the
problem as the feasible set (of admissible transmit covariance
matrices) is not isotropic anymore, so that known results (e.g.
[6]-[10]) do not apply. It is not even clear whether Gaussian
signaling is optimal in such setting to maximize the secrecy
rate (recall that it was far from trivial in [7][8] to establish
the optimality of Gaussian signalling and some key steps in
the proofs exploited the isotropic nature of the feasible set).
The key contribution of this paper is to establish the secrecy
capacity of the cognitive radio MIMO wiretap channel with
AWGN by rigorously demonstrating that Gaussian signalling
is still optimal under the interference constraint. We emphasize
that the secrecy capacity here is defined operationally as the
maximum achievable secrecy rate (subject to reliability and
secrecy constraints, in addition to the power and interference
constraints), rather than formally as the difference of certain
mutual information terms without demonstrating their oper-
ational significance (as in e.g. [11]). While the operational
secrecy capacity of MISO CR channel was established in
[12], the present paper establishes the secrecy capacity and a
number of alternative closed-form expressions and properties
for the full MIMO case.

Our approach is based on that in [6][7] and extends it to
the cognitive radio settings. In particular, while it is rather
straightforward to show that the lower and upper bounds to
the secrecy capacity in [7] still hold, it is far more challenging
to show the key saddle-point property in [7] holds for such
non-isotropic set and the upper and lower bounds to the
secrecy capacity coincide at saddle point, hence establishing
the operational secrecy capacity. The secrecy capacity of the
CR MIMO WTC can also be expressed as a minimax game
between the transmitter (who selects the input covariance) and
nature (who selects the noise covariance); neither player can
deviate from the optimal strategy without incurring a penalty.

Notations: bold lower-case and capitals denote vectors and
matrices respectively; A

′
and A+ denote transpose and con-

jugate transpose; A ≥ 0 means positive semi-definite; E {·}
is statistical expectation.
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II. COGNITIVE RADIO WIRETAP MIMO CHANNEL MODEL

Let us consider the standard AWGN wiretap channel model
where a transmitter (Tx) sends confidential information to a
legitimate receiver (Rx) while an eavesdropper (Ev) intercepts
the transmission. The objective is to ensure reliable commu-
nications between the Tx and Rx (the reliability criterion)
while keeping the Ev ignorant about transmitted information
(the secrecy criterion). The secrecy capacity is the largest
transmission rate subject to the reliability and secrecy criteria
[5].

In the discrete-time AWGN MIMO channel model, the
signals received by the Rx and the Ev can be expressed as

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)

where y1,y2 are the respective received signals, x is the
transmitted signal, ξ1, ξ2 represent zero-mean unit-variance
i.i.d. noise at the Rx and Ev end respectively; H1,H2 are
the channel matrices collecting channel gains from the Tx to
the Rx and Ev respectively. We assume that the Tx has m
antennas, while the Rx and Ev have n1 and n2 antennas. In
addition to this, following the CR model, there is a primary
receiver (PR) whose received signal is

y3 = H3x+ ξ3 (2)

where H3 and ξ3 are the channel matrix and noise of the
PR. We assume that full channel state information (CSI) is
available at all ends of the links.

In the CR setting, the transmission is subject to power and
interference constraints, so that any Tx covariance matrix R =
E {xx+} must be in the following feasible set SR:

SR =
{
R : tr(R) ≤ PT , tr(H3RH+

3 ) ≤ PI , R ≥ 0
}
, (3)

where PT , PI are the maximum Tx and interference powers.
The interference constraint tr(H3RH+

3 ) ≤ PI ensures that the
total interference power at the PR does not exceed the thresh-
old PI so that its performance is not distorted. The secrecy
capacity of the cognitive radio WTC is defined operationally
as the largest achievable rate subject to the power, reliability
and interference constraints simultaneously.

Without interference constraint (i.e. when PI = ∞), the
secrecy capacity Cs of the Gaussian MIMO WTC has been
established in [6]-[8]:

Cs = max
R≥0

R−(R) s.t. trR ≤ PT (4)

where

R−(R) = ln |I+H1RH+
1 | − ln |I+H2RH+

2 | (5)

It is the purpose of this paper is to extend this result
and to establish the secrecy capacity of the cognitive radio
Gaussian MIMO wiretap channel. This task is complicated
by the fact that the interference constraint in (3) makes the
set SR non-isotropic in general while the feasible set in (4) is
always isotropic and this isotropy was exploited in [7][8] while
establishing the secrecy capacity. In particular, this is critical
while establishing a saddle-point in [7] and the equality of
upper and lower bounds under this saddle point.

Our proof follows the same general path as in [6][7]
(developed without the interference constraint) by establish-
ing lower and upper bounds to the capacity, existence of a
saddle point and demonstrating that the best lower and upper
bounds coincide, all under the new interference constraint. We
emphasize that this establishes the operational secrecy capacity
(defined as the largest achievable secrecy rate) rather than just
information capacity defined formally via the difference of
respective mutual information terms (as in (5)).

III. SECRECY CAPACITY OF COGNITIVE RADIO MIMO
WTC

In this section, we establish the operational secrecy capacity
of cognitive radio MIMO wiretap channel with AWGN. To this
end, let SK be a covariance matrix of the form

SK ,
{
K : K =

[
I N

N+ I

]
, K > 0

}
, (6)

where N is any matrix of appropriate size, and

R+(R,K) , ln |I+K−1HRH+| − ln |I+H2RH+
2 |, (7)

where H = [H+
1 ,H

+
2 ]

+ is an extended channel. It will be
seen later that K is the covariance matrix of ξ = [ξ+1 , ξ

+
2 ]

+

and N is the covariance matrix of ξ1 and ξ2 for an equivalent
degraded channel (where these noise vectors are allowed to be
correlated with each other), N = E

{
ξ1ξ

+
2

}
.

Theorem 1. The operational secrecy capacity of Gaussian
MIMO wiretap cognitive radio channel in (1)-(3) is

C = max
R∈SR

R−(R) = max
R∈SR

min
K∈SK

R+(R,K) (8)

Furthermore, the following saddle-point property holds:

max
R∈SR

min
K∈SK

R+(R,K) = min
K∈SK

max
R∈SR

R+(R,K) (9)

so that

R+(R,K∗) ≤ R+(R
∗,K∗) ≤ R+(R

∗,K) (10)

where (R∗,K∗) is a saddle-point.

Proof. The theorem is proved by a sequence of propositions
below.

While the first equality in (8) can also be established
using the approach of [13], the max-min characterization in
(8) as well as the saddle point properties in (9) and (10)
cannot be established via that approach. The importance of
the max-min characterization comes from the fact that the
original maximization problem in (8) (1st equality) is not
convex so that all powerful tools of convex optimization cannot
be used, while the max-min problem in (8) is convex (in
each variable) and hence the KKT conditions are sufficient
for global optimality. Furthermore, numerical algorithms with
guaranteed global convergence can be constructed as in [14].

We begin the proof by establishing lower and upper bounds
to the secrecy capacity.
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Proposition 1. Let px be a probability distribution of input
x. The secrecy capacity C of cognitive radio MIMO WTC can
be bounded as follows:

max
px∈P

[I(x;y1)− I(x;y2)] 6 C 6 max
px∈P

I(x;y1|y2) (11)

where I(x;y1(2)) is the mutual information between x and
y1(2), and I(x;y1|y2) is the conditional mutual information
when ξ1 and ξ2 are jointly Gaussian and the covariance of
[ξ+1 , ξ

+
2 ]

+ is K (as in (6)); P is the set of all distributions px
that satisfy the power and interference constraints:

P = {px : E
{
|x|2

}
6 PT , E

{
|H3x|2

}
6 PI}. (12)

Proof. See Appendix.

Note that this proposition does not require x to be Gaus-
sian. The following proposition establishes the optimality of
Gaussian inputs.

Proposition 2. For each K > 0, the distribution of x
maximizing I(x;y1|y2) in (11) is Gaussian.

Proof. See Appendix.

Since Gaussian input maximizes the upper bound,
I(x;y1|y2) under such input can be expressed as

I(x;y1|y2) = ln |I+K−1HRH+| − ln |I+H2RH+
2 |

= R+(R,K) (13)

and maxpx can be replaced by maxR on the both sides of
(11) (still preserving the inequalities), giving

max
R

R−(R) ≤ C ≤ max
R

R+(R,K) (14)

which holds for any K and hence

max
R

R−(R) ≤ C ≤ min
K

max
R

R+(R,K) (15)

We further establish the existence of a saddle-point in
the minimax problem above, which is essential to establish
Propositions 4 and 5 below, on which Proposition 6 depends.

Proposition 3. The max-min problem in (8) has a saddle point
solution as in (9) and (10).

Proof. See Appendix.

Armed with the saddle-point solution, we further establish
that it also solves the following entropy maximization prob-
lem.

Proposition 4. Let h(y) be the differential entropy of y and
let Z∗

12 be the optimal MMSE weight matrix to estimate y1

from y2 at saddle-point (R∗,K∗):

Z∗
12 = (N∗ +H1R

∗H+
2 )(I+H2R

∗H+
2 )

−1 (16)

Then,

arg max
R∈SR

h(y1 − Z∗
12y2) = arg max

R∈SR

R+(R,K∗) (17)

where h(·) is evaluated under K = K∗.

Proof. See Appendix.

Using this Proposition, we establish the following property
of the saddle-point, which is needed to prove Proposition 6.

Proposition 5. If H1 ̸= Z∗
12H2, the saddle point (R∗,K∗)

satisfies

N∗+H1S
∗ = H2S

∗ (18)

for any full column-rank matrix S∗ such that S∗S∗+ = R∗

(the columns of S∗ are the scaled eigenvectors of R∗ corre-
sponding to strictly-positive eigenvalues).

Proof. See Appendix.

Using Gaussian x in (11) and following Proposition 3 and
(15), one obtains:

R−(R
∗) ≤ C ≤ R+(R

∗,K∗) (19)

The final step is to show that these bounds coincide.

Proposition 6. The saddle point solution (R∗,K∗) satisfies

R+(R
∗,K∗) =

{
R−(R

∗), H1 ̸= Z∗
12H2

0, H1 = Z∗
12H2

(20)

Proof. follows from Propositions 4 and 5 above - see Ap-
pendix for details.

Combining (19) and (20), Theorem 1 follows. While we
considered the case of non-singular K only, the singular case
can be established in a similar way with somewhat more
lengthy arguments (using pseudo-inverse instead of the inverse
and related projection on the active sub-space only).

IV. APPENDIX

A. Proof of Proposition 1

The upper bound in (11) is obtained via a genie-aided
channel in which the Rx observes y2 in addition to y1.
Such channel has a larger capacity than the original one
and it is degraded at the same time, making the analysis
much simpler (since the original Wyner’s construction of the
converse applies). Furthermore, one can always choose the
noises ξ1, ξ2 to be jointly Gaussian and correlated with each
other (since the secrecy capacity depends on the marginal
distributions, not the joint one [5]) and select their cross-
covariance as to minimize the upper bound [6]. The details
follow below.

Suppose there is a (2nR, n) code for the channel, where n
denotes the length of transmission time interval, consists of a
message w uniformly distributed over the set

{
1, 2, ..., 2nR

}
,

an encoder that maps the message w to the transmitted vector
sequence {x(t)}nt=1, and a decoder that maps the received
sequence {y(t)}nt=1 to a message estimate ŵ. Let

Xn = [x(1),x(2), ...,x(n)],

Yn
i = [yi(1),yi(2), ...,yi(n)], i = 1, 2, (21)

denote the transmitted and received sequence matrix from time
interval 1 to n respectively. The reliability and secrecy criteria
are as follows: for every ϵ > 0 and n sufficiently large,

Pr(w ̸= ŵ) 6 ϵ, n−1I(w;Yn
2 ) 6 ϵ, (22)
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while the power and interference constraints are

1

n

n∑
i=1

E
{
|x(i)|2

}
6 PT , (23)

1

n

n∑
i=1

E
{
|H3x(i)|2

}
6 PI . (24)

We note that (22) implies, from Fano’s inequality,

n−1I(w;Yn
1 ) > R− ϵF (25)

where ϵF → 0 as ϵ → 0. By combining (22) and (25), we
obtain for any ϵ′ = ϵF + ϵ > 0,

R− ϵ′ 6 n−1[I(w;Yn
1 )− I(w;Yn

2 )]

6 1

n

n∑
i=1

I(x(i);y1(i)|y2(i)) (26)

6 I(x̄q; ȳ1q|ȳ2q) (27)
≤ max

px∈P
I(x;y1|y2) (28)

where (26) and (27) are obtained via the same steps as in
[6, Appendix I]. In (27), q is a time-sharing random variable
with uniform distribution: pq = 1/n, and x̄q is the composite
(time-shared) random input whose distribution is the average
of those of x(1), ..,x(n):

px̄q = n−1
n∑

i=1

px(i). (29)

Note that, since {x(1), ...,x(n)} satisfy the power and inter-
ference constrained in (23) and (24), so is x̄q , resulting in the
desired upper bound in (28). Since this holds for any ϵ′ > 0,
the upper bound in (11) follows.

To establish the lower bound in (11), note that it is an
achievable rate, which follows from the Csiszar-Korner for-
mula (see e.g. [5][6]) by setting u = x and using Gaussian
input subject to the constraints in (23) and (24), where
where u is the auxiliary random variable. Since Proposition
2 demonstrates that Gaussian input is optimal for the upper
bound, one can also use such input for the lower bound.

B. Proof of Proposition 2

After some manipulations, I(x;y1|y2) can be expressed as

I(x;y1|y2) = h(y1|y2)− h(ξ1|ξ2) (30)

Since the second term in (30) is independent of x, it suffices
to establish that h(y1|y2) is maximized when x is Gaus-
sian. While Gaussian distribution maximises the differential
entropy under covariance constraint, it is not necessarily so
for conditional entropy, since it is a difference of 2 differential
entropies. To this end, we need the following Lemma of
Thomas [15].

Lemma 1. Let z1, .., zk be a set of arbitrary zero-mean
random variables with covariance matrix R. Let S be any
subset of {1, 2, ..., k} and S̄ be its complement. Then

h(zS |zS̄) 6 h(z∗S |z∗S̄) (31)

where (z∗1 , .., z
∗
k) ∼ N(0,R), i.e. Gaussian with the same

mean and covariance.

Since R in this Lemma is arbitrary, the power and in-
terference constraints can be accommodated. Applying this
inequality to h(y1|y2) and maximizing the upper bound over
R ∈ SR, one concludes that Gaussian input achieves the
upper bound in (11), since, under such input, y1,y2 are also
Gaussian.

C. Proof of Proposition 3
It was shown in [7] that R+(R,K) is concave in R for any

fixed K and convex in K for any fixed R. Since the feasible
set SR in (3) and SK are convex (as an intersection of convex
sets representing each constraint individually), von Neumann
mini-max theorem applies (see e.g. [16]), from which (9) and
hence (10) follow.

D. Proof of Proposition 4
First, we note that one cannot use the respective result

from [7] directly since our feasible set SR is different from
that in [7] (in particular, it is not isotropic) so that the
respective KKT conditions and other steps in [7] are to be
modified accordingly. Nevertheless, we demonstrate here that
this important property does hold for our cognitive radio
scenario with an extra interference constraint.

After some manipulations, h(y1−Z∗
12y2) can be expressed

as

h(y1 − Z∗
12y2) = ln |I+B1 +B2RB+

2 |+ n1 ln(2πe) (32)

where

B1 = Z∗
12Z

∗+
12 − Z∗

12N
∗+ −N∗Z∗+

12 ,

B2 = H1 − Z∗
12H2 (33)

and where the last term can be neglected. Since h(y1−Z∗
12y2)

is concave in R, the feasible set SR is convex and Slater’s
condition holds, the KKT conditions are both necessary and
sufficient for optimality of the LHS of (17), which take the
following form:

B+
2 [I+B1 +B2RB+

2 ]
−1B2 +M1 − λ1I− λ2H

+
3 H3 = 0

(34)

M1R = 0, λ1(tr(R)− PT ) = 0, λ2(tr(H3RH+
3 )− PI) = 0,

(35)
M1 ≥ 0, λ1 > 0, λ2 > 0 (36)

where M1 is a Lagrange multiplier responsible for the positive
semi-definite constraints R ≥ 0, λ1 and λ2 are Lagrange
multiplier responsible for the total power tr(R) 6 PT and
interference tr(H3RH+

3 ) 6 PI constraints.
Likewise, since R+(R,K∗) is concave in R, the KKT

conditions are both necessary and sufficient for the optimality
of the RHS of (17). After some manipulations (using matrix
inversion Lemma etc.), they take the following form:

B+
1 A

−1
12 B1 +M2 − λ3I− λ4H

+
3 H3 = 0, (37)

M2R = 0, λ3(tr(R)− PT ) = 0, λ4(tr(H3RH+
3 )− PI) = 0,

(38)
M2 ≥ 0, λ3 > 0, λ4 > 0 (39)
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where M2, λ3, λ4 are Lagrange multipliers and

A12 = I+H1RH+
1 − Z12(N

∗+ +H2RH+
1 ), (40)

Z12 = (N∗ +H1RH+
2 )(I+H2RH+

2 )
−1. (41)

After some manipulations, A12 can be further expressed as

A12 = I+B1 +B2RB+
2 . (42)

so that the condition in (37) takes the form:

B+
1 (I+B1 +B2RB+

2 )
−1B1 +M2 − λ3I− λ4H

+
3 H3 = 0

(43)

By comparing (34)-(36) to (38), (39) and (43), it is clear that
any solution of the 1st set of KKT conditions also solves the
2nd one and hence optimal R are the same, as desired.

E. Proof of Proposition 5

Following 2nd inequality in (10) and the steps of the proof
in [7, Lemma 3], one obtains

B2S
∗S∗+(N∗+H1 −H2)

+ = 0 (44)

Using Proposition 4,

R∗ = argmax
R∈SR

R+(R,K∗)

= argmax
R∈SR

h(y1 − Z∗
12y2)

= argmax
R∈SR

ln |I+HeRH+
e | (45)

where He = (I + B1)
−1/2B2. Using 1st inequality in (10)

and following judiciously the steps of the proof of [7, Lemma
4], one verifies that HeS

∗ is of full column-rank and hence
so is B2S

∗, from which it follows that

S∗+(N∗+H1 −H2)
+ = 0. (46)

and hence the desired result.

F. Proof of Proposition 6

We consider 1st the case of H1 ̸= Z∗
12H2 and establish

R+(R
∗,K∗) = R−(R

∗). To this end, take Gaussian x and
use the chain rule to obtain

R+(R
∗,K∗) = I(x;y1|y2) = R−(R

∗) + I(x;y2|y1) (47)

Using (30), one can express I(x;y2|y1) as

I(x,y2|y1) = h(y2 − Z21y1)− ln |I−N∗+N∗| (48)

where

Z21 = (N∗+ +H2R
∗H+

1 )(I+H1R
∗H+

1 )
−1 (49)

denotes the MMSE matrix of estimating y2 from y1 and N+

also represents the MMSE matrix of estimating ξ2 from ξ1.
At a saddle point (R∗,K∗), one obtains:

h(y2 − Z21y1) = ln |I+H2R
∗H+

2 − Z21(N
∗ +H1R

∗H+
2 )|

= ln |I+H2R
∗H+

2 −N∗+(I+H1S
∗S∗+H+

1 )N
∗| (50)

= ln |I+N∗+H1S
∗S∗+H+

1 N
∗ −N∗+(I+H1S

∗S∗+H+
1 )N

∗|
(51)

= ln |I−N∗+N∗|

where (50) and (51) are obtained via N∗+H1S
∗ = H2S

∗ from
Proposition 5. Therefore, using (47) and (48),

I(x,y2|y1) = R+(R
∗,K∗)−R−(R

∗) = 0. (52)

Thus, R+(R
∗,K∗) = R−(R

∗) as desired.
Finally, we show that R+(R

∗,K∗) = 0 if H1 = Z∗
12H2.

To this end, note that

y1 − Z∗
12y2 = ξ1 − Z∗

12ξ2. (53)

so that

R+(R
∗,K∗) = h(ξ1 − Z∗

12ξ2)− h(ξ1 −N∗ξ2). (54)

Substituting H1 = Z∗
12H2 into (16) and after some manipu-

lations, one obtains

Z∗
12(I+H2R

∗H+
2 ) = (N∗ + Z∗

12H2R
∗H+

2 ). (55)

so that Z∗
12 = N∗ and hence R+(R

∗,K∗) = 0, as desired.
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