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Abstract—The multiple-input multiple-output (MIMO) Gaus-
sian wire-tap channel (WTC) model is considered in the cogtive
radio (CR) setting, where there is a interference power cornsaint
(IPC), in addition to the total transmit power constraint (T PC).
Based on the recently established mini-max characterizadn of its
secrecy capacity, a numerical algorithm for global maximiation
of secrecy rates over such channels is proposed, which is leals
on the barrier method in combination with the residual-form
Newton method and backtracking line search. Unlike the knowm
algorithms, the proposed algorithm is guaranteed to convege to
a global (rather than local) optimum. Its efficient performance
is illustrated by examples.

I. INTRODUCTION

Using this approach in combination with MIMO systems
offers significant new opportunities for enhancing the segr

of CR wireless communications via space-domain processing
The wiretap channel (WTC) model became a popular tool
to study physical-layer security, where the transmittex) (T
sends information to the receiver (Rx) while an eavesdroppe
(Ev) observes the transmission. The key performance metric
is the secrecy capacity, defined operationally as the maximu
achievable rate on the Tx-Rx link subject to the reliability
(low error probability) and secrecy (low information leglea

on the Tx-Ev link) criteria [4]. The secrecy capacity of Gaus
sian MIMO WTC has been established in [6][7], where the
optimality of Gaussian signaling has been proved. However,

Exponential growth of wireless systems and services in tH&1ile some special cases have been settled [8][9], the aptim

past two decades has made the wireless spectrum a very schicgovariance matrix is unknown in the general case, which
resource. The traditional model of fixed frequency allamati '€Mains a difficult open problem due to the non-convex nature
became a bottleneck and a new approach, term ‘cognit@bthe underlying optimization problem. _
radio’ (CR) has gained considerable attention recently [1] To this end, a number of numerical optimization algorithms
where secondary users are allowed to transmit provided thave been developed [10]-[12]. Unfortunately, they lackvpr
they do not create significant interference to primary ugéies able global.convergence due to the non-convex.r?ature of the
spectrum license holders). Hence, interference managenf@i?blem (since Karush-Kuhn-Tucker (KKT) conditions ar
becomes a key issue. To this end, multiple-input mu|tip|§yff|C|ent for global optlmall_ty as the problem is not con)le_x
output (MIMO) systems become a valuable design approach/inglobally-convergent algorithm was proposed in [13], which
the CR settings. A number of approaches have been propoS¥grcomes this fundamental difficulty by using the max-min
to maximize the capacity of secondary users’ channels subjeeformulation of the original non-convex problem, and its
to the total transmit and interference power constrainRqT 9lobal convergence was proved. However, no interference
and IPC) [2]-[3]. The CR Gaussian MIMO channel is studieBOWer cons_tralnt (IPC) was considered so it _c_annot b_e us_e_d in
in [2] and a game-theoretic approach is employed to contibe CR settlng. The_ absence _of the IPC 5|gn|f|ca_1ntly S|mpI|_f|e
the interference as well as to maximize the achievable traffd€ Problem since (i) the feasible set of Tx covariance roedri
mission rates. Similar approach in the multiple-input &ag IS iSotropic (no limitations on eigenvectors) and (ii) the@”
output (MISO) setting is considered in [3] and several afese!S aways active. Neither of these is true in the CR setting,
form solutions and sub-optimal beamforming are proposed}’Vh'Ch posses additional dlfflculyes: (i) the feasible sehot _

In addition to interference, wireless systems are vulnerOtropic anymore, due to the interference power condirain
ble to various attacks such as eavesdropping by malicicRd (i) the TPC can be inactive (when the IPC dominates)
(unauthorized) users due to the broadcast nature of Ws'relé‘é‘d' f_urthermore, it is not known in advance which constrain
channels (this is especially true in the CR setting). To esir S active or not. o _
this issue, the physical-layer security approach has tigcen N this paper, we overcome these difficulties by using the
emerged as a valuable complement to cryptography-baé@ﬁe”t|y‘95tab|'5h9d max-min reformglanon of the ordin
approaches [4][5]. In this approach, the secrecy of commii@n-convex problem in the CR setting [16], and develop
nications is ensured at the physical layer by exploiting tfe numerical algquthm for global maximization of secrecy
properties of physical communication channels so that fates over Gaussian MIMO CR channels based on the barrier

transmitted information can be recovered by an eavesdrop;ﬁ@eth()d in com'bina.tion with the residual-form Newton method
and backtracking line search. The global (rather than Jocal

L. Dong is with the School of Electronics and Information, rifevestern
Polytechnical University, Xian, China, e-mail: dim nwpu@mail.com. This
work was done when L.Dong was visiting the School of Eleatriengineering
and Computer Science, University of Ottawa, Canada and wggosted by
the China Scholarship Council.

S. Loyka is with the School of Electrical Engineering and Qoier
Science, University of Ottawa, Canada, e-mail: sergelyd@ieee.org.

Y. Li is with the School of Electronics and Information, Nonestern
Polytechnical University, Xian, China, e-mail: ruikel@pwedu.cn.

978-1-5090-5990-4/17/$31.00 ©2017 IEEE

126

convergence of this algorithm follows from the fact that the
reformulated objective function is convex-concave in tightr
way so that the KKT conditions are sufficient for global
optimality.

It should be noted that the Gaussian MISO WTC channel
(with single-antenna receivers) in the CR setting has been
considered in [14][15] and several algorithms for globally
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optimal signaling were proposed exploiting the quasi-esnv I1l. SECRECYCAPACITY OF CR MIMO WIRETAP

nature of the problem. Unfortunately, this approach fails i CHANNEL

the MIMO setting (since the MIMO channel cannot be equiv- ) L .
alently reduced to a single scalar channel, unlike the MIS?lThe following characterization of the secrecy capacity of

channel), which thus remains an open problem addressed Ga}ussian CR MIMO WTC established .recently |n [16]
this paper. will be instrumental below to develop a numerical optimiaat

Notations bold lower-case lettersajand capitals &) de- algorithm with a guaranteed convergence to a global optimum

note vectors and matrices respectively> 0 denotes positive Theorem 1. The secrecy capacity of Gaussian MIMO CR
semi-definite matrixA; A’ and A* denote transpose andchannel under the TPC and the IPC can be equivalently
conjugate transposer(A) is the traceyeqA) is the vector expressed as

obtained by stacking all columns of matri on top of each

other andvech{ A) is the vector obtained by vectorizing only C = max C(R) = max min f(R,K) 4)

the lower triangular part ofA; diag(A) is a diagonal matrix RESR RESm KeSk

with the same diagonal entries asAq E{-} is a statistical whereH = [H{,H}|*, N =E {¢&:¢5} and

expectationja| and|A| are the Euclidian norm of vectarand

determinant of matriX\; I is the identity matrix of appropriate CR)=InI+W;R|-In|I+W3R|,

size. FR,K) =In|I + K 'HRH'| — In|I + W2R],
Il. SYSTEM MODEL Sp={R:R >0, tr(R) < Pr, (W3R) < P},
Let us consider the standard ANGN WTC model in Fig.1, g, — {K K — { I+ N} K> 0}. ®)
where a Tx sends confidential information to a Rx while N I

an Ev intercepts_ the transmission. The objective is to ENSWio00f. The proof is based on the method of [6] judiciously
reliable communications between the Tx and Rx (the religtbil incorporating the IPC in each step. Even though the feasible
criterion) while keeping the Ev ignorant about transmitteg

. 4 - - et Sg above is not isotropic anymore (due to the IPC
information (the secrecy criterion). The secrecy capasithe R P y (

e . L tr(W3R) < Py), unlike that in [6], it can still be shown that
largest transmission rate subject to the reliability ancressy the saddle point property and all key inequalities do hold,

criteria [4]. ; ’ .
In the discrete-time AWGN MIMO channel model, the\é\/:t';ir;sa:%v;rztgo Ses;?ltarlllzh trr;ifcapacny. See [16] for fgrth
signals received by the Rx and the Ev can be expressed as P P '
yi=Hix+&, yo=Hyx+6& (1) It can be further shown that
where y1,y2 are the respective received signals,is the C(R) < f(R,K) (6)

transmitted signalg,, &> represent zero-mean unit-variance

i.i.d. noise at the Rx and Ev end respectivelf;, H, are so thatf(R,K) serves as an upper bound to the achievable
the channel matrices collecting channel gains from the Tx ¢ecrecy rate”(R) andmaxresy f(R, K) serves as an (con-
the Rx and Ev respectively. We assume that the Txhas vex) upper bound to the secrecy capadity

antennas, while the Rx and Ev hane andn, antennas. In

addition to this, following the CR model, there is a primary O < max f(R,K) (7)
receiver (PR) whose received signal is "
It follows from Theorem 1 that the secrecy capacity can
ys = Hax + &3 (2 Y capacly

be equivalently represented in 2 different ways, involving
where H; and &3 are the channel matrix and noise of th@ptimizations ovelR andK. Since no closed-form solution is
PR. We assume that full channel state information (CSI) ksown to either one in the general case, we develop below a
available to the Tx, Rx and Ev (but not necessarily to theumerical algorithm to find the optimal Tx covariance matrix
PR). In the following, we will uséW, = H Hy,k = 1,2,3. While the 1st representation looks simpler (due to single
In the CR setting, the transmission is subject to TPC armgbtimization), it is not a convex problem in general (unldss
IPC, so that any Tx covariance mat® = E {xx"} must WTC is degraded) so that KKT conditions aret sufficient for
be in the following feasible setg: global optimality and numerical optimization with guareed
convergence to global optimum is out of reach. On the other
Sr = {R:tr(R) < Pr, r(H;RHg) < Pr, R >0} (3) hand, while 2nd max-min representation looks more complex,
where Pr, P; are the maximum allowed Tx and interfer-t is in fact much more trackable since both optimizations
ence powers respectively. The interference power constragre convex (since (R, K) is concave inR and convex in
tr(HsRHZ) < P; ensures that the total interference powek), the KKT conditions (for both optimizations) are sufficien
at the PR does not exceed the threshéld so that its for global optimality and hence a numerical algorithm can be
performance is not distorted. The secrecy capacity of the @Rveloped with guaranteed convergence to a global optimum
WTC is defined operationally as the largest achievable rdtdlowing the approach originally developed in [13] for the
subject to the power, reliability and interference coristea MIMO WTC without the interference constraint, as explained
simultaneously. below.
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IV. AN ALGORITHM FOR GLOBAL MAXIMIZATION OF In the proposed algorithm, we use the residual-form Newton
SECRECY RATES UNDER INTERFERENCECONSTRAINT method to compute the optimal poigR*(¢), K*(¢)} for a

Performing separatelynax and min optimizations in the fixed ¢ in an iterative way with any desired accuracy. To

max-min part of (4) immediately faces a serious difficulty olfeduce the number of va(rjiables and lillnprove_ tge effidciency,
achieving or proving convergence of the algorithm due to fye usex = vect(R) andy = ve_q_ ) as indepen ent
oscillatory behaviour. To overcome this difficulty, we ube t variables to represerR and K_(_expl(_)ltlng their symmetry).
residual form of Newton method where both optimization-ghe corresponding KKT conditions in (13) become
(max and min) are done simultaneously, as discussed ingletai r(z) = V,f, =0 (15)
in [13]. This opens up a way to provable global convergence. R )
Since only the TPC was considered in [13], (i) the feasibiherez = [x’,y’]" is the aggregate vector of the variables and
set there was isotropic, and (ii) the TPC was always actig(2) is the residual. In the residual-form Newton method, the
i.e. transmission with full available power was always opti  OPtimality conditionr(z) = 0 is iteratively solved using 1st-
and hence was implemented as an equality constraint. NeitREder approximation of (z) at each step (which corresponds
of these are true in the present CR setting: the feasible &the 2nd order approximation of the objective):
Sw is not isotropic anymore, due to the IREW;R) < P, r(z), + Az) = r(z),) + DrAz + o(Az) =0.  (16)
and the TPC can be inactive due to the IPC (when the latter
dominates). Furthermore, it isot known in advance which wherez; and Az are the current variables and their updates
constraint is active or not. respectively at iteratiok, and whereDr is the derivative of

To address these issues, we propose the following iterath/&), i-e. the Hessian of;(x, y):
algorithm to solve the max-min problem in (4) based on the 2 2

. . . . vxxfif vxyft
barrier method combined with the residual form of Newton Dr = |3 3 =T. (17)
. . V x.ft v yft
method and the backtracking line search (see e.g. [17] foemo ] R o
details on these basic algorithms). For numerical implemenWwhereT is also the KKT matrix (since there are no explicit
tion, we use real rather than complex variables. Followirgg t COnstraints). After evaluating the gradients and Hessitires
barrier method, let us introduce the barrier parameter 0 UpdateAz can be computed via (16) by ignoringAz):
to ab_sorb the inequality constraints so that the new objecti Az:TAz = —r(zy). (18)
function f;(R,K) becomes
. which is a system of linear equations i&xwz. Note that when

[i(R,K) = f(R,K) + I1(R) + I>(R) + Is(R) — I,(K)  KKT matrix T is non-singular, (18) has a unique solution.

In our setting, the non-singularity ¢f' at each step can be

where rigorously established following similar steps as in [13thw
L(R) =t""In|R], (8) proper modifications to account for the interference camstr
L(R) =t 'In(Pr — tr(R)), ) and the fact that t_he_ TPC can be inactive (the proof is omitted
1 due to the page limit). Thus, the updates can be expressed as
I3(R) =t " In(Pr — tr(W3R)), (20)
L(K)=t"'In[K| (11) Zi1 = 2 + SAZ (19)

wheres > 0 is the step size. It is found via the backtracking
line search method. The Newton method in combination with
the backtracking line search is guaranteed to reduce the
max min f;(R,K) (12) residual norm|r(z)| at each step, which follows from the
R K following norm-reduction property [17]:
without any explicit constraints, so that its KKT condition d
are simply the stationarity conditions: £|r(Zk + 5Az)| = —

Thus, the original inequality-constrained max-min prolie
(4) is transformed to

r(z)] <0 (20)

Vrft=0, Vkfi =0 (13) so that, for sufficiently smalls, the residual norm indeed
. ) o _ . shrinks at each iteration approaching= 0 as k increases.
for a fixed, which are also sufficient for global optimality afier several iterations, the convergence becomes quadrat
since f;(R, K) is convex-concave in the right way. Following(see [17] for related definitions and analysis) and hencyg ver
Proposition 3 in [13], the optimality gap of the barrier math fast, so that the optimal poirfR* (), K*(t)) of the problem

in (12) applied to the minimax problem in (4) can be boundgd ) can be approach with any desired accuracy in a small to

as follows moderate number of steps. Following the barrier method, the
IF(R*(t), K*(t)) — C| < max(m,ny + na)/t (14) problem in (12) is solved for §equentially increa;ifqgvherg

the optimal point of the previous serves as an initial point
where {R*(t), K*(t)} is the optimal point for the modified for the new, increased, thus minimizing the total number
problem in (12). Hence, the gap can be made as small aisNewton iterations required [17]. It follows from (14) tha
desired by selecting sufficiently large It is this inequality f(R*(¢),K*(t)) — C ast — oo so that any desired accuracy
that makes the barrier method so powerful for inequalitgan be reached. Convergence to a global optimum can also be
constrained problems. rigorously proved (the proof is omitted due to the page imit
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The proposed algorithm can be summarized as shown belov
whereq is the percentage of the linear decrease in the residus
norm one is willing to accept at each step;and ;. are the
parameters controlling reduction in step sizend increase
in barrier parameter at each iteration of the algorithng,
is the target residual accuracy, and t,,,, are initial and
maximum values of the barrier parameteraries fromt, to
tmaz; Zo = [X(, ¥(|' is the initial point defined as follows

xo = vech(PrI/a), yo =0 (21)

wherea = 2max(m,tr(Ws)Pr/Pr) so thatRy, K, are

strictly inside of Sg and Sk, as required by the barrier
method.

Algorithm 1 (for global maximization of secrecy rates)
Require zp, 0 < a < 0.5, 0 < 8 < 1, tg > 0, tiaz > to,

pw>1,€e>0.
1. Sett = .
repeat (barrier method)
2. Setk = 0.
repeat (residual-form Newton method)
3. Computer(z;) via (15) for currentk.
4. Compute updatédz via (18).

5. Sets = 1.
repeat (backtracking line search)
6. s:= (s.

7. Updatezy, 1 = zj, + sAz;
until |r(zr41)] < (1 — as)|r(zx)| and Ry41 €
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until ¢ > ptyes Newton step

Fig. 2. Secrecy rates and upper bound for the same settiny Fig.i 1.
V. NUMERICAL EXAMPLES

In this section, we present some numerical examples
illustrate the performance of the proposed algorithm. @eéan

matricesH,, H, andH; are selected as follows:
{0-17 *0-81] {*0-71 *1-16} {116 *0-15] takest = 10° to get the same accuracy vid(R) so we
-1.01 —0.50]" | 0.79 ~ 0.41 |’ |0.47 —0.27 conclude that, in addition to being convex-concave in thatri
(22) way, f(R,K) is more robust (less sensitive) thai{R). For
so that the corresponding eigenvalues Wf; — W, are properly selected, it takes 10 to 15 Newton steps for the
(0.48, —1.15), i.e. the channel is non-degraded and “hard” fgdlgorithm to converge in terms of achieved secrecy rates.
optimization (since the negative eigenmode is dominant). 10 further validate the algorithm, its results were comgare
Fig. 1 illustrates the convergence of the proposed algoritd© those of Monte-Carlo (MC) search, where a large number
for the channel in (22), i.e. the residual’s Euclidian nou (10°) of covariance matriceR are randomly generated within
versus the number of Newton steps for several values of fixdtg feasible set and the best one is selected. No significant
t. Note that, for all considered values ofit takes only about difference between these 2 methods was observed while com-
10 to 20 Newton steps to reach the machine precision levBfring the best achieved secrecy rates.
Also note the presence of two convergence phases: linear and
quadratic. After the quadratic ("water-fall”) phase ischad,
the convergence is very fast.
Fig. 2 shows the achieved secrecy rai€R) and the
upper boundf(R, K). Note that, while they converge as the

qlcgorithm converges, the behaviour 6fR) is significantly
non-monotonic and sensitive 1, while the upper bound is
less sensitive and converges faster. White 103 is sufficient

to evaluate accurately the capacity via the upper bound, it
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