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Abstract—The multiple-input multiple-output (MIMO) Gaus-
sian wire-tap channel (WTC) model is considered in the cognitive
radio (CR) setting, where there is a interference power constraint
(IPC), in addition to the total transmit power constraint (T PC).
Based on the recently established mini-max characterization of its
secrecy capacity, a numerical algorithm for global maximization
of secrecy rates over such channels is proposed, which is based
on the barrier method in combination with the residual-form
Newton method and backtracking line search. Unlike the known
algorithms, the proposed algorithm is guaranteed to converge to
a global (rather than local) optimum. Its efficient performance
is illustrated by examples.

I. I NTRODUCTION

Exponential growth of wireless systems and services in the
past two decades has made the wireless spectrum a very scarce
resource. The traditional model of fixed frequency allocation
became a bottleneck and a new approach, term ’cognitive
radio’ (CR) has gained considerable attention recently [1],
where secondary users are allowed to transmit provided that
they do not create significant interference to primary users(the
spectrum license holders). Hence, interference management
becomes a key issue. To this end, multiple-input multiple-
output (MIMO) systems become a valuable design approach in
the CR settings. A number of approaches have been proposed
to maximize the capacity of secondary users’ channels subject
to the total transmit and interference power constraints (TPC
and IPC) [2]-[3]. The CR Gaussian MIMO channel is studied
in [2] and a game-theoretic approach is employed to control
the interference as well as to maximize the achievable trans-
mission rates. Similar approach in the multiple-input single-
output (MISO) setting is considered in [3] and several closed-
form solutions and sub-optimal beamforming are proposed.

In addition to interference, wireless systems are vulnera-
ble to various attacks such as eavesdropping by malicious
(unauthorized) users due to the broadcast nature of wireless
channels (this is especially true in the CR setting). To address
this issue, the physical-layer security approach has recently
emerged as a valuable complement to cryptography-based
approaches [4][5]. In this approach, the secrecy of commu-
nications is ensured at the physical layer by exploiting the
properties of physical communication channels so that no
transmitted information can be recovered by an eavesdropper.

L. Dong is with the School of Electronics and Information, Northwestern
Polytechnical University, Xian, China, e-mail: dlm nwpu@hotmail.com. This
work was done when L.Dong was visiting the School of Electrical Engineering
and Computer Science, University of Ottawa, Canada and was supported by
the China Scholarship Council.

S. Loyka is with the School of Electrical Engineering and Computer
Science, University of Ottawa, Canada, e-mail: sergey.loyka@ieee.org.

Y. Li is with the School of Electronics and Information, Northwestern
Polytechnical University, Xian, China, e-mail: ruikel@nwpu.edu.cn.

Using this approach in combination with MIMO systems
offers significant new opportunities for enhancing the secrecy
of CR wireless communications via space-domain processing.
The wiretap channel (WTC) model became a popular tool
to study physical-layer security, where the transmitter (Tx)
sends information to the receiver (Rx) while an eavesdropper
(Ev) observes the transmission. The key performance metric
is the secrecy capacity, defined operationally as the maximum
achievable rate on the Tx-Rx link subject to the reliability
(low error probability) and secrecy (low information leakage
on the Tx-Ev link) criteria [4]. The secrecy capacity of Gaus-
sian MIMO WTC has been established in [6][7], where the
optimality of Gaussian signaling has been proved. However,
while some special cases have been settled [8][9], the optimal
Tx covariance matrix is unknown in the general case, which
remains a difficult open problem due to the non-convex nature
of the underlying optimization problem.

To this end, a number of numerical optimization algorithms
have been developed [10]-[12]. Unfortunately, they lack prov-
ableglobal convergence due to the non-convex nature of the
problem (since Karush-Kuhn-Tucker (KKT) conditions arenot
sufficient for global optimality as the problem is not convex).
A globally-convergent algorithm was proposed in [13], which
overcomes this fundamental difficulty by using the max-min
reformulation of the original non-convex problem, and its
global convergence was proved. However, no interference
power constraint (IPC) was considered so it cannot be used in
the CR setting. The absence of the IPC significantly simplifies
the problem since (i) the feasible set of Tx covariance matrices
is isotropic (no limitations on eigenvectors) and (ii) the TPC
is always active. Neither of these is true in the CR setting,
which posses additional difficulties: (i) the feasible set is not
isotropic anymore, due to the interference power constraint,
and (ii) the TPC can be inactive (when the IPC dominates)
and, furthermore, it is not known in advance which constraint
is active or not.

In this paper, we overcome these difficulties by using the
recently-established max-min reformulation of the original
non-convex problem in the CR setting [16], and develop
a numerical algorithm for global maximization of secrecy
rates over Gaussian MIMO CR channels based on the barrier
method in combination with the residual-form Newton method
and backtracking line search. The global (rather than local)
convergence of this algorithm follows from the fact that the
reformulated objective function is convex-concave in the right
way so that the KKT conditions are sufficient for global
optimality.

It should be noted that the Gaussian MISO WTC channel
(with single-antenna receivers) in the CR setting has been
considered in [14][15] and several algorithms for globally-
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optimal signaling were proposed exploiting the quasi-convex
nature of the problem. Unfortunately, this approach fails in
the MIMO setting (since the MIMO channel cannot be equiv-
alently reduced to a single scalar channel, unlike the MISO
channel), which thus remains an open problem addressed in
this paper.

Notations: bold lower-case letters (a)and capitals (A) de-
note vectors and matrices respectively;A ≥ 0 denotes positive
semi-definite matrixA; A′ and A+ denote transpose and
conjugate transpose;tr(A) is the trace;vec(A) is the vector
obtained by stacking all columns of matrixA on top of each
other andvech(A) is the vector obtained by vectorizing only
the lower triangular part ofA; diag(A) is a diagonal matrix
with the same diagonal entries as inA; E {·} is a statistical
expectation;|a| and|A| are the Euclidian norm of vectora and
determinant of matrixA; I is the identity matrix of appropriate
size.

II. SYSTEM MODEL

Let us consider the standard AWGN WTC model in Fig.1,
where a Tx sends confidential information to a Rx while
an Ev intercepts the transmission. The objective is to ensure
reliable communications between the Tx and Rx (the reliability
criterion) while keeping the Ev ignorant about transmitted
information (the secrecy criterion). The secrecy capacityis the
largest transmission rate subject to the reliability and secrecy
criteria [4].

In the discrete-time AWGN MIMO channel model, the
signals received by the Rx and the Ev can be expressed as

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)

where y1,y2 are the respective received signals,x is the
transmitted signal,ξ1, ξ2 represent zero-mean unit-variance
i.i.d. noise at the Rx and Ev end respectively;H1,H2 are
the channel matrices collecting channel gains from the Tx to
the Rx and Ev respectively. We assume that the Tx hasm
antennas, while the Rx and Ev haven1 andn2 antennas. In
addition to this, following the CR model, there is a primary
receiver (PR) whose received signal is

y3 = H3x+ ξ3 (2)

whereH3 and ξ3 are the channel matrix and noise of the
PR. We assume that full channel state information (CSI) is
available to the Tx, Rx and Ev (but not necessarily to the
PR). In the following, we will useWk = H+

k
Hk, k = 1, 2, 3.

In the CR setting, the transmission is subject to TPC and
IPC, so that any Tx covariance matrixR = E {xx+} must
be in the following feasible setSR:

SR =
{

R : tr(R) ≤ PT , tr(H3RH+

3 ) ≤ PI , R ≥ 0
}

(3)

where PT , PI are the maximum allowed Tx and interfer-
ence powers respectively. The interference power constraint
tr(H3RH+

3 ) ≤ PI ensures that the total interference power
at the PR does not exceed the thresholdPI so that its
performance is not distorted. The secrecy capacity of the CR
WTC is defined operationally as the largest achievable rate
subject to the power, reliability and interference constraints
simultaneously.

III. SECRECY CAPACITY OF CR MIMO WIRETAP

CHANNEL

The following characterization of the secrecy capacity of
the Gaussian CR MIMO WTC established recently in [16]
will be instrumental below to develop a numerical optimization
algorithm with a guaranteed convergence to a global optimum.

Theorem 1. The secrecy capacity of Gaussian MIMO CR
channel under the TPC and the IPC can be equivalently
expressed as

C = max
R∈SR

C(R) = max
R∈SR

min
K∈SK

f(R,K) (4)

whereH = [H+
1 ,H

+
2 ]

+, N = E
{

ξ1ξ
+
2

}

and

C(R) = ln |I+W1R| − ln |I+W2R|,

f(R,K) = ln |I+K−1HRH+| − ln |I+W2R|,

SR = {R : R ≥ 0, tr(R) ≤ PT , tr(W3R) ≤ PI} ,

SK =

{

K : K =

[

I N

N+ I

]

,K ≥ 0

}

. (5)

Proof. The proof is based on the method of [6] judiciously
incorporating the IPC in each step. Even though the feasible
set SR above is not isotropic anymore (due to the IPC
tr(W3R) ≤ PI ), unlike that in [6], it can still be shown that
the saddle point property and all key inequalities do hold,
which allow one to establish the capacity. See [16] for further
details and all steps of the proof.

It can be further shown that

C(R) ≤ f(R,K) (6)

so thatf(R,K) serves as an upper bound to the achievable
secrecy rateC(R) andmaxR∈SR

f(R,K) serves as an (con-
vex) upper bound to the secrecy capacityC:

C ≤ max
R∈SR

f(R,K) (7)

It follows from Theorem 1 that the secrecy capacity can
be equivalently represented in 2 different ways, involving
optimizations overR andK. Since no closed-form solution is
known to either one in the general case, we develop below a
numerical algorithm to find the optimal Tx covariance matrix.
While the 1st representation looks simpler (due to single
optimization), it is not a convex problem in general (unlessthe
WTC is degraded) so that KKT conditions arenotsufficient for
global optimality and numerical optimization with guaranteed
convergence to aglobal optimum is out of reach. On the other
hand, while 2nd max-min representation looks more complex,
it is in fact much more trackable since both optimizations
are convex (sincef(R,K) is concave inR and convex in
K), the KKT conditions (for both optimizations) are sufficient
for global optimality and hence a numerical algorithm can be
developed with guaranteed convergence to a global optimum
following the approach originally developed in [13] for the
MIMO WTC without the interference constraint, as explained
below.
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IV. A N ALGORITHM FOR GLOBAL MAXIMIZATION OF

SECRECY RATES UNDER INTERFERENCECONSTRAINT

Performing separatelymax and min optimizations in the
max-min part of (4) immediately faces a serious difficulty of
achieving or proving convergence of the algorithm due to its
oscillatory behaviour. To overcome this difficulty, we use the
residual form of Newton method where both optimizations
(max and min) are done simultaneously, as discussed in details
in [13]. This opens up a way to provable global convergence.
Since only the TPC was considered in [13], (i) the feasible
set there was isotropic, and (ii) the TPC was always active,
i.e. transmission with full available power was always optimal
and hence was implemented as an equality constraint. Neither
of these are true in the present CR setting: the feasible set
SR is not isotropic anymore, due to the IPCtr(W3R) ≤ PI ,
and the TPC can be inactive due to the IPC (when the latter
dominates). Furthermore, it isnot known in advance which
constraint is active or not.

To address these issues, we propose the following iterative
algorithm to solve the max-min problem in (4) based on the
barrier method combined with the residual form of Newton
method and the backtracking line search (see e.g. [17] for more
details on these basic algorithms). For numerical implementa-
tion, we use real rather than complex variables. Following the
barrier method, let us introduce the barrier parametert > 0
to absorb the inequality constraints so that the new objective
function ft(R,K) becomes

ft(R,K) = f(R,K) + I1(R) + I2(R) + I3(R)− I4(K)

where

I1(R) = t−1 ln |R|, (8)

I2(R) = t−1 ln(PT − tr(R)), (9)

I3(R) = t−1 ln(PI − tr(W3R)), (10)

I4(K) = t−1 ln |K|. (11)

Thus, the original inequality-constrained max-min problem in
(4) is transformed to

max
R

min
K

ft(R,K) (12)

without any explicit constraints, so that its KKT conditions
are simply the stationarity conditions:

∇Rft = 0, ∇Kft = 0 (13)

for a fixed t, which are also sufficient for global optimality
sinceft(R,K) is convex-concave in the right way. Following
Proposition 3 in [13], the optimality gap of the barrier method
in (12) applied to the minimax problem in (4) can be bounded
as follows

|f(R∗(t),K∗(t))− C| ≤ max(m,n1 + n2)/t (14)

where{R∗(t),K∗(t)} is the optimal point for the modified
problem in (12). Hence, the gap can be made as small as
desired by selecting sufficiently larget. It is this inequality
that makes the barrier method so powerful for inequality-
constrained problems.

In the proposed algorithm, we use the residual-form Newton
method to compute the optimal point{R∗(t),K∗(t)} for a
fixed t in an iterative way with any desired accuracy. To
reduce the number of variables and improve the efficiency,
we usex = vech(R) and y = vec(N) as independent
variables to representR andK (exploiting their symmetry).
The corresponding KKT conditions in (13) become

r(z) = ∇zft = 0 (15)

wherez = [x′,y′]′ is the aggregate vector of the variables and
r(z) is the residual. In the residual-form Newton method, the
optimality conditionr(z) = 0 is iteratively solved using 1st-
order approximation ofr(z) at each step (which corresponds
to the 2nd order approximation of the objective):

r(zk +∆z) = r(zk) +Dr∆z + o(∆z) = 0. (16)

wherezk and∆z are the current variables and their updates
respectively at iterationk, and whereDr is the derivative of
r(z), i.e. the Hessian offt(x,y):

Dr =

[

∇2
xxft ∇2

xyft
∇2

yxft ∇2
yyft

]

= T. (17)

whereT is also the KKT matrix (since there are no explicit
constraints). After evaluating the gradients and Hessians, the
update∆z can be computed via (16) by ignoringo(∆z):

∆z : T∆z = −r(zk). (18)

which is a system of linear equations in∆z. Note that when
KKT matrix T is non-singular, (18) has a unique solution.
In our setting, the non-singularity ofT at each step can be
rigorously established following similar steps as in [13] with
proper modifications to account for the interference constraint
and the fact that the TPC can be inactive (the proof is omitted
due to the page limit). Thus, the updates can be expressed as

zk+1 = zk + s∆z (19)

wheres > 0 is the step size. It is found via the backtracking
line search method. The Newton method in combination with
the backtracking line search is guaranteed to reduce the
residual norm|r(z)| at each step, which follows from the
following norm-reduction property [17]:

d

ds
|r(zk + s∆z)| = −|r(zk)| < 0 (20)

so that, for sufficiently smalls, the residual norm indeed
shrinks at each iteration approachingr = 0 as k increases.
After several iterations, the convergence becomes quadratic
(see [17] for related definitions and analysis) and hence very
fast, so that the optimal point(R∗(t),K∗(t)) of the problem
(12) can be approach with any desired accuracy in a small to
moderate number of steps. Following the barrier method, the
problem in (12) is solved for sequentially increasingt, where
the optimal point of the previoust serves as an initial point
for the new, increasedt, thus minimizing the total number
of Newton iterations required [17]. It follows from (14) that
f(R∗(t),K∗(t)) → C ast → ∞ so that any desired accuracy
can be reached. Convergence to a global optimum can also be
rigorously proved (the proof is omitted due to the page limit).

128



The proposed algorithm can be summarized as shown below,
whereα is the percentage of the linear decrease in the residual
norm one is willing to accept at each step;β andµ are the
parameters controlling reduction in step sizes and increase
in barrier parametert at each iteration of the algorithm,ǫ
is the target residual accuracy,t0 and tmax are initial and
maximum values of the barrier parameter;t varies fromt0 to
tmax; z0 = [x′

0, y′

0]
′ is the initial point defined as follows

x0 = vech(PT I/a), y0 = 0 (21)

where a = 2max(m, tr(W3)PT /PI) so thatR0, K0 are
strictly inside of SR and SK, as required by the barrier
method.

Algorithm 1 (for global maximization of secrecy rates)
Require z0, 0 < α < 0.5, 0 < β < 1, t0 > 0, tmax > t0,
µ > 1, ǫ > 0.
1. Sett = t0.
repeat (barrier method)

2. Setk = 0.
repeat (residual-form Newton method)

3. Computer(zk) via (15) for currentk.
4. Compute update∆z via (18).
5. Sets = 1.
repeat (backtracking line search)

6. s := βs.
7. Updatezk+1 = zk + s∆z;

until |r(zk+1)| 6 (1 − αs)|r(zk)| and Rk+1 ∈
SR,Kk+1 ∈ SK

8. k := k + 1.
until |r(zk)| 6 ǫ
9. Evaluatef(Rk,Kk), C(Rk).
10. Setz0 := zk as a new starting point.
11. Updatet := µt.

until t > µtmax

V. NUMERICAL EXAMPLES

In this section, we present some numerical examples to
illustrate the performance of the proposed algorithm. Channel
matricesH1, H2 andH3 are selected as follows:

[

0.17 −0.81
−1.01 −0.50

]

,

[

−0.71 −1.16
0.79 0.41

]

,

[

1.16 −0.15
0.47 −0.27

]

(22)

so that the corresponding eigenvalues ofW1 − W2 are
(0.48,−1.15), i.e. the channel is non-degraded and ”hard” for
optimization (since the negative eigenmode is dominant).

Fig. 1 illustrates the convergence of the proposed algorithm
for the channel in (22), i.e. the residual’s Euclidian norm|r|
versus the number of Newton steps for several values of fixed
t. Note that, for all considered values oft, it takes only about
10 to 20 Newton steps to reach the machine precision level.
Also note the presence of two convergence phases: linear and
quadratic. After the quadratic (”water-fall”) phase is reached,
the convergence is very fast.

Fig. 2 shows the achieved secrecy rateC(R) and the
upper boundf(R,K). Note that, while they converge as the
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Fig. 1. Convergence of the Newton method for different values of t; PT = 5
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Fig. 2. Secrecy rates and upper bound for the same setting as in Fig. 1.

algorithm converges, the behaviour ofC(R) is significantly
non-monotonic and sensitive toR, while the upper bound is
less sensitive and converges faster. Whilet = 103 is sufficient
to evaluate accurately the capacity via the upper bound, it
takes t = 105 to get the same accuracy viaC(R) so we
conclude that, in addition to being convex-concave in the right
way, f(R,K) is more robust (less sensitive) thanC(R). For
properly selectedt, it takes 10 to 15 Newton steps for the
algorithm to converge in terms of achieved secrecy rates.

To further validate the algorithm, its results were compared
to those of Monte-Carlo (MC) search, where a large number
(105) of covariance matricesR are randomly generated within
the feasible set and the best one is selected. No significant
difference between these 2 methods was observed while com-
paring the best achieved secrecy rates.
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