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Strong Converse for General Compound Channels
Sergey Loyka, Charalambos D. Charalambous

Abstract—A general compound channel is considered, where
no stationarity, ergodicity or information stability is re quired.
Following the recent result on the capacity of this channel under
the full Rx CSI, sufficient and necessary conditions are obtained
for the strong converse to hold. In a nutshell, even though no
information satiability is required upfront, the conditio ns imply
that there exists a sub-sequence of (bad) channel states (indexed
by the blocklength) for which the respective information density
rates converge in probability to the compound channel capacity,
i.e. this sub-sequence is information stable.

I. I NTRODUCTION

It is well-known that channel state information (CSI) af-
fects significantly system performance and respective channel
capacity. It can be rather limited in many scenarios, especially
for wireless systems, where low SNR, interference and channel
dynamics are significant, and where the feedback (if any) is
also limited [1]. A popular approach to model the impact of
limited CSI is to assume that the receiver (Rx) and transmitter
(Tx) know that the unknown channel is fixed and belongs to a
certain class of channels (uncertainty set), which is known
as the compound channel model [2]-[6]. The capacity of
compound channels has been extensively studied since late
1950s [2]-[5]; see [6] for an extensive literature review upto
late 1990s, and [9] for more recent results.

All of these studies assume that each channel in the uncer-
tainty set is information-stable (in the sense of Dobrushin[10]
or Pinsker [11]), e.g. stationary and ergodic. However, there
are many scenarios (especially in wireless communications)
where the channels are not stationary, ergodic or information-
stable. This setting was recently studied in [14], where the
capacity of general (information-unstable) compound channels
was established under the full Rx CSI using the information
density (spectrum) approach of [7][8]. The assumption of full
Rx CSI is motivated by the fact that channel estimation is
done at the Rx so that full Rx CSI may be available if the
SNR is high enough but limited (if any) feedback to the Tx
makes full Tx CSI unfeasible.

While the channel capacity theorem ensures the achiev-
ability of any rate below the capacity with arbitrary low
error probability, there exists a hope to achieve higher rates
by allowing slightly higher error probability, since the tran-
sition from arbitrary low to high error probability may be
slow. Strong converse ensures that this transition is very
sharp (for any rate above the capacity, the error probability
converges to 1) and hence dispels the hope. In this paper,
we extend the study in [14] by establishing the sufficient
and necessary conditions for the strong converse to hold for
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the general compound channel. In a nutshell, the conditions
require the existence of an information-stable sub-sequence of
(bad) channel states (indexed by the blocklength) such thatthe
respective sub-sequence of information densities converges in
probability to the compound channel capacity. No assumptions
of stationarity, ergodicity or information stability are made for
the members of the uncertainty set.

II. CHANNEL MODEL

Let us consider a generic discrete-time channel model where
Xn = {X1...Xn} is a (random) sequence ofn input symbols,
X = {Xn}∞n=1 denotes all such sequences, andY n is the
corresponding output sequence;s ∈ S denotes the channel
state (which may also be a sequence) andS is the (arbitrary)
uncertainty set;ps(yn|xn) is the channel transition probability;
p(xn) andps(yn) are the input and output distributions under
channel states.

Let us assume that the full CSI is available at the receiver
(Rx) but not the transmitter (Tx) (see e.g. [1] for a detailed
motivation of this assumption; when the channel is quasi-
static, this assumption is not necessary) and that the channel
input X and states are independent of each other. Following
the standard approach (see e.g. [1]), we augment the channel
output with the state:Y n → (Y n, s). The information density
[10]-[13] between the input and output for a given channel
states and a given input distributionp(xn) is

i(xn; yn, s) = ln
ps(x

n, yn)

p(xn)ps(yn)
= i(xn; yn|s) (1)

where we have used the fact that the inputXn and channel
states are independent of each other. Note that we make no
assumptions of stationarity, ergodicity or information stability
in this paper, so that the normalized information density
n−1i(Xn;Y n|s) does not have to converge to the respective
mutual information rate asn → ∞. There is no need for the
consistency assumption onps(yn|xn) either (e.g. the channel
may behave differently for even and oddn).

For future use, we give the formal definitions of information
stability following [10]-[12] (with a slight extension to the
compound setting).

Definition 1. Two random sequencesX and Y are
information-stable if

i(Xn;Y n|s)

I(Xn;Y n|s)

Pr
→ 1 asn → ∞ (2)

i.e. the normalized information density converges in probabil-
ity to the respective mutual information rate1

n
I(Xn;Y n|s).
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Definition 2. Channel states is information stable if there
exists an inputX such that

i(Xn;Y n|s)

I(Xn;Y n|s)

Pr
→ 1,

I(Xn;Y n|s)

Cns

→ 1 asn → ∞, (3)

whereCns = supp(xn) I(X
n;Y n|s) is the information capac-

ity.

Note that the 2nd definition requires effectively the channel
to behave ergodically under the optimal input only, and tells us
nothing about its behaviour under other inputs (e.g. a practical
code) and, in this sense, is rather limiting. To characterize the
channel behaviour under different inputs (not only the optimal
one), we will consider the information stability of its input X
and the induced outputY following Definition 1. Further note
that, for the compound channel, some channel states may be
information stable while others are not.

III. C APACITY OF THE GENERAL COMPOUND CHANNEL

We define an (n, rn, εn)-code for a compound channel in
the standard way, wheren is the blocklength,rn = lnMn/n
is the code rate andMn is the number of codewords, andεn
is the compound error probability,

εn = sup
s∈S

εns (4)

whereεns is the error probability under channel states. Rate
R is achievable iflim infn→∞ rn ≥ R and limn→∞ εn = 0,
which ensures arbitrary low error probability for any channel
in the uncertainty set for sufficiently largen [1]-[6]. The
capacity is the supremum of all achievable rates. Codebooks
are required to be independent of the actual channel states
while the decision regions are allowed to depend ons (due to
full Rx CSI).

Below, we briefly review the relevant results in [14], which
are instrumental for further development here.

Theorem 1 ([14]). Consider a general compound channel
where the channel states ∈ S is known to the receiver but
not the transmitter and is independent of the channel input;
the transmitter knows the (arbitrary) uncertainty setS. Its
compound channel capacity is given by

Cc = sup
p(x)

I(X;Y ) (5)

where the supremum is over all sequences of finite-dimensional
input distributions and I(X;Y ) is the compound inf-
information rate,

I(X;Y ) = sup
R

{

R : lim
n→∞

sup
s∈S

Pr {Zns ≤ R} = 0

}

(6)

whereZns = n−1i(Xn;Y n|s) is the normalized information
density under channel states.

This theorem was proved using the Verdu-Han and Feinstein
Lemmas properly extended to the compound channel setting.

Lemma 1 (Feinstein Lemma for compound channels [14]).
For arbitrary input Xn and uncertainty setS and anyrn,

there exists a(n, rn, εn)-code (where the codewords are inde-
pendent of channel states), satisfying the following inequality,

εn ≤ sup
s∈S

Pr
{
n−1i(Xn;Y n|s) ≤ rn + γ

}
+ e−γn (7)

for any γ > 0.

Lemma 2 (Verdu-Han Lemma for compound channels [14]).
For any uncertainty setS, every(n, rn, εn)-code satisfies the
following inequality,

εn ≥ sup
s∈S

Pr
{
n−1i(Xn;Y n|s) ≤ rn − γ

}
− e−γn (8)

for any γ > 0, whereXn is uniformly distributed over all
codewords andY n is the corresponding channel output under
channel states.

IV. STRONG CONVERSE FOR THEGENERAL COMPOUND

CHANNEL

Strong converse ensures that slightly larger error probability
cannot be traded off for higher data rate (since the transition
from arbitrary low to high error probability is sharp).

Definition 3. A compound channel is said to satisfy strong
converse if

lim
n→∞

εn = 1 (9)

for any code satisfying

lim inf
n→∞

rn > Cc (10)

To obtain conditions for strong converse, letǏ(X;Y ) be
the ”worst-case” sup-information rate,

Ǐ(X;Y ) = inf
R

{

R : lim
n→∞

inf
s∈S

Pr {Zns > R} = 0

}

(11)

whereZns = n−1i(Xn;Y n|s) is the information density rate,
andIns(a) be the truncated mutual information,

Ins(a) = E{Zns1[Zns ≤ a]}, Ins = lim
a→∞

Ins(a) (12)

where1[·] is the indicator function andIns = I(Xn;Y n|s) is
the mutual information under channel states. The compound
sup-information rateI(X;Y ) and the sup-information rate
Ī(X;Y |s) under channel states are defined as

I(X;Y ) = inf
R

{

R : lim
n→∞

sup
s∈S

Pr {Zns ≥ R} = 0

}

(13)

Ī(X;Y |s) = inf
R

{

R : lim
n→∞

Pr {Zns ≥ R} = 0
}

(14)

The following Proposition establishes an ordering of various
information rates.

Proposition 1. The following inequalities hold for any input

I(X ;Y ) ≤ Ǐ(X;Y )

≤ inf
s
Ī(X;Y |s)

≤ sup
s

Ī(X;Y |s)

≤ I(X;Y ) (15)
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Proof. see the Appendix.

It can be shown, via examples, that all inequalities can
be strict. Using this Proposition, sufficient and necessary
conditions for the strong converse to hold can be established.

Theorem 2. A sufficient and necessary condition for the
general compound channel to satisfy strong converse is

sup
p(x)

I(X;Y ) = sup
p(x)

Ǐ(X ;Y ) (16)

If this holds and the convergenceIns(a) → Ins is uniform
in n, s for any inputX∗ satisfyingI(X∗;Y ∗) > Cc − δ for
someδ > 0 (i.e. the inputX∗ is δ-suboptimal), then

Cc = sup
p(x)

Ǐ(X;Y ) = lim inf
n→∞

sup
p(xn)

inf
s

1

n
I(Xn;Y n|s) (17)

The condition(16) is equivalent to:
1) for anyδ > 0 and any inputX∗ satisfyingI(X∗;Y ∗) >

Cc − δ,

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 (18)

whereZ∗
ns = 1

n
i(Xn∗;Y n∗|s) is the normalized information

density under inputX∗.
2) for any inputX and anyδ > 0,

lim
n→∞

inf
s
Pr{Zns > Cc + δ} = 0 (19)

Proof. see the Appendix.

Remark 1. In the case of a single-state channel,

I(X;Y ) = I(X ;Y ), Ǐ(X;Y ) = I(X;Y ) (20)

whereI(X;Y ), I(X;Y ) are inf and sup-information rates
for the regular (single-state) channel, and Theorem 2 reduces
to the corresponding Theorem in [7][8].

Remark 2. Note that, under the conditions of Theorem 2 that
lead to (17), the compound channel behaves ergodically even
though no assumption of ergodicity (or information stability)
was made upfront.

Below, we consider a special case when the supremum in
(5) is achieved.

Corollary 1. If the channel satisfies strong converse and the
supremum insupp(x) I(X ;Y ) is achieved, i.e.

∃X∗ : I(X∗;Y ∗) = Cc (21)

thenǏ(X∗;Y ∗) = Cc and there exists such sequence of chan-
nel statess(n) that the corresponding sequence of normalized
information densitiesZ∗

ns(n) (under inputX∗) converges in
probability to the compound channel capacityCc,

lim
n→∞

Pr{|Z∗
ns(n) − Cc| > δ} = 0 ∀δ > 0 (22)

i.e. this sequence (which represents worst-case channels in the
uncertainty set) is information-stable.

Proof. Observe thatI(X∗;Y ∗) = Cc implies

Cc = I(X∗;Y ∗) ≤ Ǐ(X∗;Y ∗) ≤ sup
p(x)

Ǐ(X;Y ) = Cc (23)

so thatǏ(X∗;Y ∗) = Cc follows, which also implies that

lim
n→∞

inf
s
Pr {Z∗

ns > Cc + δ} = 0 ∀ δ > 0 (24)

On the other hand,I(X∗;Y ∗) = Cc implies

lim
n→∞

sup
s

Pr {Z∗
ns < Cc − δ} = 0 ∀ δ > 0 (25)

and hence

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 ∀δ > 0 (26)

follows. Next, we need the following technical Lemma.

Lemma 3. Let {xns} be a non-negative compound sequence
such that

lim
n→∞

inf
s
xns = 0 (27)

Then, there exists such sequence of statess(n) that

lim
n→∞

xns(n) = 0 (28)

Proof. Wheninfs is achieved, the statement is trivial. To prove
it in the general case, observe that, from the definition ofinfs
and for anyn, there always exists suchs(n) that

xns(n) < inf
s
xns + 1/n (29)

so that takinglimn→∞ of both sides, one obtains (28)1.

Using this Lemma, (26) implies the existence of a sequence
of channel statess(n) such that (22) holds.

Remark 3. Note that, under the conditions of Corollary 1,
the sequences(n) of worst-case channel states is information-
stable even though no assumption of information stability was
made upfront.

Remark 4. In light of Lemma 3, condition(19) means that
there exists such sequence of (bad) channel statess(n) that
the information spectrum of the corresponding sequence of
normalized information densitiesZns(n) does not exceedCc

under any input, i.e.

∃s(n) : lim
n→∞

Pr{Zns(n) > Cc + δ} = 0 ∀δ > 0 (30)

V. A PPENDIX

A. Proof of Proposition 1

The 1st inequality is proved by contradiction. LetI =

I(X;Y ), Ǐ = Ǐ(X ;Y ), assumeI − Ǐ = 2δ > 0 and set

R = (I + Ǐ)/2 = I − δ = Ǐ + δ (31)

so that

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= lim
n→∞

sup
s

Pr{Zns < R}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ R}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ Ǐ + δ} = 1 (32)

1this way of proof was suggested by a reviewer.
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i.e. a contradiction.
The 2nd inequality is also proved by contradiction. LetĪ =

infs Ī(X ;Y |s), assuměI − Ī = 2δ > 0 and set

R = (Ī + Ǐ)/2 = Ī + δ = Ǐ − δ (33)

so that, from the definition of̌I,

0 < ǫ = lim sup
n→∞

inf
s
Pr{Zns > Ǐ − δ}

≤ inf
s
lim sup
n→∞

Pr{Zns > Ǐ − δ}

= inf
s
lim sup
n→∞

Pr{Zns > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī(X ;Y |s∗) + δ/2} = 0 (34)

i.e. a contradiction, wheres∗ is such channel state that

Ī(X ;Y |s∗) ≤ inf
s
Ī(X;Y |s) + δ/2 (35)

The last inequality can be proved in a similar way.

B. Proof of Theorem 2

To prove sufficiency, let the equality in (16) to hold and
select a code satisfying

lim inf
n→∞

rn = R = Cc + 3δ (36)

for someδ > 0, so that

rn ≥ R− δ = Cc + 2δ = sup
p(x)

Ǐ(X;Y ) + 2δ (37)

for sufficiently largen. Using Lemma 2 for this code, one
obtains:

lim
n→∞

εn ≥ lim
n→∞

sup
s

Pr {Zns ≤ rn − δ}

≥ lim
n→∞

sup
s

Pr

{

Zns ≤ sup
p(x)

Ǐ(X;Y ) + δ

}

≥ lim
n→∞

sup
s

Pr
{
Zns ≤ Ǐ(X ;Y ) + δ

}

= 1− lim
n→∞

inf
s
Pr

{
Zns > Ǐ(X ;Y ) + δ

}

= 1 (38)

so that (9) holds, where the last equality is due to

lim
n→∞

inf
s
Pr

{
Zns > Ǐ(X ;Y ) + δ

}
= 0 (39)

which follows from (11).
To prove the necessary part, assume that (9) holds and, using

Lemma 1, select a code satisfying

lim
n→∞

rn = R = Cc + δ (40)

for someδ > 0. This implies that

rn ≤ Cc + 2δ (41)

for any sufficiently largen. Applying Lemma 1, one obtains

1 = lim
n→∞

εn ≤ lim
n→∞

sup
s

Pr {Zns ≤ rn + δ}

≤ lim
n→∞

sup
s

Pr {Zns ≤ Cc + 3δ}

= 1 (42)

from which it follows that

lim
n→∞

inf
s
Pr {Zns > Cc + 3δ} = 0 (43)

which implies (19) anďI(X;Y ) ≤ Cc (under any input) so
that, from Proposition 1,

Cc = sup
p(x)

I(X;Y ) ≤ sup
p(x)

Ǐ(X;Y ) ≤ Cc (44)

from which (16) follows.
To establish the sufficiency of (19), observe that it implies

the 2nd inequality in (44) from which (16) follows, which is
sufficient.

To establish (18), observe thatCc = supp(x) I(X;Y ) im-
plies that there exists such inputX

∗ thatI(X∗;Y ∗) > Cc−2δ
so that, for any suchX∗,

0 = lim
n→∞

sup
s

Pr

{
1

n
i(Xn∗;Y n∗|s) < I(X∗;Y ∗)− δ

}

≥ lim
n→∞

sup
s

Pr

{
1

n
i(Xn∗;Y n∗|s) < Cc − 3δ

}

= 0 (45)

Combining this with (43) applied to inputX∗, one obtains

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > 3δ} ≤ lim
n→∞

inf
s
Pr{Z∗

ns > Cc + 3δ}

+ lim
n→∞

sup
s

Pr{Z∗
ns < Cc − 3δ} = 0 (46)

from which (18) follows.
To establish last equality in (17), leťI = Ǐ(X;Y ) and

observe that

Ins(a) =E{Zns1[Zns ≤ Ǐ + δ]}
︸ ︷︷ ︸

e1

+ E{Zns1[Ǐ + δ < Zns ≤ a]}
︸ ︷︷ ︸

e2

(47)

for someδ > 0, where1[·] is the indicator function. The two
expectation terms can be upper bounder as

e1 ≤ (Ǐ + δ) Pr{Zns ≤ Ǐ + δ}

e2 ≤ a · Pr{Zns > Ǐ + δ} (48)

so that

lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s) = lim inf

n→∞
inf
s

lim
a→∞

Ins(a)

= lim
a→∞

lim inf
n→∞

inf
s
Ins(a)

≤ lim
a→∞

lim inf
n→∞

inf
s
((Ǐ + δ) Pr{Zns ≤ Ǐ + δ}

+ a · Pr{Zns > Ǐ + δ})

≤ lim
a→∞

((Ǐ + δ) lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}

+ a · lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ})

= Ǐ + δ (49)

where the 2nd equality is due to uniform convergence and the
last equality is due to

lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ}) = 0 (50)

lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}

= 1− lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ}) = 1 (51)
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Since (49) holds for arbitrary smallδ > 0, it follows that

lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s) ≤ Ǐ (52)

for any input. Takingsupp(x) on both sides, one obtains:

Cc = sup
p(x)

I(X;Y )

≤ lim inf
n→∞

sup
p(xn)

inf
s

1

n
I(Xn;Y n|s)

≤ sup
p(x)

Ǐ(X;Y ) = Cc (53)

from which the desired result follows, where the 1st inequality
is due to Proposition 2 below.

Proposition 2. Consider the general compound channel. Its
compound inf-information rate is bounded as follows:

I(X,Y ) ≤ lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s) ≤ Ǐ(X ;Y ) (54)

Proof. Let Zns =
1
n
i(Xn;Y n|s) and observe that

1

n
I(Xn;Y n|s) = E {Zns}

≥ E{Zns1[Zns ≤ 0]}+ E{Zns1[Zns ≥ I − δ]} (55)

for any0 < δ < I, where1[·] is the indicator function andI =
I(X,Y ). The 1st termt1 can be lower bounded as follows:

t1 = E{Zns1[Zns ≤ 0]}

=
1

n

∑

xn,yn:zns≤0

ps(y
n)p(xn)wns lnwns

≥ −
1

ne

∑

xn,yn:zns≤0

ps(y
n)ps(x

n)

≥ −
1

ne
(56)

wherewns = ps(y
n|xn)/ps(y

n) and the 1st inequality follows
from w lnw ≥ −1/e. The 2nd termt2 can be lower bounded
as follows:

t2 = E{Zns1[Zns ≥ I − δ]}

=
∑

xn,yn:zns≥I−δ

znsps(y
n|xn)p(xn)

≥ (I − δ) Pr{Zns ≥ I − δ} (57)

Combining these two bounds, one obtains:

lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s)

≥ (I − δ) lim
n→∞

inf
s
Pr{Zns ≥ I − δ}

= I − δ (58)

where the equality follows from

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ I − δ} (59)

Since the inequality in (58) holds for eachδ > 0, one obtains
the 1st inequality in (54) by takingδ → 0; the 2nd one has
been already established in (52).
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