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Abstract—A general formula for the capacity of arbitrary
compound channels, which are not necessarily ergodic, stationary
or information-stable, is obtained using the information density
approach. A direct (constructive) proof is given. To prove achiev-
ability, we generalize Feinstein Lemma to the compound channel
setting, and to prove converse, we generalize Verdu-Han Lemma
to the same compound setting. This extends the general formula
for channel capacity in [8] to arbitrary compound channels (not
necessarily finite-state or countable).

I. I NTRODUCTION

CHANNEL state information (CSI) has a significant im-
pact on channel performance as well as code design to

achieve that performance. This effect is especially pronounced
for wireless channels, due to their dynamic nature, limitations
of a feedback link (if any), channel estimation errors etc. [1].

When only incomplete or inaccurate CSI is available, per-
formance analysis and coding techniques have to be modi-
fied properly. The impact of channel uncertainty has been
extensively studied since late 1950s [2]-[6]; see [7] for an
extensive literature review up to late 1990s. Since channel
estimation is done at the receiver (Rx) and then transmittedto
the transmitter (Tx) via a limited (if any) feedback link, most
studies concentrate on limited CSI available at the Tx end
assuming full CSI at the Rx end, the assumption we adopt in
this paper.

There are several typical approaches to model channel
uncertainty. In the compound channel model, the channel is
unknown to the Tx but is known to belong to a certain set
of channels. A member of the channel uncertainty set (state
set) is selected at the beginning and held constant during the
entire transmission [3]-[5], thus modeling a scenario withlittle
dynamics (channel coherence time significantly exceeds the
codeword duration [1]). A more dynamic approach is that of
the arbitrary-varying channel, where the channel is allowed
to vary from symbol to symbol being unknown to the Tx
(but also restricted to belong to a certain class of channels)
[6]. A variation of the compound channel model is that of
the composite channel where there is a probability assigned
to each member of the compound channel set thus avoiding
an over-pessimistic nature of the compound channel capacity
when one channel is particularly bad but occurs with small
probability [10]. Finally, incomplete CSI at the Tx end can
be addressed by assuming that the channel is not known but
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its distribution is known to the Tx, the so-called channel
distribution information (CDI) [1].

All the studies above of compound channels require mem-
bers of the uncertainty (state) set to be information-stable. In
this paper, we relax this assumption and obtain compound
capacity of information-unstable channels using the compound
channel approach [2]-[7] in combination with the information
density approach [8]-[10]. This results in a general formula for
the capacity of compound channels, which are not necessarily
ergodic, stationary or information-stable, which extendsthe
general capacity formula of regular (non-compound) channels
in [8] to compound channels with arbitrary channel state sets.

The capacity of a class of compound channels was ob-
tained earlier in [9] using the information density approach.
However, (i) its proof is rather involved and indirect (first,
a result is established for mixed channels; then, a certain
equivalence is established between mixed and compound
channels, which establishes the compound channel capacity
in a rather elaborate and indirect way); and (ii) it holds for
finite-state channels only1. In the present paper, we give a
direct (simpler) proof by extending Feinstein and Verdu-Han
Lemmas to compound channel setting (using an algorithmic
code construction), which also holds for arbitrary state sets
(not only countable, finite-state etc.). The main results are in
Theorems 1, 2 in Section IV.

A formulation of channel uncertainty problem based on
the information density approach was presented in [10] us-
ing the composite channel model. This, however, requires a
probability measure associated with channel states, so that
the channel input-output description is entirely probabilistic
and the general formula in [8] applies to such setting. We
consider the compound channel setting here, where there is
no probability measure associated with channel states and a
certain achievable performance has to be demonstrated for any
member of the uncertainty class using a single code, for which
the general formula in [8] is not applicable.

Section II introduces a (general) channel model and assump-
tions. The information density approach [8][9] is introduced
and briefly reviewed in section III. In section IV, a general
compound channel capacity formula is obtained using the

1While [9] claims its validity for countably-infinite-statechannels, supre-
mum over channel states is missing in error probability definition in [9]
(Definition 3.3.1), so that arbitrary low error probabilitycannot be guaranteed
for all channel states via large block length (see e.g. [1]-[7] for a proper
definition of compound error probability). When re-instated, the upper bound
at bottom of p. 199 becomes∞ for infinite-state channels. Thus, Theorem
3.3.5 in [9] is proved for finite-state channels only. In fact, Example 1 in
Section V shows that this Theorem is invalid for infinite-state channels in
general.



information density approach, which holds for a wide class of
channels including non-stationary, non-ergodic or information-
unstable channels and arbitrary channel state sets (not only
countable or finite-state).

II. CHANNEL MODEL

Let us consider a generic discrete-time channel model
shown in Fig. 1, whereXn = {X1...Xn} is a (random)
sequence ofn input symbols,X = {Xn}∞n=1 denotes all
such sequences, andY n is the corresponding output sequence;
s ∈ S denotes the channel state (which may also be a
sequence) andS is the (arbitrary) uncertainty set;ps(yn|xn)
is the channel transition probability;p(xn) andps(yn) are the
input and output distributions under channel states.

Let us assume that the full channel state information (CSI)
is available at the receiver but not the transmitter (see e.g. [1]
for a detailed motivation of this assumption; when the channel
is quasi-static, this assumption is not necessary) and thatthe
channel inputX and states are independent of each other.
Following the standard approach (see e.g. [1]), we augment the
channel output with the state:Y n → (Y n, s). The information
density [11]-[13] between the input and output for a given
channel states and a given input distributionp(xn) is

i(xn; yn, s) = ln
ps(x

n, yn)

p(xn)ps(yn)
= i(xn; yn|s)

where we have used the fact that the inputXn and channel
states are independent of each other.

We will not assume any particular noise or channel distri-
bution so that our results are general and apply toany such
distribution; channels are allowed to be information-unstable.

III. C APACITY OF A GIVEN CHANNEL STATE

In this section, we will assume that a channel states is
given and known to both the Tx and Rx (alternatively, one may
assume that the channel state set is a singleton) and review the
corresponding results in [8][9] for this setting.

When the channel is information-stable, the normalized
information density converges to the mutual information (per
symbol) in probability asn → ∞ (due to the law of large num-
bers) [11]-[13], whose operational meaning is the maximum
achievable rate for a given input distributionp(x), a channel
state s and arbitrary small error probability. Maximizing it
over p(x) results in the channel capacity. In other cases
(information-unstable channels), the normalized information
density remains a random variable, even whenn → ∞, whose
support set is in general an interval [8][9]. Following the
analysis in [8], its infimumI(X;Y |s) is the largest achievable
rate for a given channel states, input distributionp(x) and
arbitrary-small error probability:

I(X;Y |s) = sup
R

{

R : lim
n→∞

Pr
{

n−1i(Xn;Y n|s) ≤ R
}

= 0
}

(1)

Following Theorems 2 and 5 in [8], the channel capacity,
for a given states, is obtained by maximizingI(X ;Y |s) over
p(x),

C(s) = sup
p(x)

I(X;Y |s) (2)

Note that this is a very general result, as the channel is
not required to be information-stable (ergodic, stationary, etc.).
The converse is proved via Verdu-Han Lemma (a lower bound
to error probability, which is a dual of Feinstein bound) [8][9].
We definite (n, rn, εns)-code in the standard way, wheren is
the block length,εns is the error probability (for channel state
s), rn = lnMn/n is the code rate andMn is the number of
codewords.

Lemma 1 (Verdu-Han Lemma [8][9]). Every (n, rn, εns)-
code satisfies the following inequality,

εns ≥ Pr
{

n−1i(Xn;Y n|s) ≤ rn − γ
}

− e−γn (3)

for any γ > 0, whereXn is uniformly distributed over all
codewords andY n is the corresponding channel output under
channel states.

This is a slight re-wording of Lemma 3.2.2 in [9], where
we explicitly indicate channel states for future use.

On the other hand, the achievability of (2) for a given and
known s (i.e. a single, known channel) was proved in [8] via
Feinstein Lemma.

Lemma 2 (see e.g. [8][9]). For arbitrary input Xn, any rn
and a given channel states, there exists a code satisfying the
following inequality,

εns ≤ Pr
{

n−1i(Xn;Y n|s) ≤ rn + γ
}

+ e−γn (4)

for any γ > 0.

While this is sufficient to prove achievability for a given
and knowns, it does not work for the compound channel
setting, since we need a code that works for the entire class
of channels, not just a single channel as in (4).

IV. COMPOUND CHANNEL CAPACITY

In this section, we obtain a general formula for compound
channel capacity of information-unstable channels by general-
izing Lemmas 1 and 2 above to the compound channel setting.
This result is more general than the corresponding result
established in [9] (Theorem 3.3.5) for finite-state channels,
since the former allows arbitrary uncertainty setS. We define
an (n, rn, εn)-code for a compound channel in the same way
as above, with the compound error probability

εn = sup
s

εns (5)

and requireεn → 0 asn → ∞, which insures arbitrary low
error probability for any channel in the uncertainty set for
sufficiently largen [1]-[7] 2. Codebooks are required to be
independent of the actual channel states while the decision
regions are allowed to depend ons (since the receiver knows
the channel).

It is immediate that the worst-case channel capacity is
infs∈S C(s), whereS is the set of possible channel states
(uncertainty set), but achieving this requiress to be known
to the Tx. If this is not the case, it is far less trivial that the

2It is the missingsup
s

in Definition 3.3.1 in [9] that makes Theorem 3.3.5
applicable to finite-state channels only.



compound channel capacity can be obtained by swappingsup
and inf (see e.g. [7] for an extensive discussion of this issue;
while the swapping works in many cases, there are examples
when it does not [14]). This is the case for the general
(possibly, information-unstable) compound channel considered
here, whose capacity is established below.

Theorem 1. Consider a general compound channel where
the channel states ∈ S is known to the receiver but not
the transmitter and is independent of the channel input;
the transmitter knows the (arbitrary) uncertainty setS. Its
compound channel capacity is given by

Cc = sup
p(x)

I(X;Y ) (6)

whereI(X;Y ) = supR {R ∈ Ω},

Ω =

{

R : lim
n→∞

sup
s∈S

Pr

{

1

n
i(Xn;Y n|s) ≤ R

}

= 0

}

(7)

Proof. To prove achievability and converse, we generalize
Lemmas 1 and 2 above to the compound channel setting.

Lemma 3 (Feinstein Lemma for compound channels). For
arbitrary input Xn and uncertainty setS and anyrn, there
exists a(n, rn, εn)-code (where the codewords are indepen-
dent of channel states), satisfying the following inequality,

εn ≤ sup
s∈S

Pr
{

n−1i(Xn;Y n|s) ≤ rn + γ
}

+ e−γn (8)

for any γ > 0.

Proof. see Appendix.

It is clear from the proof that the same inequality holds for
both maximum and average error probability. Next, we gen-
eralize Verdu-Han Lemma to the compound channel setting.

Lemma 4 (Verdu-Han Lemma for compound channels). For
any uncertainty setS, every (n, rn, εn)-code satisfies the
following inequality,

εn ≥ sup
s∈S

Pr
{

n−1i(Xn;Y n|s) ≤ rn − γ
}

− e−γn (9)

for any γ > 0, whereXn is uniformly distributed over all
codewords andY n is the corresponding channel output under
channel states.

Proof. To prove this inequality, invoke (3) for a given channel
states and then maximize both sides over all possible channel
states to obtain:

εn = sup
s

εns

≥ sup
s

Pr
{

n−1i(Xn;Y n|s) ≤ rn − γ
}

− e−γn (10)

A subtle point here is that the original Verdu-Han Lemma
allows codewords to depend on channel state while the com-
pound codewords are independent of channel state. Since such
a dependence can only decrease error probability, the desired
inequality still holds.

Now, to prove achievability in Theorem 1, fixp(x) and set
rn ≤ I(X ;Y )− 2γ for any γ > 0. From Lemma 3,

lim
n→∞

εn ≤ lim
n→∞

sup
s∈S

Pr
{

n−1i(Xn;Y n|s) ≤ I(X ;Y )− γ
}

= 0 (11)

which shows thatI(X ;Y )− 2γ is achievable∀γ > 0, so that
Cc ≥ supp(x) I(X;Y ).

To prove the converse, setrn ≥ I(X∗;Y ∗) + 2γ for any
γ > 0, whereX∗ is the capacity-achieving input andY ∗ is
the corresponding output, and use Lemma 4 to obtain

lim
n→∞

εn ≥ lim
n→∞

sup
s∈S

Pr
{

n−1i(Xn;Y n|s) ≤ I(X∗;Y ∗) + γ
}

≥ ε0 > 0 (12)

for some fixedε0 > 0 (the last two inequalities follow from the
definition ofI), so that no rate aboveI(X∗;Y ∗) is achievable.

It is clear from the proof that the same capacity holds under
the maximum as well as average error probability.

Remark 1. I(X ,Y ) is an extension ofI(X,Y |s) to the
compound channel setting, notinfs I(X,Y |s), in the general
case.

The relationship betweenI(X,Y ) and infs I(X,Y |s) is
established below.

Proposition 1. The following inequality holds for a general
compound channel

I(X,Y ) ≤ I(X,Y ) = inf
s
I(X ,Y |s) (13)

Proof. The proof is by contradiction. Assume thatI > I, set
R = (I + I)/2 > I and observe thatR < I and

lim
n→∞

sup
s

Pr
{

n−1i(Xn;Y n|s) ≤ R
}

≥ sup
s

lim
n→∞

Pr
{

n−1i(Xn;Y n|s) ≤ R
}

≥ ε0 > 0

(14)

for some ε0 > 0 - a contradiction, where the last two
inequalities are from the definition ofI. Therefore,I ≤ I.

It can be demonstrated, via examples (see Example 1
below), that the inequality in (13) can be strict. To see when
the equality is achieved, we need the following definition.

Definition 1. A compound channel is uniform if

Pr
{

n−1i(Xn;Y n|s) ≤ I(X ,Y )− γ
}

→ 0 ∀γ > 0 (15)

uniformly in s ∈ S asn → ∞.

Note that while the point-wise convergence is insured for
eachs from the definition ofI(X ,Y ), it does not have to be
uniform and, indeed, examples can be constructed where it is
not. In a sense, the uniform convergence here insures that the
channel does not behave ”too badly” asn increases.

For a uniform compound channel, one obtains the following
result.

Proposition 2. The following equality holds for a uniform
compound channel

I(X,Y ) = I(X,Y ) = inf
s
I(X ,Y |s) (16)



Proof. We begin with the following Lemma.

Lemma 5. Let the sequencefn(s) → f(s) as n → ∞ and
the convergence is uniform. Then,

lim
n→∞

sup
s

fs(n) = sup
s

lim
n→∞

fs(n) (17)

We now show that (13) holds with equality for uniform
compound channels. Indeed, setR = I(X,Y ) − γ, and
observe that, for anyγ > 0,

lim
n→∞

sup
s

Pr
{

n−1i(Xn;Y n|s) ≤ R
}

=sup
s

lim
n→∞

Pr
{

n−1i(Xn;Y n|s) ≤ R
}

= 0 (18)

from which its follows thatI(X,Y ) ≥ I(X ,Y ). Combining
this with (13), one obtains the desired result.

We are now in a position to establish the capacity of uniform
compound channels.

Theorem 2. Consider a uniform compound channel where
the channel states ∈ S is known to the receiver but not
the transmitter and is independent of the channel input;
the transmitter knows the (arbitrary) uncertainty setS. Its
compound channel capacity is given by

Cc = sup
p(x)

inf
s∈S

I(X;Y |s) (19)

Proof. Using Proposition 2 in Theorem 1 gives (19).

Note that Theorems 1 and 2 hold for any alphabet and
any uncertainty set. In many cases of practical interest (e.g.
when the set of feasible input distributionsp(x) and/or the
uncertainty setS are compact andI(x; y|s) is well-behaving),
sup and/orinf can be substituted bymax and/ormin. Unlike
[9], the present result applies to arbitrary channel uncertainty
sets (not just finite-state) and its proof is direct (i.e. not
relying on mixed channels but directly constructing capacity-
approaching codes for compound channel).

We remark that many well-known results (e.g. [5]) are
special cases of Theorem 1 and 2. The latter is pleasantly
similar to many know results for information-stable channels,
which also includesup− inf expression.

V. EXAMPLE

To demonstrate the difference between Theorems 1 and 2
and the fact that inequality in (13) can be strict, consider the
following binary non-stationary channel with memory:

ps(y
n|xn) = ps(y

n) if n ≤ s (20)

i.e. the output is independent of the input. Ifn > s, then
the channel isn-th extension of BSC with zero cross-over
probability, andS = {1, 2, ...}. This can model a channel
with memory where the noise coherence timeτ = s so that
blocklengthn > τ is required to achieve low error probability.
Sincei(Xn;Y n|s) = 0 if s ≥ n , it follows thatI(X ;Y ) = 0
while I(X;Y |s) = ln 2 ∀s under equiprobable input, so that

I(X;Y ) = 0 < I(X;Y ) = inf
s
I(X;Y |s) = ln 2 (21)

and hence

Cc = sup
p(x)

I(X ;Y ) = 0 < ln 2 = sup
p(x)

inf
s∈S

I(X;Y |s) (22)

The compound capacityCc is zero because for any block-
length, does not matter how large, there are always channel
states with error probability close to 1 so that arbitrary low
error probability is not attainable. The standardsup− inf ex-
pression falls short of the channel capacity in this case because
this compound channel is not uniform. It also demonstrates
that Theorem 3.3.5 in [9] does not hold for infinite-state
channels. Note that if the coherence time becomes bounded,
i.e. τ = s ≤ S, thenCc = supp(x) infs≤S I(X ;Y |s) = ln 2
as one can use sufficiently-long codewords constructed for
memoryless BSC (notice also that the channel becomes uni-
form in this case).

VI. CONCLUSION

A general formula for compound channel capacity has been
established using the information density approach, which
does not require the channel to be stationary, ergodic, or
information-stable, and which applies to any channel uncer-
tainty set (not only countable or finite-state). An example is
provided, which show that finite and infinite-state compound
channels can behave very differently.
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VIII. A PPENDIX: PROOF OFLEMMA 3

Proof. Let us define

Bs(x
n) = {yn : i(xn; yn|s) ≥ lnα}, α = Mne

nγ , (23)

λn = sup
s∈S

Pr {i(Xn;Y n|s) ≤ lnα} +Mn/α (24)

and observe, for future use, that

1 ≥ Pr {Y n ∈ Bs(x
n)|xn} =

∑

yn∈Bs(xn)

ps(y
n|xn)

(a)

≥ α
∑

yn∈Bs(xn)

ps(y
n) = αPs(Bs(x

n))

from which it follows that

Ps(Bs(x
n)) ≤ 1/α ∀s, xn, (25)

where (a) is fromps(yn|xn) ≥ αps(y
n) ∀yn ∈ Bs(x

n) 3.
We use an iterative codebook construction similar to that in

[16] but properly extended to the compound channel setting
here. First, fix the input distributionp(x) and findxn such
that

xn : inf
s
Ps(Bs(x

n)|xn) ≥ 1− λn (26)

3while we use summation which applies to discrete alphabets,it is
clear that the same argument holds for continuous alphabetsusing integra-
tion/probability measures instead. This also applies to other arguments in the
paper.



and use it as codeword 1,u1 = xn (note that this codeword
is independent of channel states); set the decision region
D1s = Bs(u1) for this codeword, so that probability of correct
decision for this codeword is at least1− λn.

Next, findxn 6= u1 such that

xn : inf
s
Ps(Bs(x

n)−D1s|x
n) ≥ 1− λn (27)

and use it as codeword 2,u2 = xn; set the decision region
D2s = Bs(u2)−D1s.

For codewordK, find xn 6= uk, k = 1...K − 1, such that

xn : inf
s
Ps

(

Bs(x
n)−

K−1
⋃

k=1

Dks|x
n

)

≥ 1− λn (28)

and setuK = xn, DKs = Bs(uK)−
⋃K−1

k=1 Dks.
Assume that the process stops atk = K, i.e. no furtherxn

can be found satisfying the required inequality, so that:

inf
s
Ps (Bs(x

n)−Ds|x
n) < 1− λn ∀xn /∈ {uk}

K
k=1, (29)

whereDs =
⋃K

k=1 Dks. The same inequality also holds for
xn = uk, since

Bs(uk)−Ds = Bs(uk)−
K
⋃

k=1

Bs(uk) = ∅ (30)

The following Lemma shows that a sufficiently large number
of codewords can be constructed in this way.

Lemma 6. The algorithm above generatesK > Mn code-
words.

Proof. To see this, observe that it follows from (29) and (30)
that there exists such channel states0 that

Ps (Bs(x
n)−Ds|x

n) < 1− λn ∀xn, s = s0 (31)

For this channel state, one obtains:

λn < 1−
∑

xn

p(xn)Ps0

(

B0 ∩Dc
s0
|xn
)

= 1−
∑

xn

p(xn)(Ps0 (B0|x
n)− Ps0 (B0 ∩Ds0 |x

n))

= Ps0 (B
c
0(X

n)) +
∑

xn

p(xn)Ps0 (B0 ∩Ds0 |x
n) (32)

whereB0 = Bs0(x
n), Dc

s denotes the complement ofDs.
Note that the 1st term in (32) is

Ps0 (B
c
0(X

n)) = Pr {i(Xn;Y n|s0) < lnα} (33)

and 2nd termt2 can be upper bounded as follows:

t2 ≤
∑

xn

p(xn)Ps0 (Ds0 |x
n) =

∑

xn

p(xn)

K
∑

k=1

Ps0 (Dks0 |x
n)

=

K
∑

k=1

Pr {Y n ∈ Dks0} ≤
K
∑

k=1

Pr {Y n ∈ Bs0(uk)}

≤ K/α (34)

where we have used the facts that (i) the sets{Dks}Kk=1 are
non-overlapping and (ii)Dks ∈ Bs(uk). The last inequality
follows from Pr (Y n ∈ Bs(uk)) ≤ 1/α, which follows from

(25). Combining (33) with (34) and using (24), one finally
obtains:

λn < Pr {i(Xn;Y n|s0) ≤ lnα}+K/α (35)

λn = sup
s∈S

Pr {i(Xn;Y n|s) ≤ lnα} +Mn/α

≥ Pr {i(Xn;Y n|s0) ≤ lnα}+Mn/α (36)

from which it follows thatMn < K.

Thus, one can always selectMn codewords using this itera-
tive method. For this codebook, the maximum error probability
εn,max satisfies

εn,max = sup
s

max
k

Ps(D
c
ks|uk) = max

k
sup
s

Ps(D
c
ks|uk)

= max
k

(1− inf
s
Ps(Dks|uk)) ≤ λn (37)

where Ps(D
c
ks|uk) represents error probability when

uk is transmitted under channel states and where
infs Ps(Dks|uk) ≥ 1 − λn by code construction. Since
εn,max ≤ λn, so is the average error probabilityεn ≤ λn,
from which (8) follows.

REFERENCES

[1] E. Biglieri, J. Proakis, and S. Shamai, “Fading Channels: Information-
Theoretic and Communications Aspects,”IEEE Trans. Inform. Theory,
vol. 44, No. 6, pp. 2619-2692, Oct. 1998.

[2] R.L. Dobrushin, “Optimal information Transmission through a channel
with unknown parameters,”Radiotekhnika i Electronika, vol. 4, pp. 1951-
1956, 1959.

[3] D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacity of a class
of channels,”Ann. Math. Statist., vol. 30, pp. 1229-1241, December 1959.

[4] J. Wolfowitz, “Simultaneous channels,”Arch. Rat. Mech. Anal., vol. 4,
pp. 371-386, 1960.

[5] W. L. Root, P. P. Varaya, ”Capacity of Classes of GaussianChannels”,
SIAM J. Appl. Math., vol. 16, no. 6, pp. 1350-1393, Nov. 1968.

[6] I. Csiszar, “Arbitrary varying channels with general alphabets and states”,
IEEE Trans. Inform. Theory, vol. 38, pp. 1725-1742, Nov. 1992.

[7] A. Lapidoth and P. Narayan, “Reliable Communication Under Channel
Uncertainty,” IEEE Trans. Inform. Theory, vol. 44, No. 6, Oct. 1998.

[8] S. Verdu, T.S. Han, ”A General Formula for Channel Capacity”, IEEE
Transactions on Information Theory, vol. 40, no. 4, pp. 1147-1157, July
1994.

[9] T. S. Han, Information-Spectrum Method in Information Theory, New
York: Springer, 2003.

[10] M. Effros, A. Goldsmith, Y. Liang, ”Generalizing Capacity: New
Definitions and Capacity Theorems for Composite Channels,”IEEE
Transactions on Information Theory, vol. 56, no. 7, pp. 3069-3087, July
2010.

[11] R. L. Dobrushin, ”A general formulation of the fundamental theorem
of Shannon in information theory”, Uspekhi Mat. Nauk, v. 14,no. 6(90),
Nov.-Dec. 1959, pp.3–104.

[12] M. S. Pinsker, Information and Information Stability of Random Vari-
ables and Processes. San Francisco: Holden-Day, 1964.

[13] R.L. Stratonovich, Information Theory, Moscow: Sovetskoe Radio,
1974.

[14] A. Lapitoth and E. Telatar, “The compound channel capacity of a class
of finite-state channels,”IEEE Trans. Inform. Theory, vol. 44, pp. pp.973-
983, May 1998.

[15] T.M. Cover, J.A. Thomas,Elements of Information Theory, Wiley, New
York, 2006.

[16] R.B. Ash, Information Theory, John Wiley & Sons, 1966.


