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Abstract—The impact of channel distribution uncertainty on
the performance of fading channels is studied. The compound
capacity of a class of ergodic fading channels subject to channel
distribution uncertainty is obtained, for arbitrary noise and
nominal channel distribution. The saddle-point property is estab-
lished, so that the compound capacity equals to the worst-case
channel capacity, which is characterized as 1-D convex optimiza-
tion problem. The properties of worst-case mutual information
and channel distribution are studied. Closed-form solutions are
obtained in the asymptotic regimes of small and large uncertainty,
and an error floor effect is established in the latter case. The
known results for the ergodic capacity of the Gaussian MIMO
channel under i.i.d. Rayleigh fading are shown to hold under the
channel distribution uncertainty as well.

I. INTRODUCTION

CHANNEL state information (CSI) has a significant im-
pact on channel performance as well as code design to

achieve that performance. This effect is especially pronounced
for wireless channels, due to their dynamic nature, limitations
of a feedback link, channel estimation errors etc. [1][2].

When only incomplete or inaccurate CSI is available, per-
formance analysis and coding techniques have to be modi-
fied properly. The impact of channel uncertainty has been
extensively studied since late 1950s [3]-[5]; see [2] for an
extensive literature review up to late 1990s. Since channel
estimation is done at the receiver (Rx) and then transmitted
to the transmitter (Tx) via a limited (if any) feedback link,
most studies concentrate on limited CSI available at the Tx
end assuming full CSI at the Rx end.

There are several typical approaches to this problem. In
the compound channel model, the channel is unknown to the
Tx but is known to belong to a certain class of channels. A
member of the channel uncertainty class is selected at the
beginning and held constant during the entire transmission,
thus modeling a scenario with little dynamics (channel coher-
ence time significantly exceeds the codeword duration [1][6]).
A more dynamic approach is that of the arbitrary-varying
channel, where the channel is allowed to vary from symbol
to symbol being unknown to the Tx [2].

Incomplete CSI at the Tx end can be addressed by as-
suming that the channel is not known but its distribution is
known to the Tx, the so-called channel distribution information
(CDI) [1][6]. However, complete knowledge of CDI can be
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questioned on the same grounds as complete CSI: when
only a limited sample set is available (always a practicality),
channel distribution can be obtained with limited accuracy
only (especially at the distribution tails); limited feedback link
dictates quantization of the estimated CDI before transmission,
thus introducing the quantization noise; presence of noise and
channel dynamics makes any estimate inaccurate to a certain
degree. This motivates us to study the impact of inaccurate
channel distribution information on system performance.

In the context of non-ergodic fading channels such study has
been reported in [7], where the main performance metric was
the outage probability. It was demonstrated that inaccurate CDI
limits the achievable outage probability: increasing the SNR
over a certain threshold does not reduce the outage probability,
i.e. an error floor effect. The key parameter characterizing
the error floor effect is the distance between the nominal
(estimated) and true distributions as measured by the relative
entropy, regardless of any other channel specifics (e.g. nominal
CDI, noise distribution etc.).

In the present paper, we carry out a similar investigation for
ergodic settings, i.e. assuming that the channel is subject to an
ergodic fading process so that the main performance metric is
ergodic capacity [1]. However, since incomplete (inaccurate)
CDI is assumed, the standard results on ergodic capacity [1][6]
do not apply as certain achievable performance have to be
demonstrated for the whole class of distributions, not just for a
single one. We accomplish this using the standard compound
channel approach [1][2] - properly extended to the ergodic
setting. This allows us to establish the operational meaning of
the max-min ergodic mutual information (MI), where min is
over all channel distributions in the uncertainty class and max
is over all feasible input distributions, as the largest achievable
rate under the CDI uncertainty.

First, the worst-case ergodic MI is characterized as a 1-
D convex optimization problem; its properties are studied
and asymptotic analytical solutions (small/large uncertainty
regimes) are obtained in closed forms. An error floor effect
is established in the large-uncertainty regime: the worst-case
MI and thus the compound capacity cannot be increased by
increasing SNR but rather more accurate channel estimation
is required to accomplish this. Our analysis of the small-
uncertainty regime answers quantitatively the question ”how
accurate is the perfect CDI?”.

Then, an operational meaning of the worst-case MI as
the largest achievable rate for a given input distribution is
established and the corresponding compound channel capacity
is shown to be the max-min MI (where the min in over class of
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channels and max is over the input distribution); a number of
its properties are also established. The saddle-point property is
shown to hold, so that the compound channel capacity equals
to the worst-case channel capacity, from which its game-
theoretic interpretation follows.

These results are further extended to continuous fading
distributions and an AWGN MIMO channel is considered
subject to any unitary-invariant fading (of which i.i.d. Rayleigh
fading is a special case). The optimal signaling is shown
to be isotropic Gaussian, thus extending the corresponding
result in [11] in several directions (from i.i.d. Rayleigh to
any unitary-invariant fading; from a single fading channel to a
compound channel setting to accommodate channel distribu-
tion uncertainty; the same optimal signaling is shown to hold
under the total as well as per-antenna power constraints, thus
demonstrating that no advantage is gained by trading off the
power among the Tx antennas).

II. CHANNEL MODEL

Let x and y be the channel input and output respectively,
and h be the channel state (all can be sequences). Assume
that the full channel state information (CSI) is available at the
receiver but not the transmitter (see e.g. [1][6] for a detailed
motivation of this assumption) and that the channel input x
and state h are independent of each other. For any channel
state and input distribution p(x), the channel is characterized
by its (instantaneous) mutual information (MI) I(x; y, h) =
I(x; y|h), where, following [1][6], we have augmented the
output with the channel state (since it is known at the Rx) and
have used the independence of x and h. We will further assume
that the channel is subject to an ergodic fading characterized
by its probability distribution f .

For a finite-state channel, h ∈ {h1, ..., hm}, fi is the
probability of h = hi, and Ii = I(x; y|hi) is the (instanta-
neous) mutual information supported by channel realization hi

under given input distribution p(x); without loss of generality,
assume decreasing ordering I1 ≥ I2 ≥ ... ≥ Im (unless
otherwise indicated, we assume that not all Ii are the same).
The ergodic mutual information supported by this channel is

I(x; y|f) =
∑
i

fiIi (1)

which is also a function of f = {f1...fm}. When f is known
to the Tx, this is also the largest achievable rate for a given
input distribution p(x) [1].

Ergodic channel model is suitable in scenarios with sig-
nificant channel dynamics so that a single codeword spans
many different channel realizations and an encoder can take
advantage of it [1][6]. However, in many practical scenarios,
complete knowledge of channel distribution f may be not
available at the transmitter, due to e.g.

• inaccuracy in estimating f at the receiver (due to finite
sample size or estimation noise);

• limited (quantized) feedback link (quantization noise);
• outdated estimate,

so that the true channel distribution f differs from its estimate
f0 available at the transmitter.

To model this CDI uncertainty (inaccuracy), consider the
scenario where the transmitter has only partial CDI. Namely,
it knows that the true f is within a certain distance of the
nominal (estimated) known f0. We use the relative entropy as
a measure of the distance between two distributions, so that
all feasible distributions f satisfy the following inequality:

f = {f1...fm} : D(f ||f0) =
∑
i

fi ln
fi
f0i

≤ d, (2)

where f0 = {f01...f0m} is a nominal (known) distribution and
d ≥ 0 determines the size of the distribution uncertainty set.

Similar approach has been adopted in [7] to characterize the
impact of channel distribution uncertainty on the performance
of non-ergodic (quasi-static) fading channels, where the main
performance metrics are outage probability (for a given target
rate) or outage capacity (for a given outage probability).
While the value of relative entropy as a measure of distance
between two distributions is well-known [12], it will become
clear from the present study that d is a critical parameter
that characterizes the loss in performance due to the channel
distribution uncertainty as well.

We will not assume any particular noise or channel distri-
bution (except for examples) so that our results are general
and apply to any such distribution.

III. WORST-CASE ERGODIC MUTUAL INFORMATION

Under a given p(x), the worst-case ergodic mutual infor-
mation for the CDI uncertainty set in (2) is given by

Iw = min
D(f ||f0)≤d

I(x; y|f) (3)

Its operational meaning will be established in the next section:
when the nominal distribution f0 and ”radius” d are known
at the transmitter, this is the largest achievable rate under the
worst-case fading channel for a given p(x) (and is a function
of f0 and d). The Theorem below gives its characterization as
a 1-D convex optimization problem.

Theorem 1: For a given input distribution p(x) and arbitrary
nominal fading distribution f0, the worst-case ergodic mutual
information Iw in (3) can be expressed as a scalar convex
optimization problem:

Iw = max
s≤0

s
(
ln
∑
i

f0ie
Ii/s + d

)
(4)

and the maximizing s∗ can be found as a unique solution of
the following equation

F (s) =

∑
i f0i

Ii
s e

Ii/s∑
i f0ie

Ii/s
− ln

∑
i

f0ie
Ii/s = d (5)

if d ≤ ln 1
f0m

. The worst-case (minimizing) fading distribution
f∗
i is

f∗
i =

f0ie
Ii/s

∗∑
i f0ie

Ii/s∗
, (6)
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so that

Iw =

∑
i f0iIie

Ii/s
∗∑

i f0ie
Ii/s∗

(7)

If d ≥ ln 1
f0m

, s∗ = 0− and

f∗
1 ...f

∗
m−1 = 0, f∗

m = 1, Iw = Im (8)

i.e. all the probability mass is on the weakest channel and
the worst-case ergodic MI equals to that of a weakest channel
realization. If d = 0, then f∗

i = f0i and the corresponding
worst-case MI is that under the nominal distribution: Iw =
I0 =

∑
i f0iIi, so that in general

Im ≤ Iw ≤ I0 (9)

Proof: see Appendix.
We now proceed to establish a number of properties of F (s)

in (5), which reflect on corresponding solutions.
Proposition 1: The function F (s) has the following prop-

erties:
1) F (s) is increasing: F ′(s) ≥ 0, with strict inequality

unless s = −∞ or 0− or all Ii are the same.
2) Its limiting values are F (−∞) = 0, F (0−) = ln 1

f0m
,

so that
3) 0 ≤ F (s) ≤ ln 1

f0m
for −∞ ≤ s ≤ 0−.

Note that d = ln 1
f0m

is the threshold radius, beyond
which the worst-case ergodic capacity equals to the point-
wise (instantaneous) worst-case capacity and the worst-case
fading distribution puts all the mass on the weakest channel
realization.

A. Asymptotic regimes

Let us now study the worst-case MI in 2 asymptotic regimes,
where more insights can be obtained.

Proposition 2: Consider the small uncertainty regime d →
0. The worst-case ergodic MI can be approximated as follows:

Iw = I0 −
√
2dσI + o(

√
d) (10)

where σ2
I =

∑
i f0iI

2
i −I20 is the variance of the instantaneous

MI under the nominal fading distribution.
Proof: Based on the standard tools of asymptotic analysis

[14].
Note that, in this regime, the worst-case MI decreases

proportionally to the standard deviation of the instantaneous
MI (under the nominal fading distribution), the proportionality
coefficient being

√
2d, and that increasing Ii results in smaller

f∗
i ., i.e. weaker channels get larger weights.

Large uncertainty regime: this corresponds to d ≥ − ln f0m,
which is considered in Theorem 1 in (8). Note that in this
regime further increase in d (beyond − ln f0m) does not result
in any decrease in Iw, as the lower bound in (9) is already
achieved. If Im = 0 for any SNR (i.e. zero-gain channel
realization) and d ≥ − ln f0m, then Iw = 0 regardless of
the SNR, so that the worst-case MI (and thus the compound
channel capacity, which cannot exceed the worst-case MI
under the optimal input distribution) cannot be increased by
increasing the SNR in the large-uncertainty regime, i.e. there

is an error floor effect induced by the channel distribution
uncertainty. More accurate channel estimation (i.e. smaller d)
is required to increase the worst-case MI in this case.

B. Properties of the worst-case channel distribution and MI

We study below the properties of the worst-case MI. Since
the proofs follow mostly in a standard way from Theorem 1,
they are omitted due to the page limit.

Proposition 3: The worst-case MI Iw(d) as a function of
”radius” d has the following properties:

1) Iw(d) is a convex function of d, strictly so unless d ≥
ln 1

f0m
.

2) Iw(d) is a decreasing function of d, strictly so unless
d ≥ ln 1

f0m
,

Iw(d1) > Iw(d2) ∀d1 < d2 < ln
1

f0m
. (11)

3) Its boundary values are as follows:

Iw(0) = I0, Iw

(
d ≥ ln

1

f0m

)
= Im. (12)

Proposition 4: The worst-case MI is an increasing function
of Ii, i = 1...m, strictly so if d < − ln f0m.

Proposition 5: Under the assumed instantaneous MI order-
ing I1 ≥ I2 ≥ .. ≥ Im, the normalized worst-case fading dis-
tribution αi = f∗

i /f0i is increasing in i: α1 ≤ α2 ≤ .. ≤ αm.
If Ii < Ij and d < − ln f0m, then αi > αj .

Corollary 5.1: If the nominal fading distribution is uniform,
f01 = f02 = .. = f0m, the worst-case fading distribution is
increasing in i: f∗

1 ≤ f∗
2 ≤ .. ≤ f∗

m. If Ii < Ij and d <
− ln f0m, then f∗

i > f∗
j .

Corollary 5.2: If f0i = 0, then f∗
i = 0. If d < − ln f0m,

then f∗
i = 0 if and only if f0i = 0.

IV. OPTIMIZING OVER THE INPUT DISTRIBUTION

The next step is to optimize the worst-case MI over the
input distribution to obtain the compound channel capacity.
The following Theorem establishes the operational meaning
of this max-min MI. This corresponds to existence of a single
code operating over the whole class of fading distributions.

Theorem 2: Consider an ergodic fading channel, whose
distribution f is not known at the Tx, but is known to belong
to a convex set S and assume that the set of all feasible input
distributions p(x) is convex. Its compound channel capacity
Cc is the same as the worst-case channel capacity Cw,

Cc
(a)
= sup

p(x)

inf
f∈S

I(x; y|f)
(b)
= inf

f∈S
sup
p(x)

I(x; y|f) = Cw (13)

Proof: The proof is done in 4 steps, as outlined below:
1) Assume first that S is of finite cardinality. In this case, (a)

follows from Han’s compound channel capacity theorem (see
theorems 3.3.3 and 5 in [8]) by considering fading distribution
f as a channel state.

2) When S is a convex polyhedron, (a) follows from 1) and
the fact that any code that works for finite-cardinality set {fi}
also works for its convex envelope

∑
i αifi.
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3) When S is an arbitrary convex set, evoke 2) and use a
sequence of increasingly finer inner/outer polyhedral approx-
imations as in e.g. [13].

4) (b) follows from Von Neumann mini-max Theorem
[9][10].

Applying this theorem to the setting in the previous section,
one obtains the following.

Theorem 3: Consider the compound ergodic fading channel
in (2) when the transmitter knows f0 and d but not f , and
the receiver has full CSI. Assume that the set of feasible
input distributions p(x) is convex and compact (e.g. average or
maximum power constraint). The compound ergodic channel
capacity in this setting is given by

C = max
p(x)

min
D(f ||f0)≤d

I(x; y|f) = min
D(f ||f0)≤d

max
p(x)

I(x; y|f)

= Cw (14)

i.e. the compound capacity equals to the worst-case channel
capacity Cw and the saddle-point property holds for any
feasible p(x) and f ,

I(x; y|f∗) ≤ C = I(x∗; y|f∗) ≤ I(x∗; y|f) (15)

where x∗ denotes the input under its optimal distribution p∗(x)
and (p∗, f∗) is a saddle point.

The inequalities in (15) have a well-known game-theoretic
interpretation: the Tx chooses p∗(x) and the adversary (nature)
chooses f∗; neither player can deviate from this optimal
strategy without incurring a penalty.

We are now in a position to obtain the compound channel
capacity in the asymptotic regimes.

Proposition 6: Consider the large-uncertainty regime d ≥
− ln f0m. The compound channel capacity in this regime is
given by

C = max
p(x)

Im (16)

i.e. designing a single code for the whole class of fading
channels is equivalent to designing a code for a weakest
channel realization in this regime.

Proof: Follows from (14) and (8).
Proposition 7: Consider the small-uncertainty regime as in

Proposition 2. The compound channel capacity in this regime
is given by

C = max
p(x)

{I0 −
√
2dσI}+ o(

√
d) (17)

≈ max
p(x)

I0 (18)

where 2nd approximation holds when

d ≪ 1

2

(
I0
σI

)2

. (19)

Proof: Follows from (10) and (14).
In fact, (19) answers the question ”how accurate is the

perfect CDI?”: when (19) holds, the CDI uncertainty is neg-
ligible and thus the CDI can be considered ”perfect”. Note
that optimizing (designing a code for) the nominal MI I0 is

not optimal in general (as it does not necessarily optimize
σI ), but is optimal when uncertainty is negligible as in (19),
so that one can ”recycle” known optimal distributions (codes)
in this small-uncertainty regime. On the other hand, one can
”recycle” known distributions (codes) for a weakest channel
realization in the large uncertainty regime.

Using the general inequality Im ≤ Iw ≤ I0, one obtains the
general bounds on the compound ergodic capacity.

Proposition 8: The compound ergodic capacity of a finite-
state fading channel can be bounded as follows

max
p(x)

Im ≤ C ≤ max
p(x)

I0 (20)

and the bounds are tight: the lower bound is attained in the
large uncertainty regime d ≥ − ln f0m, and the upper bound
is attained in the small-uncertainty regime d ≪ 1

2 (I0/σI)
2.

We would like to point out that the above results are general
enough to apply to arbitrary nominal fading distribution and
arbitrary noise (not necessarily Gaussian).

V. CONTINUOUS FADING DISTRIBUTIONS

Here we consider a continuous fading distribution. The
results follow from the finite-state case by using integrals
instead of the sums (and calculus of variations to establish
optimality).

In particular, the worst-case MI can be characterized as in
Theorem 1 with integrals instead of the sums and a number
of its properties mimic those for the finite-state channels.

In the asymptotic regimes, one obtains the following.
Proposition 9: Consider the small uncertainty regime d →

0. When all moments of I(h) are bounded, the worst-case
ergodic MI can be approximated as follows:

Iw = I0 −
√
2dσI + o(

√
d) (21)

where σ2
I =

∫
f0(h)I

2(h)dh − I20 is the variance of the
instantaneous MI under the nominal fading distribution.

Large uncertainty regime: this corresponds to d ≥ − ln f0m
when there is a point mass f0m at h = hm so that Iw = Im
if d ≥ − ln f0m. When there is no such mass, Iw → Im as
d → ∞, which corresponds to f0m → 0.

A. An example: Gaussian MIMO channel

In this section, we consider an example of ergodic Gaussian
MIMO fading channel when the nominal fading distribution is
unitary-invariant. In the special case of i.i.d. Rayleigh fading,
its capacity has been established in [11] and the optimal
signalling is isotropic Gaussian. Our example extends this in
two directions: (i) we consider a class of fading channels thus
allowing channel distribution uncertainty, and (ii) we allow the
nominal distribution to be any unitary-invariant one, of which
i.i.d. Rayleigh fading is a special case. The key result is that
the optimal signaling is still isotropic Gaussian, exactly as in
[11]. The channel model is

y = Hx+ ξ (22)

where x,y are the input and output signals, ξ is AWG noise,
ξ ∼ CN(0, I), where I is the identity matrix, and H is the
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channel matrix. Under given channel distribution f(H), its
ergodic capacity, under the total power constraint trR ≤ PT ,
is [11]

C(f) = max
trR≤PT

∫
f(H) ln |I +HRH+|dH (23)

where R = xx+ is the covariance of x, (·)+ denotes
Hermitian conjugation and | · | denotes determinant; we have
also used the fact that Gaussian signaling is optimal since the
noise is Gaussian.

When the channel distribution is uncertain and belongs to
the class in (2), the compound capacity becomes

C = max
trR≤PT

min
D(f ||f0)≤d

∫
f(H) ln |I +HRH+|dH (24)

The following Proposition characterizes it for a broad class
of nominal fading distributions.

Proposition 10: Consider an ergodic-fading AWGN MIMO
channel as in (22) whose fading distribution belongs to the
class in (2) and assume that the nominal fading distribution
f0(H) is right unitary invariant, i.e. f0(H) = f0(HU) for
any unitary U . The compound channel capacity is

C = max
s≤0

s
{
ln

∫
|I + γHH+|s

−1

f0(H)dH + d
}

(25)

where m is the number of transmit antennas, γ = PT /m is
the per-antenna SNR, i.e. an optimal covariance R∗ = γI , so
that isotropic Gaussian signaling is optimal. This holds under
the total as well as per-antenna power constraints: trR ≤ PT

or rii ≤ PT /m, where rii is i-th diagonal entry of R.
While this optimal signaling is the same as in the case

of i.i.d. Rayleigh-fading channel in [11], the present result
extends [11] in three directions:
• a class of fading distributions is considered, rather than a

single one, thus allowing fading distribution uncertainty typical
in wireless communications;
• i.i.d. Rayleigh fading in [11] is extended to any

right-unitary-invariant distribution, of which any spherically-
symmetric and thus i.i.d. Raleigh fadings are just special cases;
• the same optimal signaling and capacity are shown to hold

under the total as well as the per-antenna power constraints;
since the per-antenna power constraint rii ≤ PT /m implies
the total power constraint trR ≤ PT but not vice-versa, this
indicates that nothing is gained by allowing transmitters to
trade-off the power under an ergodic, unitary-invariant fading.
This may have important applications in multi-user systems.

VI. APPENDIX: PROOF OF THEOREM 1

The Lagrangian for the optimization problem in (3) is

L =
∑
i

fiIi + λ

(∑
i

fi ln
fi
f0i

− d

)
+ µ

(∑
i

fi − 1

)
(26)

and the corresponding KKT conditions are

∂L

∂fi
= Ii + λ

(
ln

fi
f0i

+ 1

)
+ µ = 0, (27)

λ

(∑
i

fi ln
fi
f0i

− d

)
= 0, λ ≥ 0,

∑
i

fi = 1. (28)

It is straightforward to see that the problem is convex (since the
objective I(x; y|f) in (1) is linear in fi and the constraint in
(2) is convex) and the Slater’s condition holds (for any d > 0),
so that the KKT conditions are sufficient for optimality [9].
Combining (27) with the constraint

∑
i fi = 1 one obtains,

after some manipulations, the minimizing distribution

f∗
i =

f0ie
−Ii/λ∑

i f0ie
−Ii/λ

, (29)

Using this in (26), one obtains, after some manipulations, the
Lagrange dual function L(λ):

L(λ) = −λ

(
ln
∑
i

f0ie
−Ii/λ + d

)
, λ ≥ 0 (30)

Since the duality gap is zero, the problem in (3) is equivalent
to its dual,

Iw = max
λ≥0

L(λ) (31)

Changing the dual variable s = −λ results in (4).
To prove (5), let

Q(s) = s
(
ln
∑
i

f0ie
Ii/s + d

)
(32)

and observe that F (s) = d−Q(s)′. Furthermore,

Q(s)′′ = −F (s)′ ≤ 0 (33)

This clearly demonstrates that Q(s) is concave and, thus, the
problem in (4) is convex (strictly so, unless s = 0− or all Ii
are the same, so that the solution is unique), and that F (s) is
increasing (unless s = −∞ or 0−), so that the equation in (5)
has a unique solution if d ≤ − ln f0m, which corresponds to
the maximizer in (4) (note that Q(s)′ = 0 ↔ F (s) = d) and
can be easily found numerically using any suitable algorithm
(e.g. bisection or Newton decent method [9]). (5) can also be
obtained from complementary slackness in (28) when λ > 0.

If d > − ln f0m, then Q(s)′ = d − F (s) > 0 (from
Proposition 1) so that s∗ = 0− and (8) follows. The same
solution applies when d = − ln f0m.
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