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Abstract—Capacity-achieving signaling strategies for the Gaus-
sian wiretap MIMO channel are investigated without the degrad-
edness assumption. In addition to known solutions, a number of
new rank-deficient solutions for the optimal transmit covariance
matrix are obtained. The case of weak eavesdropper is considered
in details and the optimal covariance is established in an explicit,
closed-form with no extra assumptions.

The conditions for optimality of zero-forcing signaling are
established, and the standard water-filling is shown to be optimal
under those conditions. No wiretap codes are needed in this case.

The case of identical right singular vectors for the required
and eavesdropper channels is studied and the optimal covariance
is established in an explicit closed form. As a by-product of this
analysis, we establish a generalization of celebrated Hadamard
determinantal inequality using information-theoretic tools.

I. INTRODUCTION

Wide-spread use of wireless systems has initiated significant

interest in their security and information-theoretic aspects of

the latter [1]. In particular, the wire-tap Gaussian MIMO

channel has been a subject of intensive studies and a number

of results have been obtained, including the proof of optimality

of Gaussian signaling [1]-[4].

The optimal transmit covariance matrix under the total

power constraint has been obtained for some special cases (e.g.

low/high SNR, MISO channels, full-rank or rank-1 cases) [2]-

[7] but the general case remains illusive. The main difficulty

lies in the fact that the underlying optimization problem is not

convex in general. It was conjectured in [4] and proved in [3]

using an indirect approach (via the degraded channel) that the

optimal signaling is on the positive directions of the difference

channel. A direct proof (based on the necessary KKT condi-

tions) has been obtained in [5]. A weaker result (non-negative

instead of positive directions) has been obtained in [7]. An

exact full-rank solution for the optimal covariance has been

obtained in [5] and its properties have been characterized. In

particular, unlike the regular channel (no eavesdropper), the

optimal power allocation does not converge to uniform one

at high SNR and the latter remains sub-optimal at any finite

SNR. In the case of weak eavesdropper, the optimal signaling

mimics the conventional one (water-filling over the channel

eigenmodes) with an adjustment for the eavesdropper channel.

The case of isotropic eavesdropper is studied in details in

[6], including the optimal signaling in an explicit closed form
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and its properties. This case is shown to be the worst-case

MIMO wire-tap channel. Based on this, lower and upper

(tight) capacity bounds have been obtained for the general

case, which are achievable by an isotropic eavesdropper. The

set of channels for which isotropic signaling is optimal has

been fully characterized [6]. It turns out to be much richer than

that of the conventional (no eavesdropper) MIMO channel.

The present paper extends the known results for optimal co-

variance in several directions. The case of weak eavesdropper

is studied and the optimal covariance is obtained in an explicit

closed form without any extra assumptions (e.g. full rank or

rank-1). It provides a lower bound to the secrecy capacity in

the general case, which is tight when the eavesdropper path

loss is large and hence serves as an approximation to the true

capacity. It also captures the capacity saturation effect at high

SNR observed in [3][5].

The case of identical right singular vectors of the required

and eavesdropper channels is investigated and the optimal

covariance is established in a closed from. This case is

motivated by a scenario where the legitimate receiver (Rx)

and the eavesdropper (Ev) are spatially separated so that each

has its own set of local scatterers inducing its own left singular

vectors (SV), while both channel are subject to the same set

of scatterers around the transmitter (Tx) (e.g. a base station)

and hence the same right SVs. This is similar to the popular

Kronecker MIMO channel correlation model [8], where the

overall channel correlation is a product of the independent

Tx and Rx parts, which are induced by respective sets of

scatterers. As a by-product of this analysis, a generalization

of the celebrated Hadamard determinantal inequality is estab-

lished, which applies to a ratio of two determinants, using

information-theoretic tools in the spirit of [9].

Finally, the conditions for optimality of zero-forcing (ZF)

signaling are established, where the Tx antenna array forms a

null in the Ev direction. Under those conditions, the standard

eigenmode signaling and water-filling (WF) power allocation

on what remains of the required channel (after the ZF)

are optimal. Furthermore, no wiretap codes are required as

regular coding on the required channel suffices, so that secrecy

requirement imposes no extra complexity penalty (beyond the

standard ZF). In this case, the optimal secure signaling is

decomposed into two parts: part 1 is the ZF (null forming

in the terminology of antenna array literature [10]), which

insures the secrecy requirement, and part 2 is the standard

signaling (eigenmode transmission, WF power allocation and

coding) on the required channel, which maximizes the rate

of required transmission. This is reminiscent of the classical
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source-channel coding separation [11].

II. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard wire-tap Gaussian MIMO

channel model,

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)

where x = [x1, x2, ...xm]T ∈ Cm,1 is the transmitted

complex-valued signal vector of dimension m×1, “T” denotes

transposition, y1(2) ∈ Cn,1 are the received vectors at the

receiver (eavesdropper), ξ1(2) is the circularly-symmetric ad-

ditive white Gaussian noise at the receiver (eavesdropper) (nor-

malized to unit variance in each dimension), H1(2) ∈ Cn1(2),m

is the n1(2)×m matrix of the complex channel gains between

each Tx and each receive (eavesdropper) antenna, n1(2) and

m are the numbers of Rx (eavesdropper) and Tx antennas

respectively. The channels H1(2) are assumed to be quasistatic

(i.e., constant for a sufficiently long period of time so that

the infinite horizon information theory assumption holds) and

frequency-flat, with full channel state information (CSI) at the

Rx and Tx ends.

For a given transmit covariance matrix R = E {xx+},

where E {·} is statistical expectation, the maximum achievable

secure rate between the Tx and Rx (so that the rate between

the Tx and eavesdropper is zero) is [3][4]

C(R) = ln
|I+W1R|

|I+W2R|
= C1(R)− C2(R) (2)

where negative C(R) is interpreted as zero rate, Wi =
H+

i Hi, ()
+

means Hermitian conjugation, and the secrecy

capacity subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (3)

where PT is the total transmit power (also the SNR since the

noise is normalized). It is well-known that the problem in (3)

is not convex in general and explicit solutions for the optimal

Tx covariance is not known for the general case, but only

for some special cases (e.g. low/high SNR, MISO channels,

full-rank or rank-1 case [2]-[7]).

Notations: λi(W) denotes eigenvalues of matrix W;

(x)+ = max{x, 0} for a scalar x; N (W) is a null space of

matrix W; (W)+ denotes positive eigenmodes of Hermitian

matrix W:

(W)+ =
∑

i:λi(W)>0

λiuiu
+
i (4)

where ui is i-th eigenvector of W.

III. WEAK EAVESDROPPER

In this section, we consider the scenario where the eaves-

dropper is weak. This may be due to the fact that the

eavesdropper is located far away from the Tx so that its path

loss is large. There is no requirement for the channel to be

degraded or for the optimal covariance to be of full rank or

rank 1, so that this result adds considerably to the known

solutions.

Theorem 1. Consider the problem in (3) when the eavesdrop-

per is weak, i.e. λi(W2R) ≪ 1. The optimal covariance is

given by

R∗ = W
−1/2
λ UΛU+W

−1/2
λ (5)

where Wλ = λI+W2, the columns of unitary matrix U are

the eigenvectors of1

W̃1 = W
−1/2
λ W1W

−1/2
λ , (6)

the diagonal entries of diagonal matrix Λ are

λ̃i = (1− λ−1
i (W̃1))+ (7)

where λ ≥ 0 is found from the total power constraint:

trR∗ = PT if PT < P ∗
T (8)

and λ = 0 otherwise; the threshold power

P ∗
T = trW−1

2 (I−W
1/2
2 W−1

1 W
1/2
2 )+ (9)

if W2 is non-singular, and P ∗
T = ∞ if W2 is singular and

N (W2) /∈ N (W1)
2. The corresponding secrecy capacity is:

Cs =
∑

i:λ̃1i>1

ln λ̃1i − wi(1− λ̃−1
1i ) (10)

where λ̃1i = λi(W̃1), wi is i-th diagonal entry of

U+W
−1/2
λ W2W

−1/2
λ U.

Proof: Under the weak eavesdropper assumption, the

secrecy capacity can be approximated as3

C(R) ≈ ln |I+W1R| − tr(W2R) (11)

Using this in (3), the Lagrangian of the optimization problem

becomes

L = ln |I+W1R| − tr(W2R)− λ(trR − PT ) + tr(MR)
(12)

where λ ≥ 0 is a Lagrange multiplier responsible for the total

power constraint and M ≥ 0 is a matrix Lagrange multiplier

responsible for the constraint R ≥ 0. The corresponding KKT

conditions are:

∂L/∂R = (I+W1R)−1W1 −W2 − λI+M = 0 (13)

λ(trR − PT ) = 0,MR = 0 (14)

λ ≥ 0,M,R ≥ 0 (15)

Since the objective is concave, the corresponding optimization

problem is convex, and since Slater condition holds, the

KKT conditions are sufficient for optimality [12]. After some

manipulations, (13) can be transformed to

R̃− (I− M̃)−1 = −W̃−1
1 (16)

1here we implicitly assume that Wλ is non-singular, e.i. either W2 is
non-singular or λ > 0 if it is singular. If this is not the case, a pseudo-inverse
should be used instead.

2this can be obtained via a limiting transition.
3including 2nd order terms in this approximation gives the weak eaves-

dropper condition λi(W2R) ≪ 1.

2014 IEEE International Symposium on Information Theory

202



where

R̃ = W
1/2
λ RW

1/2
λ , M̃ = W

−1/2
λ MW

−1/2
λ , (17)

W̃1 = W
−1/2
λ W1W

−1/2
λ

Since M̃R̃ = 0, these matrices commute and thus have

the same eigenvectors, which, from (16), implies that these

eigenvectors are the same as those of W̃1. Hence, all three

matrices can be simultaneously diagonalized and thus (16) can

be transformed to diagonal form (where the diagonal entries

are respective eigenvalues). From this and complementary

slackness M̃R̃ = 0, (7) follows, where λ̃i = λi(R̃). Com-

bining this with (17), (5) and (6) follow. Lagrange multiplier

λ is found from the total power constraint. The existence

of the threshold power P ∗
T follows from the fact that trR∗

is monotonically decreasing in λ so that its largest value

corresponds to λ → 0 and equals P ∗
T . When PT > P ∗

T , λ = 0
and trR∗ = P ∗

T < PT , i.e. only partial power is used (see

Fig. 1 for illustration and discussion). (10) can be obtained by

using (5) in (11).

Remark 1. It may appear that (7) requires W̃1 and thus W1

be positive definite, i.e. singular case is not allowed. This is

not so: (·)+ operator makes sure that λ̃i = 0 if λi(W̃1) = 0
so that singular W1 is allowed. The same observation also

applies to (9) and (16).

Remark 2. One way to ensure that the Ev is weak, i.e.

λi(W2R) ≪ 1, is to require

λi(W2) ≪ 1/PT (18)

from which it follows that this holds as long as the power (or

SNR) is not too large, i.e. PT ≪ 1/λi(W2); see also Fig. 1. It

should be noted, however, that this approximation extends well

beyond the low-SNR regime provided that the eavesdropper

path loss is sufficiently large (i.e. λi(W2) are small). For the

scenario in Fig. 1, it works well up to about 10 dB and can

extend to larger SNR for smaller α.

To illustrate Theorem 1 and also to see how accurate the

approximation is, Fig. 1 shows the secrecy capacity obtained

from the theorem for

W1 =

(
2 0
0 1

)
, W2 = α

(
2 1
1 1

)
, (19)

Also, its exact values (without the weak eavesdropper approx-

imation) obtained by brute force Monte-Carlo (MC) based

approach (where a large number of covariance matrices are

randomly generated, subject to the total power constraint, and

the best one is selected) are shown for comparison. To validate

the analytical solution in Theorem 1, the approximate problem

has also been solved by the MC-based approach. It is clear

that the approximation is accurate in this case provided that

SNR < 10 dB. Also note the capacity saturation effect,

for both the approximate and exact values. This saturation

effect has been already observed in [3][5] and, in the case of

W1 > W2 > 0, the saturation capacity is

C∗
s = ln |W1| − ln |W2| (20)
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Fig. 1. Weak eavesdropper approximation and exact secrecy capacity (via
MC) versus SNR. W1,2 are as in (19), α = 0.1. The approximation is
accurate if SNR < 10 dB. Note the capacity saturation effect at high SNR
in both cases.

which follows directly from (2) by neglecting I. In the weak

eavesdropper approximation, the saturation effect is due to

the fact that 2nd term in (11) is linear in PT while 1st one

is only logarithmic, so that using the full available power

in not optimal when it is sufficiently high. Roughly, the

approximation is accurate before it reaches the saturation

point, i.e. for PT < P ∗
T . The respective saturation capacity

is obtained from (10) by setting λ = 0. In the case of

W1 > W2 > 0, it is given by

C∗ = ln |W1| − ln |W2| − tr(I−W2W
−1
1 ) (21)

By comparing (20) and (21), one concludes that the thresholds

are close to each other when trW2W
−1
1 ≈ m.

In any case, the approximated capacity and corresponding

optimal covariance in Theorem 1 provide a lower bound

to the true capacity in (3) at any SNR/power and for any

eavesdropper channel (weak or not):

Cs ≥ C(R∗) (22)

which follows from ln(1 + x) ≤ x ∀x ≥ 0, and the bound is

tight for the weak eavesdropper case.

To obtain further insight in the weak eavesdropper regime,

let us consider the case when W1,2 have the same eigen-

vectors. This is a broader case than it may first appear as it

requires H1,2 to have the same right singular vectors while

leaving left ones unconstrained. In this case, the results in

Theorem 1 simplify as follows.

Corollary 1. Under the conditions of Theorem 1 and when

W1,2 have the same eigenvectors, the optimal covariance is

R∗ = UΛ∗U+ (23)

where U is found from the eigenvalue decompositions Wi =
UΛiU

+ so that the eigenvectors of R∗ are the same as those

2014 IEEE International Symposium on Information Theory

203



of W1,2. The diagonal matrix Λ∗ collects the eigenvalues of

R∗:

λi(R
∗) =

(
1

λ+ λ2i
−

1

λ1i

)

+

(24)

where λki is i-th eigenvalue of Wk.

Note that the power allocation in (24) resembles that of the

standard water filling, except for the λ2i term. In particular,

only sufficiently strong eigenmodes are active:

λi(R
∗) > 0 iff λ1i > λ+ λ2i (25)

As PT increases, λ decreases so that more eigenmodes become

active; legitimate channel eigenmodes are active provided that

they are stronger that those of the eavesdropper: λ1i > λ2i.

Only the strongest eigenmode (for which the difference λ1i −
λ2i is largest) is active at low SNR.

IV. IDENTICAL RIGHT SINGULAR VECTORS

In this section, we consider the case when H1,2 have the

same right singular vectors (SV), so that their singular value

decomposition takes the following form:

Hk = UkΣkV
+ (26)

where the unitary matrices Uk,V collect left and right sin-

gular vectors respectively and diagonal matrix Σk collects

singular values of Hk. In this model, the left singular vectors

can be arbitrary. This is motivated by the fact that right singu-

lar vectors are determined by scattering around the Tx while

left ones - by scattering around the Rx and Ev respectively.

Therefore, when the Rx and Ev are spatially separated, their

scattering environments may differ significantly (and hence

different left SVs) while the same scattering environment

around the Tx induces the same right SVs. We make no weak

eavesdropper or other assumptions here. After unitary (and

thus information-preserving) transformations, this scenario can

be put into the parallel channel setting of [13][14]. The secrecy

capacity and optimal covariance in this case can be explicitly

characterized as follows.

Proposition 1. Consider the wiretap MIMO channel as in

(1), (26). The optimal Tx covariance for this channel takes

the following form:

R∗ = VΛ∗V+ (27)

where the diagonal matrix Λ∗ collects its eigenvalues λ∗
i :

λ∗
i =

λ2i + λ1i

2λ2iλ1i

(√
1 +

4λ2iλ1i

(λ2i + λ1i)2

(
λ1i − λ2i

λ
− 1

)

+

− 1

)

(28)

where λki = σ2
ki and σki denotes singular values of Hk;

λ > 0 is found from the total power constraint:
∑

i

λ∗
i = PT (29)

Proof: Under (26),

Wk = VΛkV
+ (30)

where diagonal matrix Λk = Σ+
k Σk collects eigenvalues of

Wk, so that the problem in (3) can be re-formulated as

Cs = max
trR̃≥0

ln
|I+Λ1R̃|

|I+Λ2R̃|
s.t. trR̃ ≤ PT (31)

where R̃ = V+RV. However, this is the secrecy capacity of

a set of parallel Gaussian wire-tap channels as in [13][14],

for which independent signaling is known to be optimal4, so

that maximizing R̃∗ is diagonal, from which (27) follows. The

optimal power allocation in (28) is essentially the same as for

the equivalent parallel channels in [14].

In fact, Eq. (27) says that optimal signaling is on the right

SVs of H1,2 and (28) implies that only those eigenmodes are

active for which

σ2
1i > σ2

2i + λ (32)

If λ2i = 0, then (28) reduces to

λ∗
i =

(
1

λ
−

1

λ1i

)

+

(33)

i.e. as in the standard WF. This implies that when λ2i = 0 for

all active eigenmodes, then the standard WF power allocation

is optimal.

It should be stressed out that the original channels in (26)

are not parallel (diagonal). They become equivalent to a set of

parallel independent channels after performing information-

preserving transformations. Also, there is no assumption of

degradedness here and no requirement for optimal covariance

to be of full rank or rank-1.

Proposition 1 can be used to establish a new matrix inequal-

ity using information-theoretic tools in the spirit of [9], which

we term a generalized Hadamard inequality.

Proposition 2 (generalized Hadamard inequality). Let D1,2 be

diagonal positive semi-definite matrices, and let R be positive

semi-definite. Then, the following inequality holds:

|I+D1R|

|I+D2R|
≤

∏

i:d1i>d2i

1 + d1iri
1 + d2iri

(34)

where d1i, d2i, ri denote diagonal entries of D1,2,R. The

equality is achieved by diagonal R with ri = 0 if d1i < d2i.

This inequality is indeed a generalization of the celebrated

Hadamard determinantal inequality |R| ≤
∏

i ri, which (al-

most trivially) implies |I +D1R| ≤
∏

i(1 + d1iri). It is far

less trivial that (34) should hold as using the diagonal part

of R maximizes the numerator but also the denominator so

it’s not clear what is the net result. In fact, (34) says that just

retaining the diagonal part of R in not optimal: one should

retain only those diagonal entries for which d1i > d2i. To the

best of our knowledge, this inequality cannot be found in the

4The authors would like to thank A. Khisti for pointing out this line of
argument.
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matrix-theoretic literature (see e.g. [15]-[17]) and furthermore,

we are not aware about any matrix-theoretic way to established

it.

V. WHEN IS ZF SIGNALING OPTIMAL?

In this section, we consider the case when ZF signaling is

optimal, i.e. when active eigenmodes of optimal covariance R∗

are orthogonal to those of W2: W2R
∗ = 05. It is clear that

this does not hold in general. However, the importance of this

scenario is coming from the fact that such signaling does not

require wiretap codes: since the eavesdropper gets no signal,

regular coding on the required channel suffices. Hence, the sys-

tem design follows the well-established standard framework

and secrecy requirement imposes no extra complexity penalty

but is rather insured by well-established ZF signalling.

Proposition 3. Consider the wire-tap MIMO channel in (1).

Gaussian ZF signaling is optimal, i.e. W2R
∗ = 0 so that

active eigenmodes of R∗ are orthogonal to those of W2, iff

W1 and W2 have the same eigenvetors, so that H1 and H2

have the same right singular vectors as in (26), and

λ1i ≤ λ2i + λ if λ2i > 0, (35)

where λ is found from the total power constraint
∑

i λ
∗
i = PT

and

λ∗
i = λi(R

∗) =

(
1

λ
−

1

λ1i

)

+

if λ2i = 0, (36)

and 0 otherwise. The optimal covariance is as in (27) so that

its eigenvectors are those of W1,2.

Proof: The original problem in (3) is not convex in gen-

eral. However, since the objective is continuous, the feasible

set is compact and Slater condition holds, KKT conditions are

necessary for optimality [18]. Using these conditions (see e.g.

[5]), one obtains, after some manipulations, that W1 and W2

have the same eigenvectors6 and hence the optimal covariance

is as in (27). Using the optimal power allocation in (28), the

condition in (35) insures W2R
∗ = 0. Eq. (36) follows from

(28) when λ2i = 0. Since the necessary KKT conditions have

a unique solution under the condition W2R
∗ = 0, it is also

sufficient for optimality.

Remark 3. The optimal power allocation in (36) is the same

as the standard water filling. However, a subtle difference here

is the condition for an eigenmode to be active, λ∗
i > 0: while

the standard WF requires λ1i > λ, the solution above requires

in addition λ2i = 0, so that the set of active eigenmodes

is generally smaller. It is the smaller, the larger the set of

eavesdropper positive eigenmodes is.

It is gratifying to see that the standard WF over the

eigenmodes of the required channel is optimal if ZF is optimal.

In a sense, the optimal transmission strategy in this case is

5This simply means that the Tx antenna array puts null in the direction of
eavesdropper, which is known as null forming in antenna array literature [10].

6note that we do not assume here that W1 and W2 have the same
eigenvectors; rather, it is a result of this proposition.

separated into two independent parts: part 1 insures that the

Ev gets no signal (via the ZF) and part 2 is the standard

eigenmode signaling and WF on what remains of the required

channel as if the Ev were not there. No new wiretap codes

need to be designed.
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