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Abstract—Optimum ordering strategies for the coded V-
BLAST with capacity achieving temporal codes on each stream
are analytically studied in this paper, including optimal power
and/or rate allocations among data streams. A compact closed-
form solution is obtained for the case of two transmit antennas
and necessary optimality conditions are found for the general
case. The optimal rate allocation is shown to have a major
impact (stronger streams are detected last) while the optimal
power allocation does not alter the original Foschini ordering
(stronger streams are detected first). A sub-optimal ordering is
proposed based on the necessary optimality conditions, which
performs very close to the optimal one but has much smaller
computational complexity. An SNR gain of ordering is introduced
and studied. All the results also apply to a multiple-access channel
under successive interference cancelation.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) communication

architecture has been widely adopted by the academia and

industry due to its high spectral efficiency unattainable by con-

ventional techniques [1]. To reduce its processing complexity,

Vertical Bell Labs Layered Space-Time (V-BLAST) was pro-

posed by Foschini [2] as a low-complexity architecture that is

able to achieve a substantial portion of the total MIMO channel

capacity given that the multipath environment is rich enough

and capacity-approaching temporal codes (e.g. LDPC, turbo

or polar codes) are used for each data stream. Its key steps

are interference cancelation from already detected symbols

(i.e. successive interference cancelation (SIC)), interference

nulling from yet-to-be-detected symbols (either zero-forcing

or MMSE), and an optimal ordering of the detection sequence

(to optimize the performance). Note that the V-BLAST archi-

tecture requires less complexity at the transmitter and also less

feedback as compared to the SVD-based transmission, and the

complexity burden is essentially shifted towards the receiver1.

While its analysis becomes feasible without the optimal

ordering procedure [3], the latter posses significant problem for

the analysis and only the two Tx antennas case has been fully

settled [4][5]. Thus, unordered V-BLAST became popular, also

because its smaller complexity. Since its performance may be

not satisfactory in some cases, various optimization techniques

have been proposed (e.g. optimal power and/or rate allocation

among data streams) [7]-[10], which can be considered as an
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alternative to a computationally-demanding optimal ordering

procedure. Indeed, the optimal ordering requires m! orderings

to be compared in the general case, where m is the number

of Tx antennas, which can be prohibitively complex for large

m and real-time implementation. Thus, various sub-optimal

orderings have been proposed [5][8].

While Foschini et al [2] has found the optimal ordering

for the essentially uncoded system and uniform power/rate

allocation (stronger streams are detected first), no analytical

solution is known to date for coded V-BLAST (also including

optimal power/rate allocation) and the only remaining option

is a brute force approach (comparing all m! orderings numer-

ically). In the present paper, we partially settle this issue by

providing an analytical solution for the (most practical) m = 2
case of coded V-BLAST, including optimal power and/or rate

allocations. In the general case of m > 2, we provide compact

necessary optimality conditions, which depend on the channel

matrix only (SNR and other system parameters-independent)

and can be used to rule out most of the possible m! com-

binations so that the brute-force approach can be applied

to a much-smaller set and thus becomes practically-feasible.

These conditions provide a number of insights into the optimal

ordering procedure and its properties which cannot be obtained

numerically. Based on the necessary optimality conditions, we

propose a sub-optimal ordering which performs very close

to the optimal one and yet has much smaller computational

complexity. The suboptimal and optimal orderings coincide

for m = 2. To quantify the impact of optimal ordering, an

SNR gain of ordering is introduced and studied.

The major insight from this study is that the optimal rate

allocation among data streams has a much more pronounced

impact on the optimal ordering (stronger streams are detected

last) as opposed to the optimal power allocation, which does

not alter the original Foschini ordering (stronger streams are

detected first), regardless of whether temporal coding is used

or not.

Finally, we mention that the V-BLAST system architecture

naturally represents the multiple-access channel (MAC) (i.e.

an uplink of a cellular system) under successive interference

cancelation so that all our results (including optimal user

detection order) also apply to such setting, where multiple

Tx antennas represent different users.

II. SYSTEM MODEL

The standard discrete-time MIMO channel model is

r = HΛq+ ξ =
∑m

i=1
hi

√
αiqi + ξi (1)
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where q = [q1, q2, ..., qm]T and r = [r1, r2, ..., rn]
T are the

transmitted and received signal vectors respectively, H =
[h1..hm] is the n × m channel matrix (n Rx and m Tx an-

tennas, n ≥ m) representing the complex channel gains from

each transmit to each receive antenna, and hi is its i-th column.

H is assumed to be constant for a sufficiently long period of

time so that the standard infinite-horizon information theory

assumption holds; ξ is the circularly symmetric additive white

Gaussian noise vector with i.i.d. entries i.e. ξ ∼ CN(0, σ2
0I).

Λ is a diagonal matrix whose entries are
√
αi and αi represents

the normalized power allocation to i-th stream.

After the interference cancellation and nulling steps, for a

given ordering, the equivalent scalar channel of the i-th stream

is [9][10],

ri = |hi⊥|
√
αiqi + ξi (2)

where ri is the i-th component of r, hi⊥ is the projection of

hi onto the sub-space orthogonal to that spanned by yet-to-

be-detected streams , i.e. hi⊥⊥{hi+1, ...,hm}, |h| is the Eu-

clidean norm (length) of vector h. Assuming that each stream

employs a capacity-achieving temporal code (this models well

practical codes operating very close to the capacity, e.g. LDPC,

turbo or polar codes [11]), this stream can support a target rate

R up to its instantaneous capacity given by

Ci = ln(1 + |hi⊥|2 αiγ0) [nat/s/Hz] (3)

where γ0 = 1
/

σ2
0 is the average SNR at each Rx antenna. The

total system capacity C (this includes the channel as well as

the transmission and reception strategy) depends on the power

and rate allocation strategy [9][10].

For simplicity of exposition , we consider first the uniform

power allocation, αi = 1. When the uniform rate/power

allocation (URA) is used, i.e. all streams transmit at the same

target rate, the system capacity is limited by the weakest

stream so that

CURA = mmin
i

Ci = ln
(

1 + min
i

|hi⊥|2 γ0
)

(4)

When the optimal instantaneous rate allocation (IRA) is used,

i.e. the rate of each stream is adjusted to match its capacity

Ci, the system capacity is

CIRA =

m
∑

i=1

Ci (5)

This two strategies can be further combined with the instanta-

neous power allocation to maximize the system capacity [10].

We note that this system model also applies to a multiple-

access channel (MAC), where different streams represent

difference users (i.e. an uplink of a cellular system).

To further improve the system performance, the stream

detection order can be optimized to maximize the system

capacity. Let π = {k1, k2, ..., km} represents the detection

order where stream k1 is detected first etc. All the capacities

above then become the functions of the detection order.

Changing the detection order is equivalent to swapping the

columns of the channel matrix H so that the re-ordered matrix

is Hπ = [hk1
..hkm

]

Below, we consider an optimal ordering strategy for each

of the power/rate allocation strategies. It turns out that it is

the rate allocation strategy that affects the optimal detection

ordering most. To make the analysis tractable, we consider

first the case of 2 Tx antennas, and generalize the results later

to the m > 2 case.

III. OPTIMUM ORDERING UNDER THE IRA

Under the IRA, the per-stream rates are adjusted to match

the per-stream capacities with uniform power allocation. The

optimum detection ordering maximizes the instantaneous sum

capacity of the system,

π∗ = argmax
π

CIRA (π) = argmax
π

∑m

i=1
Ci (π) (6)

where C (π) and Ci(π) = ln(1 + |hki⊥|2 γ0) are the total

system capacity and the per-stream capacity as functions of

the detection ordering π, and hki⊥ is the projection of hki

orthogonal to {hki+1
..hkm

}.

For m = 2, the optimum detection order is as follows.

Proposition 1: The optimum detection ordering for the

coded V-BLAST with two Tx and n Rx antennas under the

IRA is to detect the strongest stream (with highest unprojected

channel gain) last,

π∗ = argmax
π

∑2

i=1
Ci (π) = {1, 2} iff |h1| ≤ |h2| (7)

The “only if” part in (7) holds when h1, h2 are not orthogonal,

φ 6= π/2, where φ is the angle between them. When φ = π/2
and/or |h1| = |h2|, any ordering delivers the same system

capacity.

Proof: First observe that when h1, h2 are orthogonal or/and

of equal length, any ordering delivers the same system ca-

pacity. Therefore, we have to consider only the case when

φ 6= π/2 and |h1| 6= |h2|. Assuming |h1| < |h2|, it is straight-

forward to see, after some manipulations, that π∗ = {1, 2} by

comparing it with π = {2, 1}. The “only if” part is proved in

the same way.

Note that this ordering is opposite of that of the uncoded

V-BLAST [2][4], which detects the strongest stream first. It

is also SNR and other system parameters-independent, since

it is based on the channel matrix only. Unfortunately, as

numerical observations indicate, this independence does not

hold anymore for larger systems (m > 2), where, in general,

the optimal ordering is SNR-dependent.

However, using the same reasoning as in Proposition 1, a

necessary optimality condition can be formulated for any m.

Proposition 2: Given that hki−1⊥ and hki⊥ are non-

orthogonal to each other, an optimum channel ordering π∗ =
{k1, k2, ..., km} must satisfy the following necessary condi-

tions:
∣

∣hki−1⊥

∣

∣ ≤ |hki⊥| ∀ 2 ≤ i ≤ m (8)

where hki−1⊥ and hki⊥ are the projections of vectors

hki−1
and hki

orthogonal to the sub-space spanned by

{hki+1
, ...hkm

}. If some hki−1⊥ and hki⊥ are of equal length

and/or orthogonal to each other, any ordering among them is

optimum.
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Three important conclusions follow from the necessary

optimality conditions:

* Given that all hki⊥ are of different length and non-

orthogonal to each other, swapping two consecutive columns

for a given order that meets the necessary optimality conditions

results in a lower system capacity.

* A channel matrix under the optimum detection ordering

will never contain the column with minimum norm at the last

position.

* A channel matrix under the optimum detection ordering

will never contain the column with maximum norm at the

second last position.

IV. OPTIMUM ORDERING UNDER THE URA

The coded V-BLAST with uniform power and rate allo-

cation among the data streams may be used to simplify the

system design. Since its system capacity is dominated by the

weakest stream [10], the optimum ordering is

π∗ = argmax
π

min
i

Ci (π) = argmax
π

min
i

|hki⊥ (π)|2 (9)

i.e. maximizes the weakest after-projection stream.

In the case of m = 2, this can be evaluated explicitly.

Proposition 3: The optimum detection ordering for the

coded V-BLAST with two Tx and n Rx antennas under the

URA is to detect the strongest (before-projection) stream first,

π∗ = argmax
π

min
i

Ci(π)

= {1, 2} iff |h1| ≥ |h2| for ∀φ 6= 0 (10)

The “only if” part in (10) holds if φ 6= π/2. If φ = π/2
and/or |h1| = |h2|, any ordering delivers the same capacity.

If φ = 0 , the system capacity is zero.

Note that this is in fact the Foschini ordering. Hence, unlike

the IRA, the power allocation strategy has no impact on the

optimal ordering, even when coding is used.

V. OPTIMUM ORDERING UNDER THE IPA

Let us now consider the optimal instantaneous power allo-

cation (IPA) under the uniform rate allocation (e.g. different

streams make use of the same code/modulation format). From

[10], the system capacity under the IPA for a given ordering

π is given by

CIPA (π) = m ln (1 + g (π) γ0) if |hi⊥(π)| > 0 ∀i (11)

and 0 otherwise, where g (π) is the harmonic mean per-stream

power gain for a given ordering,

g (π) =

(

1

m

∑

i

|hi⊥(π)|−2

)−1

(12)

so that the optimum ordering is to maximize the harmonic

mean gain,

π∗ = argmax
π

g (π) (13)

Note that this holds for any m and is SNR-independent, as

opposed to the case of the IRA. For m = 2, one obtains:

Proposition 4: The optimum detection ordering for the

coded V-BLAST with two Tx and n Rx antennas under the

IPA (and uniform rate allocation) is to detect the strongest

stream first (i.e. the Foschini ordering),

π∗ = argmax
π

g (π) = {1, 2} iff |h1| ≥ |h2| ∀φ 6= 0 (14)

The “only if” part in (14) holds when φ 6= π/2. If φ = π/2
and/or |h1| = |h2|, any ordering delivers the same capacity.

Proof: follows by comparing the harmonic mean gains for

the two orderings.

Observe that this ordering is the same as for the URA under

the uniform power allocation. Thus, we conclude that, for m =
2, power allocation does not affect the ordering, only the rate

allocation does.

VI. OPTIMUM ORDERING UNDER THE IPRA

It was demonstrated in [10] that, for a given ordering, the

well-known water-filling (WF) algorithm does not maximize

(in general) the system capacity of the coded V-BLAST via

optimum power/rate allocation (IPRA) (due to the successive

interference cancellation) and a new algorithm was proposed,

the fractional water-filling (FWF), which does so. Extensive

numerical simulations show that both algorithms dictate the

same optimal ordering. Since the WF is more amendable to

the analysis, we proceed with it in this section. The optimal

ordering can be formulated as follows:

π∗ = argmax
π

∑

i

ln(1 + α∗

i (π) |hki⊥|2 γ0) (15)

where the optimum power allocation α∗

i (π) is given by the

WF algorithm,

α∗

i (π) =

[

µ (π)− 1

γ0 |hki⊥|2

]

+

(16)

where [x]+ = max{x, 0}, µ(π) is the water level for a given

order π and is calculated from the total power constraint. In

the general case (any m), the problem is difficult due to the

fact that different ordering may result in different number of

active streams. However, if m = 2, either one or two streams

are active and the analysis becomes feasible. According to the

number of active streams, we consider three different SNR

regimes, exploiting well-known property of the WF algorithm:

while all streams are active at high SNR, only one is active at

low SNR.

• Low SNR regime: Both orderings have one active stream,

γ0 ≤ 1

2

∣

∣

∣

∣

1

g1
− 1

g2β

∣

∣

∣

∣

(17)

where gi = |hi|2 and sin2 φ = β, and we assume, without

loss of generality, that g1 ≤ g2.

• High SNR regime: Both orderings have two active

streams.

γ0 >
1

2

(

1

g1β
− 1

g2

)

(18)
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• Intermediate SNR regime: The optimum ordering has one

active stream and the suboptimum has two active streams

when the SNR is between the bounds in (17) and (18).

The case of one active stream for the sub-optimal two active

streams for the optimal ordering never takes place. Regardless

of the SNR regime, the optimal ordering can be characterized

as follows.

Proposition 5: The optimum detection ordering for the

coded V-BLAST with two Tx and n Rx antennas under the

IPRA via the WF is to detect the strongest stream last,

π∗ = argmax
π

2
∑

i=1

ln(1 + α∗

i (π)|hki⊥|2γ0)

= {1, 2} iff |h1| ≤ |h2| (19)

The “only if” part in (19) holds when φ 6= π/2. If φ = π/2
and/or |h1| = |h2|, any ordering delivers the same system

capacity.

Proof: Comparison of the system capacities in the three

different SNR regimes above under the two ordering results,

after some lengthy manipulations, in this ordering.

It is a remarkable fact that, whether uniform or optimal

power allocation is used, optimal rate allocation always results

in the inverse ordering as in (19). This re-enforces our earlier

conclusion that it is the rate allocation that is critical for

optimal ordering, with power allocation playing no significant

role. This conclusion is especially important for the MAC

channel, where different users are likely to have different rates.

VII. SNR GAIN OF ORDERING

To quantify the impact of optimal ordering, we introduce an

SNR gain of ordering, which compares the optimally-ordered

and unordered systems. We focus on the analytically-tractable

case of two Tx antennas and the IPRA via the WF.

The SNR gain G of ordering is defined as the difference

in SNR required by the unordered V-BLAST to achieve the

same capacity as the optimally ordered i.e.

Cπ∗(γ0) = C(Gγ0) (20)

where Cπ∗(γ0) and C(Gγ0) are the system capacities with

and without optimal ordering.

As in previous sections, the analysis for two Tx antennas

will be divided into three SNR regimes: low, intermediate and

high. Without loss of generality and following (19), we assume

that g1 ≤ g2.

Proposition 6: The SNR gain of the optimum ordering

procedure in the low SNR regime as in (17) is given by:

G = min

[

1

β
,
g2
g1

]

, (21)

at high SNR as in (18) by

G = 1 +
(1− β) (g2 − g1)

2g1g2βγ0
(22)

and at intermediate SNR by

G =
1

γ0

(
√

1 + 2g2γ0
g1g2β

− g2β + g1
2g1g2β

)

(23)

0.3 2.3

0.4 1.5

−� �
= � �

−� �
H

Fig. 1. The SNR gain of ordering vs. SNR (numerical and analytical) for
the 2× 2 system and given H; m∗ is the number of active streams for both
orderings. The low and intermediate SNR regimes are the largest beneficiaries.

Proof: Follows from the definition (20) after some manipula-

tions and using the optimal ordering in (19).

The SNR gain of ordering is illustrated in Fig. 1. Some

conclusions follow from Proposition 6:

∗ If g1 = g2 (the per-stream SNRs are equal) and/or β = 1
(h1 and h2 are orthogonal), there is no gain (both orderings

offer the same capacity) at any SNR.

∗ In the low SNR regime, the gain is SNR-independent, and

it is an increasing function of g2/g1 and decreasing in β.

∗ In the high SNR regime and for fixed g1, g2 and β, G is

decreasing in SNR. For fixed g1, g2 and γ0, it is decreasing

in β. For fixed g2, β and γ0, it is decreasing in g1.

Based on the gain behavior in the low and high SNR regimes

above, we arrive at the following conjecture.

Conjecture: At any SNR, G is bounded as follows,

1 ≤ G ≤ min

[

1

β
,
g2
g1

]

(24)

Note: This conjecture is suggested by the low and high SNR

regimes. However, since G (γ) may exhibit a non-monotonic

behavior in the intermediate SNR regime, we do not have a

complete proof of this result at the moment.

Fig. 1 shows the SNR gain of ordering (numerical and

analytical) vs. SNR for the 2 × 2 coded V-BLAST system

under the IPRA (via WF) for a fixed channel realization H.

Note that the SNR gain is a decreasing function of the SNR, so

that there is no much advantage from the optimal ordering at

high SNR. In the low SNR regime, the SNR gain is highest and

is SNR-independent when both ordering employ only 1 active

stream. In the intermediate SNR regime, the gain decreases

with the SNR but is still considerable, while it becomes low

at high SNR. Thus, we conclude that the major advantage of

the optimal ordering is at low SNR, i.e. precisely when it is

needed. It can be further proved that G → 1 as γ0 → ∞ for

any m.
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VIII. AN INVERSE ORDERING

Since optimal ordering can be computationally demanding

for m > 2, we consider a suboptimal ordering that perform

very close to the optimum one (either under IRA or IPRA) in

this section.

A key idea for a sub-optimal ordering is to satisfy the

necessary optimality conditions in Proposition 2 by following

the same principle as in the Foschini ordering in [2] but in

the inverse direction, i.e. strongest streams are detected last

(while in the Foschini ordering, strongest streams are detected

first), which we term ”inverse ordering”. The algorithm is as

follows:

1) Select the largest |hi|; the corresponding stream is

detected last: km = argmaxi |hi|.
2) Select the second largest |hi⊥km

|; the correspond-

ing stream is detected second last: km−1 =
argmaxi |hi⊥km

|.
3) Repeat step 2 until finish (always projecting orthog-

onally to already selected streams). The sub-optimal

ordering is π = {k1...km}.

Note that this ordering always satisfies the necessary optimal-

ity condition in Proposition 2 (and hence “sub-optimal”). The

inverse ordering is a SNR-independent strategy (since it is

based on H only) and thus cannot be optimal in general, since,

from numerical experiments, the optimum detection ordering

is SNR-dependent for m ≥ 3. However, as illustrated in

Fig.2-3, this ordering performs very close to the optimum

one either under the IRA or the IPRA. Furthermore, its

computational complexity is greatly reduced compared to the

optimal ordering: while the latter compares all m! possible

orderings, the former compares only m(m+1)/2−1 orderings,

most of which are in sub-spaces of reduced dimension (< m),
i.e. a significant advantage for large m.

Fig. 2 compares various ordering strategies in terms of

the outage probability in i.i.d. Rayleigh-fading channel. The

optimality of Foschini ordering under the URA is clearly

observed. It can also be seen that the inverse ordering under

the IRA is almost optimum. Finally, the better performance of

the ordered systems as compared to the unordered detection

is evident.

The performance of the inverse and Foschini orderings are

evaluated under the WF and the IPA respectively in Fig. 3. It

can be seen that both orderings are almost optimum for each

respective case.
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