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Abstract—The compound MIMO Gaussian wiretap channel is
studied, where the channel to the legitimate receiver is known
and the eavesdropper channel is not known to the transmitter
but is known to have a bounded spectral norm (channel gain).
The compound secrecy capacity is established without the de-
gradedness assumption and the optimal signaling is identified:
the compound capacity equals the worst-case channel capacity
thus establishing the saddle-point property, the optimal signaling
is Gaussian and on the eigenvectors of the legitimate channel and
the worst-case eavesdropper is isotropic. The eigenmode power
allocation somewhat resembles the standard water-filling but is
not identical to it.

I. INTRODUCTION

The nature of the wireless medium makes wireless com-
munication systems inherently vulnerable for eavesdropping.
In this context, the concept of information theoretic security
is instrumental since it solely uses the physical properties of
the wireless channel in order to establish security. Information
theoretic security was initiated by Shannon [1] and studied
later by Wyner, who introduced the now-popular wiretap chan-
nel [2] modeling the simplest scenario involving security with
one legitimate transmitter-receiver pair and one wiretapper
(eavesdropper) to be kept secret. There is currently a growing
interest in information theoretic security, see e.g. [3, 4].

Since spatial multiple-input multiple-output (MIMO) tech-
niques can improve the performance significantly [5], MIMO
architectures have been identified as indispensable for future
wireless systems. Accordingly, investigation of information
theoretic security for MIMO systems is becoming more and
more attractive. The secrecy capacity of the MIMO Gaussian
wiretap channel is established in [6–9], where it turns out
that Gaussian signaling is optimal. Subsequently, the optimal
transmit covariance matrix has then been found under the
matrix power constraint in [10] and under the total power
constraint for a number of special cases [6, 7, 11, 12].

Due to the dynamic nature of the wireless medium, but also
due to implementation issues, practical systems always suffer
from channel uncertainty and estimation/feedback inaccuracy.
Thus, the provision of accurate channel state information
(CSI) to the transmitter is a major challenge for wireless
communication systems. Along with this, it is hardly possible
to expect that the eavesdropper will share its channel with the
transmitter to make the eavesdropping harder, which makes

the perfect eavesdropper CSI model more than questionable.
A reasonable and well-accepted approach is to assume that
the exact realization is not known; it is only known that it
remains fixed during the whole transmission and that it belongs
to a known set of channels, which results in the concept of
compound channels [13, 14]. The compound wiretap channel
is studied in [15, 16] for discrete memoryless and in [15, 17,
18] for MIMO Gaussian channels. The special case where the
sets of channels are finite and where further the eavesdropper
channel is a degraded version of the legitimate channel is
addressed in [15, 17]. Interference alignment for the compound
MIMO wiretap channel is presented in [18]. The compound
BC with confidential messages is studied in [19].

To accommodate the channel uncertainty issues, we study
here the compound MIMO Gaussian wiretap channel model,
where the legitimate channel is perfectly known and the
eavesdropper channel is not known to the transmitter but is
known to have a bounded spectral norm (maximum channel
gain), both being fixed during the whole transmission duration.
This represents a quasi-static scenario where the eavesdropper
cannot approach the transmitter closer than a certain protection
distance so that its channel gain is bounded (due to the
propagation path loss) but is unconstrained otherwise. This
automatically implies only a minimal eavesdropper CSI at the
transmitter, which reflects well the natural eavesdropper desire
to be confidential. We make no assumptions of degradedness
and establish the secrecy capacity of this compound channel.

This is accomplished in two main steps. First, we consider
the corresponding discrete memoryless compound wiretap
channel in Section II. For this channel model, first results
are obtained in [16], but only for the special case of finite
uncertainty sets. Built on these results we establish an achiev-
able secrecy rate for this channel for the more general case
of bounded but uncountable uncertainty sets. Then, we use
this to obtain the corresponding result for MIMO Gaussian
channels in Section III. Here, we obtain first the worst-case
capacity (i.e. the capacity of the worst-case channel in the
set). Then, we establish the saddle-point property of the form
max min = min max, where the maximization is over the
transmit covariance and minimization is over the eavesdropper
channel. Combining the achievable secrecy rate with the
saddle-point property, we establish the secrecy capacity of the



compound channel, which equals the worst-case capacity, so
that a code designed for the worst-case channel also works
over the whole class of channels. The optimal signaling is
Gaussian and on the eigenvectors of the legitimate channel,
with power allocation somewhat similar but not identical to the
regular water-filling. The worst-case eavesdropper is isotropic
with the maximum allowed channel gain.

II. COMPOUND WIRETAP CHANNEL

Let X and Y , Z be finite input and output sets and
S , T be arbitrary but bounded uncertainty sets. Then the
communication links to the legitimate receiver and the wire-
tapper are given by Ws : X × S → P(Y), s ∈ S, and
Vt : X × T → P(Z), t ∈ T , respectively, where P(·)
denotes the set of all probability distributions. For fixed s ∈ S,
t ∈ T , and input and output sequences xn ∈ Xn and
yn ∈ Yn, zn ∈ Zn of block length n, the discrete memoryless
channels are given by Wn

s (yn|xn) :=
∏n
i=1Ws(yi|xi) and

V nt (zn|xn) :=
∏n
i=1 Vt(zi|xi).

Definition 1: The discrete memoryless compound wiretap
channel W is given by

W :=
{

(Ws, Vt) : s ∈ S, t ∈ T
}
.

Definition 2: An (n, Jn)-code Cn for the compound wiretap
channel consists of a stochastic encoder at the transmitter

E : Jn → P(Xn),

i.e., a stochastic matrix, with a set of messages Jn :=
{1, ..., Jn} and a decoder at the legitimate receiver described
by a collection of disjoint decoding sets

{Dj ⊂ Yn : j ∈ Jn
}
.

Then for an (n, Jn)-code Cn, the maximum probability of
decoding error at the legitimate receiver is given by

en := max
s∈S

max
j∈Jn

∑
xn∈Xn

Wn
s (Dcj |xn)E(xn|j). (1)

To keep the transmitted message secret from the non-
legitimate eavesdropper for all channel realizations t ∈ T ,
we require

max
t∈T

1

n
I(J ;Znt ) ≤ εn (2)

for some εn > 0 with J the random variable uni-
formly distributed over the set of messages Jn and Znt =
[Zt,1, Zt,2, ..., Zt,n] the channel output at the wiretapper for
channel realization t ∈ T .

Definition 3: A non-negative number Rc is an achievable
secrecy rate if for all δ > 0 there is an n(δ) ∈ N and a
sequence of (n, Jn)-codes {Cn}n∈N such that for all n ≥ n(δ)
we have

1

n
log Jn ≥ Rc − δ

and
max
t∈T

1

n
I(J ;Znt ) ≤ εn

while en → 0 and εn → 0 as n→∞. The secrecy capacity Cc
of the compound wiretap channel W is given by the supremum
of all achievable secrecy rates Rc.

A. Finite Compound Wiretap Channel

The discrete memoryless compound wiretap channel for the
special case of finite uncertainty sets S and T is studied in [15,
16]. In particular, we have the following achievable secrecy
rate in [16, Theorem 2].

Theorem 1 ([16]): For the secrecy capacity Cc of the com-
pound wiretap channel W we have

Cc ≥ max
PX∈P(X )

(
min
s∈S

I(X;Ys)−max
t∈T

I(X;Zt)
)

(3)

where the random variables Ys and Zt denote the outputs of
the corresponding channels Ws and Vt, s ∈ S, t ∈ T .

In particular, in [16, Theorem 2] it is shown that the secrecy
rate given in (3) with maximum probability of error and
secrecy constraint of the form

en ≤ |S|1/42−nα (4)

and
max
t∈T

1

n
I(J ;Znt ) ≤ 2−nβ , (5)

for some α, β > 0, i.e., both criteria (1) and (2) decrease
exponentially fast for increasing block length n. Note that
in [16], Equation (5) is given without the division by n, but
clearly it also holds with the division. Here, |S| denotes the
cardinality of the set S.

To make this result usable for MIMO Gaussian channels,
we have to extend this result in two ways. First, we have
to carefully extend it from finite to arbitrary but bounded
uncertainty sets. Second, we have to take continuous alphabets
and corresponding probability density functions into account.
This is done in the following subsections.

B. Arbitrary Bounded Uncertainty Sets

In the following we outline how this result can be extended
to the more general case where the uncertainty sets S and T
may be uncountable but bounded.

To prove the desired result, we adapt the proof idea from
Blackwell, Breiman, and Thomasian [13] and approximate an
arbitrary, bounded compound wiretap channel by a suitable
chosen finite compound wiretap channel. To this end, we need
the following lemmas which are slightly adapted from [13].

Lemma 1: Let X and Y , Z be given. For every integer
L ≥ 2|Y|2|Z|2 there is a compound wiretap channel WL with
at most (L+1)|X ||Y||Z| elements such that for any Ws and Vt
from W there are channels W s and V t from WL such that
(a) |Ws(y|x)−W s(y|x)| ≤ |Y||Z|L and |Vt(z|x)−V t(z|x)| ≤

|Y||Z|
L for all x, y, z

(b) Ws(y|x) ≤ 2
2|Y|2|Z|2

L W s(y|x) and Vt(z|x) ≤
2

2|Y|2|Z|2
L V t(z|x) for all x, y, z

(c) For any input distribution PX ∈ P(X ), it holds
|I(X;Ys) − I(X;Y s)| ≤ 2|Y||Z|( |Y||Z|L )

1
2 and

|I(X;Zt)− I(X;Zt)| ≤ 2|Y||Z|( |Y||Z|L )
1
2 .

Proof: The proof is almost identical to [13, Lemma 4]
and is omitted for brevity.



Thus, we can approximate any given compound wiretap
channel W by a compound wiretap channel WL with finite
uncertainty sets S and T such that any channel in W is close
in several senses to one of the new channels in WL. The next
lemma shows that if there is a “good” code for a channel, then
this can be used for all channels in a certain neighborhood.

Lemma 2: Let Ws and W s be two channels and A a non-
negative number such that Ws(y|x) ≤ 2AW (y|x) for all x, y.
Then any (n, Jn)-code for W s is also an (n, Jn)-code for Ws

with en ≤ 2nAen.
Proof: The proof is almost identical to [13, Lemma 5]

and is omitted for brevity.
These two lemmas allow us to prove the desired result for

an arbitrary compound wiretap channel.
Theorem 2: For the secrecy capacity Cc of the compound

wiretap channel W we have

Cc ≥ max
PX∈P(X )

(
inf
s∈S

I(X;Ys)− sup
t∈T

I(X;Zt)
)

(6)

where the sets S and T can be arbitrary but bounded.
Proof: The proof is based on the previous Lemmas 1

and 2 and follows the idea of [13].
We start with an approximation of the arbitrary com-

pound wiretap channel W. To do so, we choose L ≥
max{ 2|Y|

2|Z|2
α , 2|Y|2|Z|2}. For each (Ws, Vt) from W we

select (W s, V t) according to Lemma 1 and denote the cor-
responding finite compound wiretap channel by WL and the
corresponding uncertainty sets by SL and TL.

Next, we check the reliability part. Since SL has at most
(L + 1)|X ||Y||Z| elements, we know from Theorem 1 that if
we choose for given input distribution the secrecy rate Rc ≤
mins∈S I(X;Y s)−maxt∈T I(X;Zt)− τ , τ > 0, then there
exists an (n, Jn)-code for WL with probability of error

ēn ≤ |SL|1/42−nα ≤ (L+ 1)(|X ||Y||Z|)/42−nα

since |SL| ≤ (L + 1)|X ||Y||Z|, cf. (4). For each Ws

from W there is a W s from WL such that Ws(y|x) ≤
2

2|Y|2|Z|2
L W s(y|x) for all x, y. Thus, Lemma 2 implies that

the code for WL is also a code for W with

en ≤ 2n
2|Y|2|Z|2

L ēn

≤ |SL|1/42−n(α−
2|Y|2|Z|2

L )

≤ (L+ 1)(|X ||Y||Z|)/42−n(α−
2|Y|2|Z|2

L ). (7)

Since L > 2|Y|2|Z|2
α , we have en → 0 as n→∞. This means

the code constructed for the approximated channel is also a
good code for the original channel. It remains to show that
this code also achieves the secrecy rate arbitrarily close to the
desired rate. From Lemma 1 we know that∣∣I(X;Ys)− I(X;Zt)−

(
I(X;Y s)− I(X;Zt)

)∣∣
≤ 4|Y||Z|

( |Y||Z|
L

)1/2
so that the difference can be made arbitrarily small by in-
creasing the approximation parameter L. Note that even for

increasing approximation parameter L, the probability of error
in (7) tends to zero for increasing block length since we have
an exponentially fast decreasing behavior.

Finally, we have to check that the secrecy constraint is
still satisfied. The code above for the approximated finite
compound wiretap channel has maxt∈TL

1
nI(X;ZL) ≤ 2−nβ ,

cf. Theorem 1 and (5). Again, from Lemma 1 we know that
|I(X;Zt)− I(X;Zt)| ≤ 2|Y||Z|( |Y||Z|L )1/2 so that

1

n
I(X;Zt) ≤

1

n

(
I(X;Zt) + 2|Y||Z|( |Y||Z|

L
)1/2

)
≤ 1

n

(
2−nβ + 2|Y||Z|( |Y||Z|

L
)1/2

)
.

Thus, also this difference becomes arbitrarily small for in-
creasing block length n ensuring the secrecy.

Remark 1: We want to highlight that an exponentially fast
decreasing behavior as given in (4) and (5) is indispensable
to extend the result to non-finite uncertainty sets. In addition,
the error due to the approximation can be made as small as
desired by further increasing the approximation parameter L.

This shows that the desired result hold also for arbitrary,
bounded, but possibly non-finite, compound wiretap channels.

C. Continuous Alphabets

Next we extend Theorem 2 to continuous alphabets X , Y ,
and Z . We assume that the random variables can be described
by probability density functions and that all mutual informa-
tion terms are calculated according to continuous alphabets.

Theorem 3: For the secrecy capacity Cc of the compound
wiretap channel W with continuous alphabets, we have

Cc ≥ max
PX∈P(X )

(
inf
s∈S

I(X;Ys)− sup
t∈T

I(X;Zt)
)

(8)

where the sets S and T can be arbitrary but bounded.
Sketch of Proof: The proof follows the lines of Theo-

rems 1 and 2, cf. also [16]. To extend the result to continuous
alphabets and channels, we follow the discretization procedure
or partitioning method as outlined in [20]; see [21] or [22]
respectively for a more detailed treatment.

We partition the continuous sets in such a way that we
end up with mutually disjoint events which cover the entire
space. Then, all mutual information terms are calculated
according to this partition. With increasing partitions, these
mutual information terms are non-decreasing and, thus, the
terms in (6) can be interpreted as the supremum taken over all
possible partitions. In more detail, for any εk > 0 we find for
continuous sets X , Y , and Z , partitions {Xk}KX

k , {Yk}KY
k ,

and {Zk}KZ
k with KX , KY , and KZ finite such that

I(X;Ys)− I(X;Zt)− εk
≤ I([X]k; [Ys]k)− I([X]k; [Zt]k)

≤ I(X;Ys)− I(X;Zt)

(9)

where [X]k, [Ys]k, and [Zt]k denote the random variables
defined on the partitions {Xk}KX

k , {Yk}KY
k , and {Zk}KZ

k .
Then, the whole encoding and decoding procedure as used

in the proofs of Theorems 1 and Theorem 2, cf. also [16],



is done according to this partition. Then, the analysis of
probability of error and the analysis of the secrecy criterion
for finite alphabets ensures that the rate

Rc ≤ max
PX∈P(X )

(
inf
s∈S

I([X]k; [Ys]k)− sup
s∈S

I([X]k; [Zt]k)
)

are achievable. Since εk in (9) can be made arbitrarily
small, any rate Rc ≤ maxPX∈P(X )

(
infs∈S I(X;Ys) −

sups∈S I(X;Zt)
)

is achievable for continuous alphabets as
well. Note that as the uncertainty sets are assumed to be
bounded, all terms are well defined also for continuous al-
phabets.

Having established that the achievable secrecy rate (6) holds
also for continuous alphabets and corresponding probability
density functions, i.e., channels, we are now in the position to
evaluate the expressions for MIMO Gaussian channels. This
is done in the next section.

III. MIMO GAUSSIAN CHANNEL

Let us now consider the MIMO Gaussian wiretap channel

y1 = H1x + ξ1, y2 = H2x + ξ2 (10)

where x = [x1, x2, ..., xm]T is the transmitted signal of
dimension m × 1, (·)T denotes transposition, y1(2) are the
signals at the legitimate receiver (eavesdropper), ξ1(2) is the
circularly-symmetric additive white Gaussian noise at the
receiver (eavesdropper) (normalized to unit variance in each
dimension), H1(2) is the n1(2)×m matrix of the complex chan-
nel gains between each Tx and each receive (eavesdropper)
antenna, n1(2) and m are the numbers of Rx (eavesdropper)
and Tx antennas respectively. The channels H1(2) are assumed
to be fixed (constant).

For this channel, the secrecy capacity subject to the total
average transmit power constraint is [6–9]

Cs = max
R≥0

ln
|I + W1R|
|I + W2R|

s.t. trR ≤ PT (11)

where PT is the total transmit power, R = E {xx+} is the
transmit covariance matrix, E {·} is statistical expectation,
Wi = H+

i Hi, (·)+ means Hermitian conjugation, and |W| is
the determinant of W.

It is well-known that the problem in (11) is not convex
in general and explicit solutions for the optimal transmit
covariance are not known for the general case, but only for
some special cases (e.g. low-SNR, MISO channels, or for the
full-rank case) [6–9, 11].

Let us now consider a compound MIMO Gaussian wiretap
channel where H1 is given (known to the transmitter) and H2

can be any (unknown) subject to the spectral norm constraint

|H2|2 = max
|x|=1

|H2x| ≤
√
ε or |W2|2 = λ1(W2) ≤ ε (12)

where |x| =
√

x+x is the Euclidean norm of x. Note
that |Hx| represents the channel (voltage) gain in transmit
direction x so that |H|2 is the largest channel gain. |W|2
represents the largest channel power gain. Thus, the set in (12)
limits the maximum gain of the eavesdropper channel without

putting any constraint on its eigenvectors. This represents the
physical scenario where the eavesdropper cannot approach the
transmitter beyond a certain minimum (protection) distance (so
that the channel gain is bounded due to propagation path loss)
being unconstrained otherwise.

The following proposition gives the capacity of the worst-
case channel in this set.

Proposition 1: Consider the MIMO Gaussian wiretap chan-
nel in (10) when W2 is any channel from the set in (12). Then,
the worst-case secrecy capacity is

Cw = min
W2

max
R

C(R,W2) = C∗(ε) (13)

where max and min are subject to the constraints R,W2 ≥
0, trR ≤ PT , |W2|2 ≤ ε,

C(R,W2) = ln
|I + W1R|
|I + W2R|

(14)

and

C∗(ε) = max
trR≤PT

C(R, εI) (15)

is the secure capacity for the isotropic eavesdropper W2w =
εI, which is the worst-case eavesdropper.

Proof: Follows from (11) and the facts that W2 ≤ εI
under (12) and that |I + WR| is monotonically increasing in
W, see e.g. [23].

It follows from Proposition 1 that the isotropic eavesdropper
is the worst-case one under a bounded channel gain. This is
also appealing from the channel feedback perspective: it is
hardly possible to expect that the eavesdropper will share its
channel with the transmitter to make eavesdropping harder, so
only minimal information can be expected by the transmitter
about the eavesdropper channel.

The expression C∗(ε) has been studied in details in [24].
The following proposition demonstrates the saddle-point

property for the class of channels in (12).
Proposition 2: Consider the MIMO Gaussian wiretap chan-

nel in (10) for the class of channels in (12) (and fixed W1).
Then the following saddle-point property holds:

max
R

min
W2

C(R,W2) = min
W2

max
R

C(R,W2) (16)

where max and min are subject to the constraints R,W2 ≥
0, trR ≤ PT , |W2|2 ≤ ε.

Proof: For the max-min part, observe that C(R,W2) ≥
C(R, εI) (which follows from the proof of Proposition 1), so
by taking max-min of both parts, one obtains

max
R

min
W2

C(R,W2) ≥ max
R

C(R, εI). (17)

On the other hand, by using W2 = εI instead of min, one
obtains

max
R

min
W2

C(R,W2) ≤ max
R

C(R, εI) (18)

so that

max
R

min
W2

C(R,W2) = max
R

C(R, εI)

= min
W2

max
R

C(R,W2). (19)



This proves the desired saddle-point property.
The saddle-point property above is instrumental in estab-

lishing the secrecy capacity of the compound MIMO Gaussian
wiretap channel in (10) and (12) as the following result shows.

Theorem 4: Consider the compound MIMO Gaussian wire-
tap channel in (10), (12) (i.e. W1 is known while W2 is
unknown to the transmitter but is known to belong to the class
in (12)). The secrecy capacity Cc of this compound channel
is as follows:

Cc = max
R

min
W2

C(R,W2)

= min
W2

max
R

C(R,W2)

= C∗(ε), (20)

i.e., the capacity of the worst-case channel is also the (com-
pound) capacity of the class of channels (achievable by a single
code on the whole class). The worst-case channel is that of
the isotropic eavesdropper with the maximum allowed gain.
The optimal signaling is on the eigenmodes of the legitimate
channel,

R∗ = U1Λ
∗U+

1 , (21)

where the columns of unitary matrix U1 are the eigenvectors
of W1, diagonal matrix Λ = diag{λ∗i } collects the eigenval-
ues of R∗,

λ∗i =
ε+ gi
2εgi

(√
1 +

4εgi
(ε+ gi)2

(
gi − ε
λ
− 1

)
+

− 1

)
(22)

and λ > 0 is found from the total power constraint
∑
i λ
∗
i =

PT , gi = λi(W1), (x)+ = max{x, 0}.
Proof: Note first that

Cc ≤ min
W2

max
R

C(R,W2), (23)

i.e., the compound capacity cannot exceed the worst-case
capacity in the class. On the other hand, it follows from
Theorem 3 by evaluating (8) for MIMO Gaussian channels
as given in (10) that

Cc ≥ max
R

min
W2

C(R,W2) (24)

= min
W2

max
R

C(R,W2) (25)

where the equality is from Proposition 2. Combining the lower
and upper bounds, (20) follows. The optimal signaling and
C∗(ε) are as in [24].

Note that the optimal signaling directions that achieve the
compound capacity are the same as those for the regular
MIMO channel (no eavesdropper) but the power allocation is
somewhat different from the regular water-filling, even though
it shares many of its properties (see [24] for details).

IV. CONCLUSION

We established the secrecy capacity of the compound
MIMO Gaussian wiretap channel, where the channel to the
legitimate receiver is known and the eavesdropper channel is
not known but is known to have a bounded spectral norm. This

is in particular practically relevant, since it corresponds to the
realistic scenario, where only minimal CSI about the eaves-
dropper is available. It is only known that the eavesdropper’s
channel gain does not exceed a certain value corresponding
to the scenario that the eavesdropper cannot approach the
transmitter beyond a certain minimum protection distance.
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