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Abstract—Convexity properties of error rates of a class of
decoders, including the ML/min-distance one as a special case,
are studied for arbitrary constellations. Earlier results obtained
for the AWGN channel are extended to a wide class of (non-
Gaussian) noise densities, including unimodal and spherically-
invariant noise. Under these broad conditions, symbol error rates
are shown to be convex functions of the SNR in the high-SNR
regime with an explicitly-determined threshold, which depends
only on the constellation dimensionality and minimum distance,
thus enabling an application of the powerful tools of convex
optimization to such digital communication systems in a rigorous
way. It is the decreasing nature of the noise power density
around the decision region boundaries that insures the convexity
of symbol error rates in the general case. The known high/low
SNR bounds of the convexity/concavity regions are tightened and
no further improvement is shown to be possible in general.

I. INTRODUCTION

Convexity properties play a well-known and important role

in optimization problems [1], mainly due to two key reasons:

(i) it is essentially the class of convex problems that are

solvable numerically, and (ii) significant analytical insights are

available for this class, which cannot be said about the general

class of nonlinear problems.

In the world of digital communications, various types of

error rates often serve as objective or constraint functions

during optimization [2]-[3]. Therefore, their convexity prop-

erties are of considerable importance. While, in some simple

scenarios, the convexity can be established by inspection or

differentiation of corresponding closed-form error probability

expressions, this approach is not feasible not only in the gen-

eral case, but also in most cases of practical importance (e.g.

modulation combined with coding etc.), since such expressions

are either not known or prohibitively complex.

A general approach (i.e. not relying on particular closed-

form probability of error expressions) to convexity analysis

in binary detection problems has been developed in [4]. This

approach has been later extended to arbitrary multidimensional

constellations (which can also include coding) in [5]. In

particular, it has been shown that the symbol error rate (SER)

of the maximum-likelihood (ML) decoder operating in the

AWGN channel is always convex in SNR in dimensions

1 and 2, and also in higher dimensions at high SNR and
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concave at low SNR (with explicitly specified boundaries of

the high/low SNR regimes), for any modulation and coding.

Bit error rate (BER) has also been shown to be convex in the

high SNR regime [6], which fits the condition of vanishingly

small probability of error in the channel coding theorem [7].

These results have been also extended to fading channels

demonstrating that fading is never good in low dimensions.

In the present paper, the earlier results in [5]-[7] are

expanded in several directions, including an extension to a

class of decoders and a wide class of noise densities, as

well as tightening the earlier high/low SNR bounds of the

convexity/concavity regions.

While the utility of the Gaussian noise model is well-

known, there are a number of scenarios where it is not

adequate, most notably an impulsive noise [8]-[12] with tails

much heavier than Gaussian. To address this, an important

and natural generalization of the Gaussian random process

has been developed, namely, the spherically-invariant random

process (SIRP). It has found a wide range of applications in

communications, information-theoretic and signal processing

areas [9]-[11]. While the marginal PDF of a SIRP may be

significantly different from Gaussian, this class of processes

shares a number of important theoretical properties with the

Gaussian process: it is closed under linear transformations, it

is the most general class of processes for which the optimal

MMSE estimator is linear, and the optimal (ML) decoding

is still the minimum distance one [9]-[11]. The present paper

will extend this list to include the convexity properties of SER

under a SIRP noise, which turn out to be similar to those in

the AWGN channel. In addition, a general class of unimodal

noise power densities will be considered and conditions on an

arbitrary noise density will be formulated under which the SER

is convex. In particular, the SER is convex in the SNR provided

that the noise power density is decreasing around the decision

region boundaries, regardless of its behavior elsewhere. It is

convex at high SNR under a unimodal or a SIRP noise, and

it is always convex (for any SNR) in low dimensions under

SIRP noise. Similar results can also be obtained for convexity

in signal amplitude and noise power (which are important for

an equalizer design and a jammer optimization) and extended

to fading channels and correlated noise.

The main contributions are as follows:

• New tighter high/low SNR bounds of the convex-

ity/concavity regions are obtained and it is demonstrated that

no further improvement is possible in the general case.

• While the earlier results in [5]-[7] were established for the

ML (min-distance) decoders only, the same results are shown
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to apply to any decoder with center-convex decision regions,

of which the min-distance one is a special case.

• While the earlier results were established for the AWGN

channel only, the present paper deals with a wide class of noise

densities (e.g. generic unimodal, SIRP etc.). In particular, the

SER is shown to be convex at high SNR for this wider class

as well; the SER turns out to be convex in low dimensions not

only for the Gaussian, but also for an arbitrary SIRP noise. The

constellation dimensionality and minimum distance appear as

the main factors affecting the convexity properties.

II. SYSTEM MODEL

The standard baseband discrete-time system model in an

additive noise channel, which includes matched filtering and

sampling, is

r = s+ ξ (1)

where s and r are n-dimensional vectors representing trans-

mitted and received symbols respectively, s ∈ {s1, s2, ..., sM},

a set of M constellation points, ξ is an additive white noise.

Several general noise models will be considered, including the

AWGN as a special case, for which ξ ∼ N (0, σ2
0I), where σ2

0

is the noise variance per dimension, and n is the constellation

dimensionality; lower case bold letters denote vectors, bold

capitals denote matrices, xi denotes i-th component of x, |x|
denotes L2 norm of x, |x| =

√
xTx, where the superscript T

denotes transpose, xi denotes i-th vector. The average (over

the constellation points) SNR is defined as γ = 1/σ2
0 , which

implies the appropriate normalization, 1
M

∑M

i=1 |si|
2

= 1,

unless indicated otherwise.

In addition to the maximum likelihood decoder (demodu-

lator/detector), which is equivalent to the minimum distance

one in the AWGN and some other channels [10][11],

ŝ = argmin
si

|r− si| ,

a general class of decoders with center-convex decision regions

(see Definition 1 and Fig. 1) will be considered, for which the

min-distance one is a special case. The probability of symbol

error Pei given that s = si was transmitted is

Pei = Pr [ ŝ 6= si| s = si] = 1− Pci (2)

where Pci is the probability of correct decision, and the SER

averaged over all constellation points is

Pe =
∑M

i=1
Pei Pr [s = si] = 1− Pc (3)

where Pc is the overall probability of correct decision. Clearly,

Pei and Pci possess the opposite convexity properties. Pei can

be expressed as

Pei = 1−
∫

Ωi

fξ(x)dx (4)

where Ωi is the decision region (Voronoi region), and si

corresponds to x = 0, i.e. the origin is shifted for convenience

to the constellation point si. For the min-distance decoder, Ωi

can be expressed as a convex polyhedron [1].

Note that the setup and error rate expressions we are using

are general enough to apply to arbitrary multi-dimensional

constellations, including coding (codewords are considered

as points of an extended constellation). We now proceed to

convexity properties of error rates in this general setting.

III. CONVEXITY OF SYMBOL ERROR RATES

Convexity properties of symbol error rates of the ML

decoder in SNR and noise power have been established in

[5] for arbitrary constellation/coding under ML decoding and

AWGN noise and are summarized in Theorem 1 below for

completeness and comparison purposes.

Theorem 1 (Theorems 1 and 2 in [5]): Consider the ML

decoder operating in the AWGN channel. Its SER Pe(γ) is

a convex function of the SNR γ for any constellation/coding

if n ≤ 2,

d2Pe(γ)/dγ
2 = Pe(γ)

′′ ≥ 0 (5)

For n > 2, the following convexity properties hold:

* Pe is convex in the high SNR regime,

γ ≥ (n+
√
2n)/d2min (6)

where dmin = mini{dmin,i} is the minimum distance from a

constellation point to the boundary of its decision region over

the whole constellation, and dmin,i is the minimum distance

from si to its decision region boundary,

* Pe is concave in the low SNR regime,

γ ≤ (n−
√
2n)/d2max (7)

where dmax = maxi{dmax,i}, and dmax,i is the maximum

distance from si to its decision region boundary,

* there are an odd number of inflection points, Pe(γ)
′′ = 0,

in the intermediate SNR regime,

(n−
√
2n)/d2max ≤ γ ≤ (n+

√
2n)/d2min (8)

A. Convexity in SNR/Signal Power

Since the high/low SNR bounds in Theorem 1 are only suffi-

cient for the corresponding property, a question arises whether

they can be further improved. Theorem 2 provides such an

improvement and demonstrates that no further improvement

is possible.

Theorem 2: Consider the ML decoder operating in the

AWGN channel. Its SER Pe(γ) has the following convexity

properties: it is convex in the high SNR regime,

γ ≥ (n− 2)/d2min (9)

it is concave in the low SNR regime,

γ ≤ (n− 2)/d2max (10)

and there are an odd number of inflection points in-between.

The high/low SNR bounds cannot be further improved without

further assumptions on the constellation geometry.

Proof: A key idea of the proof is to use the same

technique as in [5] but in the spherical rather than Cartesian

coordinates. The possibility of no further improvement is

demonstrated via a constellation with all spherical decision
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Fig. 1. Center-convex decision region Ωi centered on the (given) si.

regions, which achieve the equality in the bounds above. See

[15] for details.

Note that the high/low SNR bounds in Theorem 2 are tighter

than those in Theorem 1, since

n−
√
2n < n− 2 < n+

√
2n for n > 2.

Convexity of the SER for n ≤ 2 is also obvious from this

Theorem. In the case of identical spherical decision regions,

a more definite statement can be made.

Corollary 2.1: Consider the case of Theorem 2 when all

decision regions are spheres of the same radius d. The follow-

ing holds:

• The SER is strictly convex in γ in the high SNR regime:

Pe(γ)
′′ > 0 if γ > (n− 2)/d2

• It is strictly concave in the low SNR regime:

Pi(γ)
′′ < 0 if γ < (n− 2)/d2

• There is a single inflection point:

Pe(γ)
′′ = 0 iff γ = (n− 2)/d2

Note that this result cannot be obtained from Theorem 1

directly, as the bounds there are not tight. It also follows

from this Corollary that the high/low SNR bounds of Theorem

2 cannot be further improved in general (without further

assumptions on the constellation geometry).

The results above are not limited to the AWGN channel but

can also be extended to a wide class of noise densities and

a class of decoders, as Theorem 3 below demonstrates. We

will need the following definition generalizing the concept of

a convex region.

Definition 1: A decision region is center-convex if a line

segment connecting any of its points to a (given) center also

belongs to the region (i.e. any point can be ”seen” from the

center).

Note that any convex region is automatically center-convex

but the converse is not necessarily true, so that ML/min-

distance decoders are a special case of a generic decoder

with center-convex decision regions. As an example, Fig. 1

illustrates such a decision region, which is clearly not convex.

To generalize the results above to a wide class of noise

densities, we transform the Cartesian noise density fξ(x) into

the spherical coordinates (p, θ), where θ = {θ1, .., θn−1} are

the angles and p represents the normalized noise instant power

|ξ|2/σ2
0 , and the new density is f(p, θ) (see [13][10] for more

on spherical coordinates and corresponding transformations).

We are now in a position to generalize Theorem 2 to a

wide class of noise densities and the class of center-convex

decoders.

Theorem 3: Consider a decoder with center-convex deci-

sion regions operating in an additive noise channel of arbitrary

density f(p, θ). The following holds:

Pe(γ)
′′ ≥ 0 if f ′

p(p, θ) ≤ 0 ∀θ, p ∈ [γd2min, γd
2
max], (11)

where f ′

p(p, θ) = ∂f(p, θ)/∂p. In particular, Pe(γ) is convex

in the interval [γ1, γ2] if the noise density f(p, θ) is non-

increasing in p in the interval [γ1d
2
min, γ2d

2
max]:

Pe(γ)
′′ ≥ 0 ∀γ ∈ [γ1, γ2] (12)

if f ′

p(p, θ) ≤ 0 ∀θ, p ∈ [γ1d
2
min, γ2d

2
max],

Proof: Follows along the same lines as that of Theorem

2 by performing the integration in (4) in spherical coordinates

and setting γ = 1/σ2
0 so that decision region boundaries are

independent of the SNR [15].

Note that it is the (non-increasing) behavior of the noise

power density in the annulus [γ1d
2
min, γ2d

2
max], i.e. around

the boundaries of decision regions, that is responsible for

the convexity of Pe(γ); the behavior of the noise density

elsewhere is irrelevant.

The inequalities in (11) and (12) can be reversed to obtain

the corresponding concavity properties. The strict convexity

properties can also be established by considering decoders

with decision regions of non-zero measure in the correspond-

ing SNR intervals. Convexity of individual SER Pei can be

obtained via the substitution dmin(max) → dmin,i(max,i). It is

also straightforward to see that Theorem 2 is a special case of

Theorem 3.

Let us now consider more special cases of Theorem 3.

Corollary 3.1: Consider a decoder with center-convex de-

cision regions operating in an additive noise channel of a

unimodal noise power density1,

f ′

p(p, θ)











> 0, p < p∗

= 0, p = p∗

< 0, p > p∗
(13)

i.e. it has only one maximum at p = p∗; it is an increasing

function on one side and decreasing on the other. Its SER is

convex at high and concave at low SNR:
{

Pe(γ)
′′ > 0, γ > p∗/d2min

Pe(γ)
′′ < 0, γ < p∗/d2max

(14)

Corollary 3.2: Consider the case of monotonically-

decreasing (in p) noise power density, f ′

p(p, θ) < 0 ∀p, θ.

Then, the SER is always convex: Pe(γ)
′′ > 0 ∀γ.

Since the Gaussian noise power density is unimodal with

p∗ = max{n − 2, 0}, Corollary 3.1 applies to the AWGN

channel as well, thereby generalizing Theorem 2 to decoders

1which is also quasi-concave; many popular probability density functions
are unimodal [1].
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Fig. 2. The power density of Gaussian noise: while it is monotonically
decreasing for n = 1, 2 and ∀p, it is unimodal for n ≥ 3.

with center-convex decision regions. The AWGN for n = 1, 2
is also a special case of Corollary 3.2. These Corollaries allow

one to answer the question ”Why is the SER in the AWGN

channel always convex for n = 1, 2 but not for n ≥ 3?” -

the reason is the monotonically decreasing (in p) nature of the

noise power density f(p, θ) for any p in the former but not

the latter case, see Fig. 2.

Other examples of unimodal densities include Laplacian,

power exponential or Weibull distributions [11][14]. In fact,

it was shown that Weibull distribution can be presented as

a mixture of normal distributions, where the variance of a

normal distribution is treated as a random variable with an

α-stable distribution. This fits well into a typical model of

interference in random wireless networks, where the interfer-

ence distribution also follows an α-stable law [12]: each node

transmits a Gaussian signal of a fixed transmit power; at the

receiver, the noise power coming from each node is random

and follows an α-stable law, so that the composite noise instant

power follows the power exponential distribution.

B. Convexity of SER under SIRP noise

In this section, we consider an additive noise channel when

the noise distribution follows that of a SIRP, which found

a wide range of applications [9]-[11]. The characterization

of the SIRP class is strikingly simple: any SIRP process

is conditionally Gaussian, i.e. a Gaussian random process

whose variance is a random variable independent of it. In the

context of wireless communications, this structure represents

such important phenomena as channel fading, random distance

between transmitter and receiver, etc. Below, we establish the

SER convexity properties under a SIRP noise, thus generaliz-

ing further the results of the previous section.

The following is one of the several equivalent definitions of

a SIRP [9][10].

Definition 2: A random process {X(t), t ∈ R} is a SIRP if

a vector of any of its n samples x = {X(t1), X(t2)..X(tn)}
has the PDF of the following form:

fx(x) = cnhn(x
T
C

−1
n x) (15)

where Cn is the covariance matrix, hn(r) is a non-negative

function of the scalar argument r ≥ 0, and cn is a normalizing

constant. 2

In fact, Definition 2 says that the PDF of SIRP samples

depends only on the quadratic form x
T
C

−1
n x rather than on

each entry individually, so that any linear combinations of

the entries of x having the same variance will also have the

same PDF. Distributions of the functional form as in (15) are

also known as elliptically-contoured distributions [13]. The

characterization of SIRP is as follows (the SIRP representation

theorem) [9][10].

Theorem 4: A random process is a SIRP iff any set of its

samples has a PDF as in (15) with

hn(r) =

∫

∞

0

σ−n exp
{

− r

2σ2

}

f(σ)dσ, 0 < r < ∞, (16)

where hn(r) is defined by continuity at r = 0, and f(σ) is

any univariate PDF.

An equivalent representation is X(t) = CY (t), where Y (t)
is the Gaussian random process of unit variance, and C is an

independent random variable of PDF f(σ), so that Theorem 4

basically says that any SIRP can be obtained by modulating the

Gaussian random process by an independent random variable.

A number of PDFs that satisfy Theorem 4 and corresponding

f(σ) can be found in [11] (which include Laplacian and power

exponential densities above).

It was shown in [11] that the optimal decoder under the

SIRP noise is still the minimum distance one (which follows

from the fact that hn(r) in (16) is monotonically decreasing

in r). Using this, we are now in a position to establish the

SER convexity properties under SIRP noise with C = I.

Theorem 5: Consider an additive SIRP noise channel,

where the noise density is as in (15) and (16) with C = I.

Assume that f(σ) in (16) has bounded support: f(σ) = 0 ∀σ /∈
[σ1, σ2]. Then, the SER of any decoder with center-convex

decision regions operating in this channel is convex at high

and concave at low SNR as follows:

Pe(ps)
′′ ≥ 0 if ps ≥ (n− 2)σ2

2/d
2
min (17)

Pe(ps)
′′ ≤ 0 if ps ≤ (n− 2)σ2

1/d
2
max (18)

where ps is the signal power, and dmin(max) is the minimum

(maximum) distance in the normalized constellation (corre-

sponding to ps = 1).

Proof: Follows along the same steps as that of Theorem

3 using the representation in (16) [15].

Note that the high/low SNR bounds are independent of a

particular form of f(σ), but depend only on the corresponding

boundaries of its support set. A particular utility of this

Theorem is due to the fact that closed-form expressions of

Pe(ps) are not available in most cases so its convexity cannot

be evaluated directly. The following Corollary is immediate.

Corollary 5.1: Consider a decoder with center-convex de-

cision regions operating in the SIRP noise channel as in

2An equivalent definition in terms of the characteristic function is also
possible. Note also that not any hn(r) will do the job, but only those satisfying
the Kolmogorov consistency condition [9][10].
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Theorem 5 without the bounded support assumption. Its SER

Pe(ps) is always convex when n ≤ 2: Pe(ps)
′′ ≥ 0 ∀ps.

Thus, the SER is convex in low dimensions for all the

noise densities in Table I in [11] (i.e. contaminated normal,

generalized Laplace, Cauchy and Gaussian), which extends the

corresponding result in Theorem 1 to a generic SIRP noise.

C. Convexity in Signal Amplitude

Convexity of the SER as a function of signal amplitude A =√
γ, Pe(A), is also important for some optimization problems

(e.g. an equalizer design). For the ML decoder operating in

the AWGN channel those properties have been established in

[5]. The next Theorem provides tighter high/low SNR bounds

than those in [5], which cannot be further improved in general,

and also extends the result to any decoder with center-convex

decision regions. Due to the page limit, we skip the proofs

and refer the reader to [15].

Theorem 6: Consider a decoder with center-convex deci-

sion regions operating in the AWGN channel. Its SER Pei(A)
as a function of signal amplitude A has the following convexity

properties for any n:

• The SER is convex in A in the large SNR regime:

Pei(A)
′′ ≥ 0 if A ≥

√
n− 1/dmin,i

• It is concave in the small SNR regime

Pei(A)
′′ ≤ 0 if A ≤

√
n− 1/dmax,i

• There are an odd number of inflection points in-between.

• The bounds cannot be further tightened in general (with-

out further assumptions on the constellation geometry).

The convexity of Pei(A) for n = 1 and any A follows

automatically from this Theorem, in addition to the following.

Corollary 6.1: Consider the case of Theorem 6 when all

decision regions are the spheres of same radius d. The follow-

ing holds:

• The SER is strictly convex in A in the large SNR regime:

Pe(A)
′′ > 0 if A >

√
n− 1/d

• It is strictly concave in the small SNR regime:

Pe(A)
′′ < 0 if A <

√
n− 1/d

• There is a single inflection point:

Pe(A)
′′ = 0 if A =

√
n− 1/d

Theorem 6 can also be extended to a wide class of noise

densities following the same approach as in Theorem 3.

Theorem 7: Consider a decoder with center-convex deci-

sion regions operating in an additive noise channel of arbitrary

density f(r, θ), where r represents the normalized noise

amplitude |ξ|/σ0. The SER Pe(A) is convex in A in the

interval [A1, A2] if the noise density f(r, θ) is non-increasing

in r in the interval [A1dmin, A2dmax]:

Pe(A)
′′ ≥ 0 ∀A ∈ [A1, A2] (19)

if f ′

r(r, θ) ≤ 0 ∀θ, r ∈ [A1dmin, A2dmax]

For the case of a SIRP noise as in Theorem 5, one obtains

the following.

Theorem 8: Consider an additive SIRP noise channel with

the density as in (15), (16) and C = I. Assume that f(σ) has

bounded support: f(σ) = 0 ∀σ /∈ [σ1, σ2]. Then, the SER of

any decoder with center-convex decision regions operating in

this channel is convex at high SNR and concave at low SNR

as a function of signal amplitude A:

Pe(A)
′′ ≥ 0 if A ≥ σ2

√
n− 1/dmin (20)

Pe(A)
′′ ≤ 0 if A ≤ σ1

√
n− 1/dmax (21)

where dmin(max) is the minimum (maximum) distance of the

normalized constellation (i.e. the one that corresponds to A =
1).

The following is immediate.

Corollary 8.1: Consider the scenario in Theorem 8 for n =
1. The SER is always convex in A: Pe(A)

′′ ≥ 0 ∀A.

D. Extension to Correlated Noise and Fading

Finally, we note that all the results can also be extended to

correlated/non-i.i.d. noise via the sufficient statistics approach

and a whitening filter, and to fading channels using the same

approach as in [5].
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