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On the Compound Capacity of a Class of MIMO
Channels Subject to Normed Uncertainty
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Abstract—The compound capacity of uncertain multiple-input
multiple-output channels is considered, when the channel is
modeled by a class described by a (known) nominal channel
and a constrained-norm (unknown) uncertainty. Within this
framework, two types of classes are investigated with additive and
multiplicative uncertainties subject to a spectral norm constraint,
using the singular value decomposition and related singular
value inequalities as the main tools. The compound capacity is
a maxmin mutual information, representing the capacity of the
class, in which the minimization is done over the class of channels
while the maximization is done over the transmit covariance.
Closed-form solutions for the compound capacity of the classes
are obtained and several properties related to transmit and
receive eigenvectors are presented. It is shown that, under cer-
tain conditions, the compound capacity of the class is equal to the
worst-case channel capacity, thus establishing a saddle-point prop-
erty. Explicit closed-form solutions are given for the worst-case
channel uncertainty and the capacity-achieving transmit co-
variance matrix: the best transmission strategy achieving the
compound capacity is a multiple beamforming on the nominal
(known) channel eigenmodes with the beam power distribution
via the water filling at a degraded SNR. As the uncertainty
increases, fewer eigenmodes are used until only the strongest
one remains active so that transmit beamforming is an optimal
robust transmission strategy in this large-uncertainty regime, for
which explicit conditions are given. Using these results, upper and
lower bounds of the compound capacity are constructed for other
bounded uncertainties and some generic properties are pointed
out. The results are extended to compound multiple-access and
broadcast channels. In all considered cases, the price to pay for
channel uncertainty is an SNR loss (or, equivalently, the nominal
channel degradation) commensurate with the uncertainty set
radius measured by the spectral norm and the optimal signaling
strategy is the transmission on the degraded nominal channel.

Index Terms—Broadcast channel (BC), channel uncertainty,
compound channel, multiple-input multiple-output (MIMO)
capacity, multiple-access channel (MAC), optimum transmission,
saddle point.

I. INTRODUCTION

S INCE the pioneering work of the authors in [1] and [2],
multiple-input multiple-output (MIMO) wireless systems

have attracted a significant attention due to a promise of high
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spectral efficiency. A lot of research activities have been concen-
trated on both the information-theoretic limits (e.g., capacity)
and practical transmission schemes to approach those limits [3].
Performance of such transmission schemes depends heavily on
channel state information (CSI) available at the receiver (Rx)/
transmitter (Tx) or both. In addition, channel knowledge, ei-
ther complete or partial, and its accuracy affect also the channel
capacity [11]. In wireless systems, imperfect CSI may be due
to time-varying nature of the channel as well as due to limita-
tions of the estimation technique and feedback channel [12]. A
number of models have been developed to take into account such
effects [11], [12], but most of them were not specifically tailored
for MIMO systems. A concise review of recent results on the
impact of imperfect CSI on MIMO system performance can be
found in [15]. The models of channel with imperfect CSI can be
classified into statistical (when the true channel is considered to
be random with given mean and covariance) and deterministic
(when the channel is deterministic (fixed), but only known to be-
long to a certain class, i.e., compound channel [11]) [15]. Deter-
ministic channel uncertainty models have been used to evaluate
the performance of zero-forcing precoding and detection tech-
niques [13], of orthogonal space-time block codes [14], and to
evaluate the compound capacity of uncertain rank-one (Ricean)
MIMO channels [15].

In this paper, we introduce uncertainty models for the channel
matrix based on an induced (spectral) norm constraint, since for
practical purposes the spectral norm of the channel matrix has
the interpretation of the maximum input/output transfer gain.
Following this framework, we develop generic (e.g., any rank)
multiplicative and additive channel uncertainty models with
the spectral norm constraint specifically tailored for MIMO
capacity analysis. In our approach, we follow the ideas of com-
pound channel capacity pioneered in [4]–[6]; a comprehensive
review of more recent research activities can be found in [11]
and a code construction achieving the compound capacity can
be found in [20]. We consider an MIMO channel matrix
as consisting of two parts: the nominal channel , which is
known at both the Tx and Rx, and the uncertainty (perturbation)

, which is not known, so that ,
where is a known (bounded) class of channels; both
and are assumed to be fixed during the transmission
interval, while is unknown at both the Tx and Rx ends.
Unlike previous work, the size of is measured by the
spectral norm, which is an induced norm. This is fundamentally
different from the trace norm considered in [15], which is
equivalent to a Frobenius norm that is not an induced norm
and, thus, does not posses a number of important properties of
the latter (see Section II-A for details). Furthermore, while the
analysis in [15] was limited to a rank-one nominal channel, we
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consider arbitrary-rank nominal channels. Following [4]–[6],
[11], we consider two types of problems: 1) the capacity of the
worst-case channel in the class and 2) the capacity of the class
of channels also known as the compound channel capacity [11]
that is achievable by a single code on any channel in the class.
The former is formulated as a minimax optimization problem
while the later is formulated as a maxmin optimization. Via
explicit evaluation of these two capacities, we demonstrate
that, for both the multiplicative and additive uncertainty models
under the spectral norm constraint, the saddle point property
holds: the capacity of the class equals to the worst-case channel
capacity. Additionally, we give explicit expressions for the
optimum (capacity-achieving) covariance of the Tx signal
and the worst-case uncertainty of the channel, both of which
depend only on the nominal channel and the radius of the
uncertainty set. In all the cases considered, the best transmit
strategy is multiple beamforming on the nominal channel (one
beam per each active eigenmode of the nominal channel) plus
water-filling power allocation among the beams at the degraded
SNR level (reduced according to the uncertainty set radius),
i.e., signaling on the degraded nominal channel, and the worst
channel perturbation is “antiparallel” to the nominal channel
(i.e., each singular vector of the worst channel perturbation
is the corresponding singular vector of the nominal channel
times a negative scalar). The effect of uncertainty with bounded
spectral norm is shown to be equivalent to an SNR loss (in
terms of the total SNR for the multiplicative uncertainty and
the per-eigenmode SNR for the additive uncertainty). Based
on these results, we propose an adaptive transmission strategy
that takes into account the “size” of channel variations. As the
uncertainty increases, fewer eigenmodes are used until only
one remains active. In this large-uncertainty regime, for which
explicit conditions are given, the optimal robust transmission
strategy is beamforming on the strongest eigenmode of the
nominal channel.

Using the fact that any two norms are equivalent, we construct
upper and lower bounds of the compound capacity under other
normed or bounded channel uncertainties and point out some
generic properties. In Sections VI and VII, single-user results
are extended to multiple-access channel (MAC) and broadcast
channel (BC).

A similar uncertainty model has been also considered in [16]
and [17], where, however, a solution was obtained when the un-
certainty was limited to the singular values of the channel only
(no uncertainty in singular vectors, see e.g., [17, Th. 3.3]), which
is unlikely from the physical perspective: random perturbations
of the channel due to e.g., mobility or measurement error are
likely to affect both the singular values and the singular vec-
tors. Our results, here, are more general as they do not limit
uncertainty to the singular values only. In particular, it follows
from our Theorems 3 and 4 that [17, Th. 3.3] also applies to this
generic setting.

In a related line of work, Vorobyov et al. [30] and Lorenz and
Boyd [31] consider an uncertain single-input multiple-output
channel and obtain, based on worst-case SNR optimization, a
robust receive beamformer, which turns out to be equivalent to
the classical Capon beamformer with diagonal loading [32]. An
extension of this work to an uncertain MIMO channel subject

to the trace and spectral norm constraints are robust transmit/re-
ceive beamformers obtained in [33] and [35], which also max-
imize the worst-case received SNR. Note, however, that max-
imizing the total received SNR in an MIMO channel is not
equivalent in general to maximizing the mutual information, and
hence, those designs are not optimal from the information-the-
oretic perspective, i.e., when the transmission rate is of con-
cern. In this paper, we give explicit conditions (of the large
uncertainty regime) when such robust beamformers are infor-
mation-theoretic optimal. Generic conditions for the optimality
of beamforming in terms of the ergodic capacity in an MIMO
channel with limited/imperfect feedback have been obtained in
[34].

Finally, we would like to point out that the problem we
are studying here is not a convex or quasiconvex one, so
that standard tools like the Von Neumann minimax the-
orem [18] or Lagrange multiplier technique with associated
Karush–Kuhn–Tucker (KKT) conditions [19] cannot be used
to find the optimum solution and a new technique has to be
developed. Our approach is based on the singular value decom-
position (SVD) and associated singular value inequalities for
products and sums of two matrices.

II. UNCERTAIN CHANNEL MODEL

Let us consider the following baseband discrete-time MIMO
channel model:

(1)

where and
are the vectors repre-

senting the Tx and Rx symbols, respectively, “ ” denotes
transposition, is the
matrix of the complex channel gains between each Tx and
each Rx antenna, where denotes th column of , and
are the numbers of Rx and Tx antennas, respectively; without
loss of generality, we further assume ; is the vector of
circularly symmetric additive white Gaussian noise (AWGN),
which is independent and identically distributed (i.i.d.) in
each receiver1. The channel is assumed to be quasistatic (i.e.,
constant for a sufficiently long period of time so that the infinite
horizon information theory assumption holds) and frequency
flat, with partial CSI at the Rx and Tx ends, as described in
the following.

A. Multiplicative Uncertainty

We consider first the multiplicative channel uncertainty
model

(2)

where is the nominal channel (without uncertainty) known
at the Tx end and, possibly, at the Rx end (the Rx CSI is known
to have no effect on the capacity of quasi-static channels [10],
since the receiver can always learn the channel via a training
sequence), and is the multiplicative uncertainty. We

1the case of unequal noise power per Rx can also be considered within the
present framework.
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assume , and hence , belong to a limited uncertainty set (i.e.,
limited measurement error2)

(3)

where is the multiplicative uncertainty set, is the th
singular value of , is the th left singular
vector, is the th right singular vector, the singular values are
ordered as , and
is the vector length squared, where denotes Hermitian conju-
gation. Using (2) and (3), the norm of the channel uncertainty

can be bounded as .
A multiplicative channel uncertainty may be due to a calibra-
tion inaccuracy or the dynamic nature of the channel (when the
scattering environment changes after the channel estimation has
been done).

The use of the spectral norm as a measure of uncertainty has
a number of advantages.

1) From the input ( –output ( point of view, is the
highest gain input (transmitting) direction while is
the highest gain observing (receiving) direction, and the
highest gain is .

2) It is the only unitary-invariant3 vector-induced4 norm [7].
Unitary invariance represents the fact that errors in mea-
surements are statistically equal in all directions, i.e., no
preferred direction or bias.

3) It lower bounds any unitary-invariant matrix norm (in-
cluding Frobenius) (see [8, Corollary 5.6.35]) and, thus,
gives the largest uncertainty set for any unitary-in-
variant matrix norm. It is also an indicator of the strongest
eigenmode of the uncertainty.

4) For a unit energy Rx signal coming from the nom-
inal channel, , the spectral norm of
limits the energy in the uncertain part of the Rx signal,

, so that the power ratio of uncertain
and certain portions of the Rx signal is upper bounded by

.
5) If the uncertain part of the Rx signal is modeled as

AWGN, then the corresponding degradation in SNR can
be easily evaluated and the new degraded SNR is not
less than , where is the SNR in the
nominal channel. In this model, the effect of uncertainty
can be neglected if , which immedi-
ately gives a rough idea as to how good the channel
estimation should be: Under the model in (2) and (3),

, where
is the th singular value of . Combining the last two

2If the limit � � � is not set, the worst-case capacity becomes zero.
3A norm ��� is unitary invariant if ����� � ��� for any matrix � and

any unitary matrices���. Any unitary-invariant matrix norm is a function of
its singular values only and is independent of the singular vectors [7].

4A matrix norm ��� is induced by vector norm ���� if ��� �
��� ����� for any matrix � [8]. For example, the spectral norm
��� is induced by Euclidean vector norm ��� (the vector length) according to
(3).

inequalities, , i.e., the nor-
malized uncertainty in the channel singular values should
be much less than for its effect to be negligible.

B. Additive Uncertainty

In this model, the nominal channel experiences an addi-
tive perturbation

(4)

where we also assume that , and hence , belong to a lim-
ited uncertainty set

(5)

where is the additive uncertainty set. Similarly to multiplica-
tive uncertainty, the spectral norm bound in (5) can be inter-
preted in terms of the uncertain signal power, the corresponding
degradation in SNR and the condition for its negligible effect
can be evaluated. An additive uncertainty mimics the additive
noise and may be caused by its presence (i.e., limited SNR avail-
able for the channel estimation).

We note that the additive and multiplicative uncertainty
models are related, albeit in a nonsymmetric way: for any
multiplicative uncertainty , there exists an equivalent additive
uncertainty ; the converse is not always true:
for given additive uncertainty , there exists an equivalent
multiplicative uncertainty if and only if the system of linear
equations has a solution, i.e., if the rows of the
uncertainty are in the row space of the nominal channel

.

III. CAPACITY OF MIMO CHANNELS

For fixed channel and given covariance of the Tx vector
signal , where denotes expectation of , the mutual
information between and when is Gaussian (i.e., capacity-
achieving) is given by the celebrated Foschini–Telatar formula

(6)

where is the SNR per antenna, are singular values
of , and, due to the total Tx power constraint,

, where the equality provides the maximum mutual informa-
tion. If no CSI is available at the Tx end, the popular choice is

. When CSI is available at the Tx end, the capacity can
be found as

(7)

The maximum in (7) has a well-known water-filling solution [2]

(8)
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where

(9)

is the th eigenvalue of the best (maximizing) covariance matrix
, if and 0 otherwise,

is the index of active modes, and the constant is found from
the total power constraint, .

IV. COMPOUND CAPACITY OF A CLASS OF MIMO CHANNELS

WITH UNCERTAINTY

We consider in the following the capacity of channels with
uncertainty models in (2)–(5). Following the framework devel-
oped in [4]–[6], we distinguish between the capacity
of the worst-case channel and the capacity of the class
of channels (compound capacity) in

(10)

(11)

Note that the compound capacity of the class is achiev-
able using a single (universal) code on any channel in the class
[4], [6] (i.e., there exists a code such that the decoding error
tends to zero uniformly over the class of channels) so that there
is no need to know what particular channel is currently in ef-
fect. On the other hand, the worst-case capacity is an appropriate
characteristic of an adaptive system, which selects an individual
code for each channel realization (so that accurate channel es-
timation is essential for the latter). In general, the following in-
equality holds [4]–[6]:

(12)

i.e., the compound capacity of a class is never higher than
the worst-case channel capacity. In the following, we obtain
stronger results for the uncertainty models in (2) and (4).

A. Multiplicative Uncertainty

The capacities in (10) and (11) can be characterized in a
simple way, using the following Lemma.

Lemma 1: For given , the worst-case mutual information
in (6) for the class of channels in (2) and (3) is

(13)

i.e., the multiplicative uncertainty in (2) and (3) results in rela-
tive SNR loss compared to the nominal channel case,
for any covariance .

Proof: Using the following singular value inequalities [7]

(14)

where , ,
together with (2) and (3) results in the lower bound on the mutual

information

(15)

The worst-case channel perturbation , which achieves the
lower bound in (15), is of the form

(16)

where , and the columns of are the left
singular vectors of , which can be found from
its SVD, . Hence, (13) follows since the in-
equality in (15) holds with equality under (16).

Theorem 1: The compound capacity of the class of channels
in (3) is

(17)

and

(18)
is the best (i.e., capacity-achieving) covariance matrix,

(19)

are the eigenvalues of (i.e., the optimum power allocation
to the eigenmodes via water filling); is
the index set of active modes; the constant is found from the
total power constraint ; the columns of are
right singular vectors of the nominal channel found from its
SVD [7], [9]

(20)

where the columns of are the left singular vectors of ,
and the diagonal entries of are its singular values. Under
the best covariance in (18), the worst-case channel perturbation
(achieving the minimum in takes the form

(21)

where , so that the worst-case channel is
, i.e., the degraded nominal channel.

Proof: Combining the minimum mutual information in
(13) with the water-filling solution in (8) results in (17). It is
straightforward to see that (18) and (21) achieve the maxmin
capacity in (17).

Similarly to (13), the effect of channel uncertainty in this
maxmin problem is the SNR loss of . For example, a
3 dB loss occurs when , i.e., 30% inac-
curacy in the channel knowledge, and the condition for a neg-
ligible effect of uncertainty is . Note that the best Tx
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strategy in Theorem 1 is the transmission on the degraded nom-
inal channel , i.e., multiple beamforming on the right
singular vectors of the nominal channel with the power distri-
bution among the beams given by the water-filling algorithm
applied to or, equivalently, to the nominal channel

at the degraded SNR . Under this strategy, the
worst channel perturbation in (21) is antiparallel of the nom-
inal channel, i.e., its singular vectors are antiparallel to those of
the nominal channel and its singular values are of the maximum
allowed amplitude. The intuition behind this result is that the
jammer (uncertainty) tries to reduce the channel singular values
as much as possible (since the capacity is a monotonically in-
creasing function of the singular values) and (17) is the best it
can achieve (using (21)), under the best Tx strategy.

It follows from (19) that increasing the uncertainty radius
results in fewer modes being used for the transmission until only
the strongest mode remains active, which occurs when

(22)

and the transmit beamforming becomes the optimal strategy
in this large-uncertainty regime. One further concludes that
transmit beamforming is always the optimal robust strategy for
rank-one nominal channel.

If the transmitter is not allowed to use nonuniform power al-
location among the beams5, i.e., if ,
then and

Thus, the nonuniform power allocation is essential in achieving
the capacity of the class of channels.

Theorem 2: For the class of channels in (2) and (3), the ca-
pacity of the class equals to the worst-case channel capacity (the
minimax and maxmin solutions are the same)

(23)

so that there is a saddle point in for any admissible
and ,

(24)

where is the worst channel in the class; the
worst perturbation is as in (21) and the best covariance
is as in (18).

Proof:

(25)

5for example, due to the practical constrain of using the same fixed-power
amplifiers.

where follows from the water-filling solution in (8), and
follows from the singular-value inequalities in (14). The

equality is achieved by as in (21), and thus,
(23) follows. The saddle-point property in (24) follows from
(23) via [18, Corollary 9.16] (in our context, this corollary states
that (24) follows from (23) and vice-versa).

It follows from Theorem 2 that there exists a single code that
achieves the capacity of the worst-case channel on any channel
in the uncertainty class. Theorem 2 says in fact that in the matrix
game between the transmitter ( and the jammer ( there is
an optimum strategy for both players and each get penalized if
it deviates from this strategy, provided that the other follows it.
It also follows that the knowledge of does not help the trans-
mitter to increase the capacity provided the jammer follows the
best (i.e., capacity-minimizing) strategy, i.e., the optimization
of for the worst ( and true ( channels give the same
capacity under the best jamming strategy (see (15); this is rem-
iniscent of the no-uncertainty case where the Rx CSI does not
increase the capacity of quasi-static channels [10]).

As a side remark, we note that a direct application of Von
Neumann minimax theorem (see e.g., [18]) to prove (23) is not
possible here since is neither convex nor quasiconvex
in . Using the Lagrange multiplier techniques to solve this
problem (e.g., as in [17]) encounters the same difficulty: since
the problem is not convex, the KKT conditions are not sufficient
for optimality [19].

B. Additive Uncertainty

The results of the previous section need some modifications
to be adapted to the additive uncertainty model in (4) and (5),
which is done in the following.

Theorem 3: The capacity of the worst-case channel in the
class in (4) and (5) is

(26)

where the summation is over , and

(27)

are the eigenvalues of the capacity-achieving covariance matrix
given by

(28)

i.e., its eigenvectors are the right singular vectors of the nominal
channel , and the “water level” is found from the total
power constraint . The worst-case channel is

(29)
where is the worst-case perturbation
and is the diagonal matrix of its
singular values. Equation (26) implies that for any admissible
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,

(30)

Proof: The max part is as in (8); applying the singular
value inequalities in (14) to it results in the lower bound on

equal to the right-hand side of (26), which is achieved
by the worst-case channel in (29) with the best covariance ma-
trix as in (28) and its eigenvalues as in (27). Since

and achieves the maximum in (26), (30) follows.

Note that the worst channel perturbation in (29) is “antipar-
allel” to the nominal channel, so that its singular values are re-
duced most. The best covariance has the same structure as in
(18), i.e., multibeamforming on the right singular vectors of the
nominal channel with water filling in (27) applied to the gains

of the degraded nominal channel.

Theorem 4: The capacity of the class of channels in (4) and
(5) is upper bounded by the capacity of the worst-case channel

(31)

The equality is achieved

(32)

so that there is a saddle point in for any admissible
and ,

(33)

when at least one of the following conditions hold.
4.1. The SNR is low, .
4.2. The SNR is high

where is the rank of the worst-case channel in (29),
, also equal to the number of active eigen-

modes at high SNR, , so that ,
, (weaker singular values do not

contribute anything to the compound capacity).
4.3. The nominal channel has identical nonzero singular
values, .
4.4. The nominal channel rank is not greater than 2,

. In particular, this holds when the number
of antennas at least in one end does not exceed 2, ,
or/and .

In all cases, the worst channel and the best Tx covariance
(achieving min and max, respectively, in are as in
Theorem 3.

Proof: See the Appendix.

Thus, there exists a single code that achieves the worst-case
channel capacity for any channel in the uncertainty class
under conditions of Theorem 4. Neither the transmitter (
nor the jammer ( can deviate from the optimal strategy
without incurring a loss. This result parallels one for the
multiplicative uncertainty case. It can also be seen that the
effect of uncertainty is to reduce each eigenmode gain from

to , i.e., an SNR loss on each eigen-
mode individually, so that the degraded nominal channel is

. Unlike the case of multiplicative
uncertainty model, the SNR loss effect cannot be expressed
solely in terms of the aggregate SNR . Only sufficiently strong
eigenmodes are used by the optimal transmission strategy

(34)

and weaker ones do not contribute anything to the compound ca-
pacity, so that the effect of uncertainty is to make certain eigen-
modes unusable (if . At high SNR, “only if” in (34)
becomes “if and only if.” As a side remark, we note that when

, all the eigenmodes in (34) receive the same power
and the rest is not used, and when , only the strongest
eigenmode is used. Thus, the low-SNR behavior is the same
as without uncertainty, and the high-SNR one makes use of a
smaller number of eigenmodes (recall that all nonzero eigen-
modes are used at high SNR in the channel without uncertainty),
which is different from the multiplicative uncertainty in The-
orem 2, where all nonzero eigenmodes are used at high SNR.

When the uncertainty radius increases, the water filling in
Theorems 3 and 4 will use fewer and fewer modes until only the
strongest mode of the nominal channel remains active6, which
occurs when

(35)

and the transmit beamforming becomes the optimal robust
strategy in this large-uncertainty regime. Under this condition,
the results in [35] are optimal from the information-theoretic
perspective. Note that, unlike (22), (35) holds for any SNR
when , and also for any when the nominal
channel is of rank one (so that the results in [30] and [31] are
also optimal from the information-theoretic perspective).

A possible condition for the negligible effect of uncertainty
is that , but it may be too conservative as small
singular values may contribute little to the capacity. Further note
that, in order to achieve the optimum, the transmitter needs to
know only (but not , since and the
knowledge of does not increase the capacity.

Remark 1: In general, the worst-case channel is not unique
(but the compound capacity is). Indeed,
when allocates zero power to certain signaling subspace,

may take arbitrary values on that subspace without af-
fecting the capacity. Specifically, can be represented as

(36)

where is the index set of active eigen-
modes and is th right singular vector of the nominal channel

, so that the SVD of the generic worst-case channel pertur-
bation is

(37)

6In this sense, increasing uncertainty is equivalent to increasing dispersion of
the eigenmodes, making some of them unusable.
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where is the complement of , is th left singular vector
of the nominal channel , and take arbitrary values (
are the singular values of corresponding to signaling di-
rections with zero power; (29) corresponds to . Indeed

(38)

where

(39)

so that the capacity is not affected by .
Let us compare the performance of the best transmission

strategy in Theorem 4 to that of the isotropic signaling with
uniform power allocation across transmitters7, i.e., when

, which achieves the following mutual information on
the compound channel:

(40)

where is the worst-case channel rank ( ). At
low SNR, this becomes

(41)

which should be contrasted with the optimal signaling in The-
orem 4.1 (only the strongest eigenmode is active at low SNR),
which is

(42)

and the SNR loss factor is

(43)

i.e., there is no SNR loss for isotropic signaling only when the
worst-case channel is of full rank and its singular values are
identical; otherwise, the isotropic signaling is strictly subop-
timal. At sufficiently high SNR, , the optimal signaling
of Theorem 4 allocates equal powers to all active eigenmodes,
so that

(44)

Compared to isotropic signaling in (40), the latter suffers
-fold SNR loss over the former, and the loss disappears if

, i.e., the worst-case channel is of the full rank. Under the

7which is the optimum signaling when the uncertainty set is isotropically un-
constrained and only the lower bound on the channel power gain is known [28];
this technique is also appealing due to its simplicity: no need for channel esti-
mation and feedback, no adaptive transmission.

condition of Theorem 4.3, the optimal signaling achieves the
same capacity as in (44), with , , and
therefore, the isotropic signaling suffers the same performance
loss as at high SNR above.

To get some insight into the structure of the worst-case
channel, in the following we give some properties of the
optimal channel perturbation , i.e., one that achieves
the minimum in in the general case, even when the
conditions 4.1–4.4 in Theorem 4 do not hold.

Proposition 1: The optimal channel perturbation does not re-
duce the null space of the nominal channel matrix

(45)

where is the null space of matrix .
When is a channel matrix, the null space represents the
set of all transmit directions for which the channel gain is zero,
so that the optimal channel perturbation preserves the existing
null directions but may add new ones. Furthermore, the eigen-
vectors of the optimal transmit covariance (i.e., one that
achieves the maximum in are orthogonal to ,
i.e., no transmission on null directions of the nominal channel.

Proof: See the Appendix.

Corollary 1: The rank of the nominal channel upper bounds
that of the optimal one, of the optimal channel perturbation, and
of the optimal covariance matrix

(46)
Proof: Follows directly from Proposition 1.

Corollary 1 states that the nominal channel rank bounds the
rank of all other matrices in the problem, which is intuitively ap-
pealing as the optimal perturbation should disrupt the transmis-
sion as much as possible and introducing new eigendirections
would not serve this purpose.

It is straightforward to see that the properties in Proposition 1
and Corollary 1 also hold for the multiplicative channel uncer-
tainty of the previous section (and, thus, have a significant de-
gree of universality), and also under the conditions of Theorem
4, where the optimal channel perturbation is explicitly available.

We further observe that, under all cases considered, the best
covariance and the worst channel are as in (18) and (29), i.e.,
that the best Tx strategy is multibeamforming on the degraded
nominal channel plus water filling to distribute the power among
the beams, and the worst channel perturbation is “antiparallel”
to the nominal channel. Based on this, a conjecture follows.

Conjecture 1: Theorem 4 holds in general (for any SNR) and
not only under conditions 4.1–4.4.

Remark 2: The compound capacity result in Theorem 4
suggests the following mixed transmission strategy in a fading
channel. Since the capacity loss is small when ,
one may use a universal code [20] (tailored to and not to
track channel variations (e.g., with adaptive coding) when they
are small so that the demand on system resources is reduced.
On the contrary, an adaptive coding scheme is required for



LOYKA AND CHARALAMBOUS: ON THE COMPOUND CAPACITY OF A CLASS OF MIMO CHANNELS 2055

large channel variations since a universal code incurs a large
loss in performance.

Remark 3: It follows from earlier Theorems 3 and 4 that [17,
Th. 3.3] also applies when there is uncertainty in the singular
vectors, i.e., when singular vectors of and are not nec-
essarily the same, and that an additional noise term in [17, Th.
5.2] is not necessary under the conditions of Theorem 4.

Remark 4: Following the same approach as in [15], it can
be shown that the earlier compound capacity serves as a lower
bound to the outage capacity of a random nonergodic
channel with the mean and representing the random
part, , where the uncertainty set is selected in
such a way that , i.e., the probability that
channel realization is not in the uncertainty set equals to the
target outage probability . While evaluation and optimization
of the outage capacity is a very challenging task in general, this
relationship, which holds for any fading distribution, allows one
to use the compound capacity instead, albeit as a lower bound.

Finally, we note that the optimal covariance matrices in Theo-
rems 1 and 4 not only maximize the mutual information and thus
achieve the compound capacity, but also solve the dual problem
of minimizing the transmit power required to achieve a given
compound capacity.

V. RELATIONSHIP TO OTHER UNCERTAINTIES

Since all norms are equivalent, in the sense that any norm can
be upper and lower bounded by any other norm [see (47)], the
earlier results can be used to upper and lower bound compound
capacity subject to other normed uncertainties and also to un-
certainty constraints that are not norms, which we consider in
this section.

A. Arbitrary Normed Uncertainty

Consider an uncertainty set subject to an arbitrary normed
constraint , where is any matrix norm. Since any
two norms are equivalent [8], [9]

(47)

where are constants independent of but which de-
pend on the norm (see Table I; the bounds are tight in a sense
that there are matrices that achieve them). Using this, the arbi-
trary normed uncertainty set can be upper and lower bounded
via that of the spectral norm in (5), so that

(48)

where

is the compound capacity of the arbitrary normed uncertainty
set and is that for the spectral norm in (5). Note that the
multibeamforming on the nominal channel in combination with
water-filling power allocation across the beams achieves the
compound capacity within these limits. It follows from Table I
that when are not large, the bounds in (48) are reasonably

TABLE I
EQUIVALENCE OF NORMS [8].

tight. In the following, we specialize this generic result to some
particular cases of interest. For the sake of completeness, we
also note a few generic properties of the compound capacity

as a function of the uncertainty radius .
Property 1: .
Property 2: .
Property 3: for and 0 other-

wise.

B. Trace Norm

The uncertainty is constrained via
, which can be upper and lower bounded

using

so that the compound capacity for this norm satisfies

(49)

The bounds are reasonably tight when is not too large. The
lower bound is achieved when the optimal channel perturbation
(under the spectral norm constraint) is rank-one (this happens
when or at low SNR, when . The
upper bound is achieved when the optimal channel perturbation
(under the trace norm) has identical singular values. We note
that both the spectral norm and the trace constraint bound the
singular values of the channel uncertainty and put no limitations
on its singular vectors.

Fig. 1 compares the upper and lower bounds in (49) to the
nominal channel capacity of the following channel:

(50)

Clearly, the bounds in (49) allow one to estimate the compound
capacity under the trace constraint reasonably well over the
whole SNR range. While this example may appear to be rather
restrictive, it is generic enough since the compound capacity
and its bounds do not dependent on singular vectors but only
on the singular values and their maximum uncertainty, as
Theorem 4 indicates, so that the same result as in Fig. 1 applies
to any other with the same singular values as in (50) (in
this generic setting, the diagonal entries of the matrices in (50)
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Fig. 1. Nominal channel capacity and the lower and upper bounds of the com-
pound capacity in (49) for the channel in (50), � � ���.

should be thought of as singular values of the corresponding
nondiagonal matrices).

C. Weighted Trace

A generalization of the aforementioned case is the following
constraint: , , , for
which the compound capacity is bounded as

(51)

Note that the upper bound is the same as in (49) and the lower
bound depends on only; both bounds are achieved under the
same conditions as in the previous section.

D. Individual Singular Value Constraints

Consider the case when individual singular values of are
constrained as , , in
which case the compound capacity is bounded as

(52)

This case includes, as a special case, the relative constraint of
the form , by using . In
this special case, is as in Section IV-A.

E. Weighted Trace Constraint of Wiesel

The uncertainty is bounded as , where
is positive semidefinite. Using the inequalities

where are the minimum and maximum eigenvalues
of , and the compound capacity can be bounded as

(53)

The bounds in (53) are reasonably tight provided that
and are not too large. The lower bound is

achieved when (under the spectral norm) and
its right singular vector is the eigenvector of corresponding
to the minimum eigenvalue. The upper bound is achieved
when has identical singular values and has identical
eigenvalues.

We would like to emphasize that, unlike the results in [15] that
hold for rank-one , the bounds in (53) hold for arbitrary-rank

and the compound capacity within these bounds is achieved
by multibeamforming on with optimal power allocation to
the beams via water filling.

In the special case of rank-one considered in [15],
, where and are the Rx and Tx

array response vectors, and when , the upper and
lower bounds in (53) coincide and the spectral norm com-
pound capacity in Theorem 3 reduces to that in [15], with

, i.e., the best Tx strategy is the beam-
forming tailored to the nominal channel, and the worst-case
channel uncertainty is opposite of the nominal channel,

, where . Thus, the
spectral and Frobenius-normed channel uncertainties give the
same result in this case.

VI. COMPOUND MULTIPLE ACCESS CHANNEL

Let us now consider the MIMO MAC, where multiple trans-
mitters (mobile users) communicate to a single receiver (a base
station)

(54)

where is the channel matrix of user (mobile) and is its
transmitted signal, which has covariance matrix ,
and the summation is over all users. For given covariance ma-
trices, the sum rate of this channel is [21]

(55)

where and is the noise variance in each receive an-
tenna, and this rate is achieved by Gaussian signaling for each
user. The sum capacity of this channel can be obtained by opti-
mizing over all possible covariance matrices subject to per-user
power constraints [21]

(56)

where is th user power, and the optimal covariance
is given by single-user water filling on th user channel
when the equivalent noise covariance (including interference
from other users) is , so that Gaussian
signaling and treating multiple-access interference as noise is
sum-rate optimal. While an analytical solution of (56) is not
known, a convergent iterative algorithm to solve it is given in
[21].

In the compound MAC channel subject to multiplicative un-
certainty

(57)

where are the nominal and actual channels,
and the uncertainty, all of th user. In the following, we give its
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compound capacity when all users have the same channel uncer-
tainty 8 by generalizing the corresponding result in Theorems 1
and 2.

A. Compound MAC With Identical Uncertainties

Proposition 2: Consider the compound MIMO MAC chan-
nels as in (54) and (57) when all users experience the same un-
certainty, . Its compound capacity
is given by (58), as shown at the bottom of the page, where

is the capacity in (56) when all channels are nominal,
, so that the effect of multiplicative uncertainty is the

relative SNR loss of (compared to the nominal channel).
The optimal covariance matrices are as in (56) for ,
where the water filling is done at the effective SNR ,
which is equivalent to the optimal transmission on the degraded
nominal channels .

Proof: Using the singular value inequalities in (14), one
obtains (59), and the lower bound is achieved by the worst
channel perturbation , which proves .
To obtain , observe that the chain argument in (60) holds, so
that all inequalities hold with equality.

Thus, similarly to the single-user MIMO compound channel
with multiplicative uncertainty,

and the saddle-point property holds for the
compound MIMO MAC channel when all users experience the
same uncertainty. The iterative water-filling algorithm in [21]

8such uncertainty may be introduced by an imperfect calibration of the
channel estimation algorithm at the base station and, hence, will affect all users
equally. It may also be introduced by local scatterers around the base station,
not accounted for in the calibration process (due to say dynamic nature of the
environment), with similar effect. This is reminiscent of the popular Kronecker
channel correlation model.

also applies to this compound channel by transmitting on the
degraded nominal channels .

B. Low SNR Regime

To obtain further results, let us consider the MAC
channel in the low-SNR regime (also known as a
wideband regime, in which many practical systems, e.g.,
CDMA, operate [22], [23]). In this regime, (55) simplifies to

and the solution to the optimiza-
tion problem in (56) follows immediately as the optimization
problem decouples into single-user optimizations

(61)

where second equality follows from Von Neumann’s trace in-
equality [24] applied to

, and observing that

The equality is achieved by , where is the
right singular vector of corresponding to the largest singular
value, i.e., by the beamforming on the strongest eigenmode of
each user. We are now in a position to characterize the sum ca-
pacity of the compound MIMO MAC channel when multiplica-
tive uncertainties are not the same.

Proposition 3: In the low SNR regime, the sum-rate capacity
of a compound MIMO MAC channel with multiplicative

(58)

(59)

(60)
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uncertainty as in (57) is

(62)

where the best covariance of th user is ,
is the right singular vector of its nominal channel corre-
sponding to the largest singular value, i.e., the best transmis-
sion strategy is beamforming on the largest eigenmode of the
nominal channel, and the worst-case channel perturbation is

, where means “any” subject to
.

Proof: The minmax part follows from (61) observing that
and the equality is achieved by

. The maxmin part follows from
the following:

(63)

where follows from

which in turn follows from in (76) (since minimization is
done for each user separately, single-user result applies), so that
all inequalities hold with equality.

Let us now consider the additive uncertainty model

(64)

Proposition 4: The sum-rate capacity of the compound
MIMO MAC with additive uncertainty in (64) in the low SNR
regime is

(65)

and the capacity-achieving transmission strategy is beam-
forming on the strongest eigenmode of each user.

Similarly to the single-user channel, the effect of uncertainty
on the MAC is an average (for multiplicative uncertainty) or per-
eigenmode (for additive uncertainty) SNR loss for each user,
which is determined by the uncertainty set size. The optimal
transmission strategies here are the same as with no uncertainty,
except for the rates adjusted according to the SNR loss. Also
note that, unlike the generic case where the optimal covariance
matrices are not known in a closed form (even without channel
uncertainty) but have to be found via a numerical algorithm (see
[21]), Propositions 3 and 4 give an explicit form of the optimal
signaling at low SNR.

Similar results hold true not only for the sum-rate capacity
but also for the capacity region of the compound MIMO MAC.
Indeed, each achievable rate point of the MIMO MAC for given

satisfies

(66)

where is the th user rate and is the number of users, and
the capacity region is obtained via optimization over all possible
covariance matrices subject to the individual power constraints

[25]. Since the only difference between the right-
hand side in (66) and in (55) is that the summation in the former
is limited to a subset of , the results in Propositions
2–4 also extend to the capacity region of the compound MAC
by limiting the summation to the corresponding subsets, and the
effect of uncertainty is an SNR loss measured by the spectral
norm of the uncertainty set. The optimal signaling is the same as
for the nominal channel applied at the degraded SNR (reduced
by uncertainty).

While the Root and Varayia compound channel capacity
theorem [6] was proved for the single-user channel only and,
thus, does not apply directly to the multiuser scenario here,
Propositions 2–4 demonstrate that there exists a transmission
strategy that achieves the minmax capacity (i.e., the worst-case
channel capacity) on all channels within the uncertainty class
(achievability). Since the compound capacity does not exceed
the worst-case channel capacity (converse), the latter is the
compound capacity under the conditions in Propositions 2–4.

VII. COMPOUND BROADCAST CHANNEL

Let us consider an MIMO BC (dual to the MAC channel in
(54))

(67)

where and are the -dimensional received signal
and noise of th user (mobile), and is the -dimensional
transmitted signal (base station); all are assumed to be
i.i.d. complex Gaussian and independent of each other. Using
the MAC–BC duality, the sum-rate capacity is obtained by
maximizing (56) over all possible subject to the total
power constrain

(68)

where are covariance matrices in the dual MAC (not in the
BC), and Gaussian signaling in combination with dirty paper
coding is optimal [25]. A set of transformations between the
dual MAC and BC covariance matrices (achieving the same
rates under the same sum power) and also an iterative algorithm
to find the optimal matrices that achieve the sum-rate capacity
are given in [26] and [29]. Due to significant similarity between
(68) and (56), the results of the previous section also apply to the
BC after proper modifications to account for the total rather than
individual power constraint (we omit the proofs for brevity).
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Proposition 5: Consider the compound MIMO BC channel,
, where all users experience the

same uncertainty . Its compound sum-rate capacity is given by
(69), as shown at the bottom of the page, where is the
capacity in (68) when all channels are nominal, , so
that the effect of multiplicative uncertainty is the relative SNR
loss of , i.e., the same as for the compound MIMO
MAC. The optimal covariance matrices are also as in (68) for

, where the water filling is done at the degraded
SNR , which is equivalent to the transmission on the
degraded nominal channels .

In the low SNR regime, (68) reduces to

(70)

where follows in the same way as in (61), and the optimal
transmission strategy is beamforming on the strongest eigen-
mode of the best user (as opposed to the compound MAC in
(61), where the optimal strategy is beamforming on the strongest
eigenmode of each user) . The corresponding compound capac-
ities follow.

Proposition 6: In the low SNR regime, the sum-rate capacity
of a compound MIMO BC channel with multiplicative uncer-
tainty , is

(71)

and the optimal transmission strategy is beamforming on the
largest eigenmode of the best degraded (by the uncertainty size)
nominal channel. A worst-case channel perturbation is opposite
of this largest eigenmode (it is not unique: channel perturbation
along all other eigendirections can be arbitrary).

Proposition 7: The sum-rate capacity of a compound MIMO
BC channel with additive uncertainty, ,

, in the low SNR regime is

(72)

and the capacity-achieving transmission strategy is beam-
forming on the strongest eigenmode of the best degraded (by
the uncertainty) nominal channel.

Similarly to the MAC in the previous section, Propositions
5–7 ensure that is the operational com-
pound channel capacity since the transmission on the worst-case
channels is optimal for the whole class of channels. Note that the
optimal transmission strategies at low SNR are given in an ex-
plicit form in Propositions 6 and 7, unlike the generic case (even
without channel uncertainty), where the optimal covariance ma-
trices follow from an elaborate set of transformations of those
in the dual MAC [see [26]] and ultimately have to be evaluated
numerically, providing only limited insight about optimal sig-
naling.

Finally, similar results hold also true for the capacity region
of the MIMO BC channel, whose capacity region coincides with
that of the dirty paper coding [27], which is equal to that of the
dual MAC [25], so it includes all the rate points satisfying

(73)

when optimized over all possible covariance matrices
subject to the total power constraint . In partic-
ular, in the low-SNR regime this simplifies to

(74)

for the multiplicative uncertainty, or to

(75)

for the additive uncertainty and Propositions 6 and 7 apply with
minor modifications to the compound BC capacity region as
well by using (74) and (75), so that the effect of uncertainty on
the capacity region is a degradation of the nominal channels by
the uncertainty size.

VIII. CONCLUSION

The capacity of a class of uncertain MIMO channels (com-
pound capacity) subject to the spectral norm constraint has
been considered for both multiplicative and additive uncertainty
models. The compound capacity, achievable by a single code
for all channels in the class, has been shown to be equal to the
worst-case channel capacity in all considered cases, via explicit
closed-form evaluation of the two. Thus, the saddle-point prop-
erty holds and, in terms of the game theory, neither player can
deviate from the optimum strategy without incurring loss. The
best transmission strategy and the worst-case channel uncertain-
ties are given in a simple form: the former is the transmission
on the eigenmodes of the nominal channel (i.e., multiple beam-
forming + water filling to distribute the Tx power among the
beams), and the latter is opposite of the nominal channel. The

(69)
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effect of uncertainty is equivalent to an SNR loss commensurable
with the size of the uncertainty set and decreases with the latter.
Based on this, the following adaptive transmission strategy is
suggested: the system does not track the channel and uses a
universal code for small channel variations (capacity loss is not
large); the system tracks the channel and uses a channel-specific
code when the channel variations are large (avoids large loss in
capacity due to using a universal code).

In the large-uncertainty regime or in the case of rank-one
nominal channel, the best robust transmit strategy is the beam-
forming on the strongest eigenmode of the nominal channel, the
latter being in agreement with [15] and the former indicates the
information-theoretic optimality of the results in [35]. The com-
pound channel capacity serves as a lower bound on the outage
capacity (at appropriately defined outage probability), for any
fading distribution, of a nonergodic fading channel.

The spectral norm compound capacity is used to construct
upper and lower bounds of the compound capacity in the case
of other bounded uncertainties. Multibeamforming with optimal
power allocation across the beams achieves the compound ca-
pacity within these bounds.

These results have been extended to compound MAC and BC.
While the results have been obtained for frequency-flat chan-
nels, they can also be extended to frequency-selective ones via
the standard orthogonal frequency-division multiplexing-type
argument.

APPENDIX

PROOF OF THEOREM 4

The first part is as in (12) and holds in full generality. To
prove (32), we have to prove (33) (following [4] and [18], they
are equivalent). Keeping in mind (30), we need to prove only

. We proceed in the fol-
lowing on a case-by-case basis.

The Low-SNR Regime: To prove claim 4.1 note that the
mutual information can be approximated and lower
bounded at low SNR as follows:

(76)

where is the worst-case
channel, , is the th column of ,

(77)

and is th entry of ; follows from unitary invari-
ance of singular values, follows from for

, which holds at low SNR

(78)

and the fact that , is a standard ma-
trix manipulation, and follows from the singular value in-
equalities in (14). On the other hand,
from Theorem 3, so that

(79)

for any admissible and , and (32) follows from it (see e.g.,
[4]). The low-SNR condition in (78) is not explicit since
depend on the SNR. An explicit condition in 4.1 can be obtained
by observing that due to the power constraint.

The High SNR Regime: Let . It follows then
from the properties of the water filling in (27) that

at sufficiently high SNR (see (82) in the following), so that

(80)

where is the diagonal matrix of eigenvalues of

and is its principal subma-
trix (of positive eigenvalues); is as in (76); and
are obtained from and and , respectively, by keeping
their first columns and eliminating the rest; is the prin-
cipal submatrix of ; is the identity matrix.

follows in the same way as in (76); make uses of
the fact that to block-partition and ;
follows from block-matrix multiplication rules and properties
of the determinant; follows from the fact that if

[8], where means that is positive
semidefinite, ; follows from for
square matrices ; follows from the fact that
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(by construction); follows from the sin-
gular value inequalities in (14) applied to and
the following argument:

where is due to the interlacing theorem for singular values
([7, Corollary 3.1.13]—removing columns from a matrix cannot
increase its spectral norm), and ( ) is due to unitary invariance
of singular values; follows from the fact that

and for , which is
equivalent to

(81)

This condition is not explicit in the SNR since the power allo-
cation also depends on the SNR. To obtain an explicit
condition, we observe from (27) that all eigenmodes are active
provided that

(82)

where we used the fact that the water-level is in this case (from
the power constraint

(83)

and, using (27), the high-SNR condition can be explicitly ex-
pressed as

(84)

Thus, using Theorem 3 and (80), (79) and thus (32) follow.
Note that the max and min operations effectively decouple in
the high-SNR regime, so that the result is not surprising. The
active eigenmodes are those for which and all the
weaker modes are not used (this is the effect of uncertainty).

Identical Non-Zero Singular Values: Let us consider the
case of

(85)

where are obtained from by keeping
only first columns (corresponding to nonzero singular values);
first equality follows from the fact that

i.e., all nonzero eigenvalues of the optimal covariance are
identical for given [as follows from (27)]. Combining (85)
with (30), (33) and thus (32) follow.

Low-Rank (1 or 2) Case: To prove the claim 4.4, consider
first the case of (the case of is trivial)

(86)

where follows from the fact that
for a 2 2 matrix and follows from that facts that

which follow from in (76) and in (80), respectively. Con-
sider now the case of

(87)

where

and are submatrices of , and containing first
two columns, and

follows from the matrix multiplication rules using
the fact that and

; follows in the
same way as in (86) since is a 2 2 matrix;
follows from the same argument as in (86) observing
that , where
first inequality is due to [7, Corollary 3.1.13] (known
as an interlacing theorem for singular values) and the
equality is due to unitary invariance of singular values,
and the equality is achieved in both inequalities when

, so
that is as in (29) specialized to the case.
As before, combination with Theorem 3 results in (33) and
(32). Note that in all four cases, the best covariance and worst
channel are the same as in Theorem 3.
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(91)

APPENDIX

PROOF OF PROPOSITION 1

Split the channel perturbation matrix as follows:

(88)

where the rows of are in ( denotes
the space spanned by the columns of matrix and the rows
of are orthogonal to it. This can be accomplished by pro-
jecting the rows of on and orthogonally to it.
Likewise, present the covariance matrix in the form

(89)

where the eigenvectors of corresponding to its nonzero
eigenvalues are in and the eigenvectors of
corresponding to its nonzero eigenvalues are orthogonal to it,
so that

(90)

Now, consider the matrix in (91), shown at the top
of the page, where the inequality in (91) follows from the fact
that . Using this, one obtains

(92)

where the inequality follows from the fact that if ,
then [8]. Therefore, we conclude that the optimal
channel perturbation and , i.e., if

, then and also , from
which and
follow, i.e., all zero-gain directions of the nominal channel
are preserved by the optimal perturbation and possibly
new zero gain directions are introduced. Also notice that
does not affect the lower bound in (92), so that the optimal co-
variance satisfies , , i.e., no signaling on
the zero gain directions of the nominal channel (this result
would be trivial if there were no channel perturbation, i.e., full
channel knowledge at the transmitter, but is not trivial in our set-
ting, where this condition is not satisfied).
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