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Outage Probability Under Channel
Distribution Uncertainty

Ioanna Ioannou, Charalambos D. Charalambous, and Sergey Loyka

Abstract—Outage probability and capacity of a class of block-
fading MIMO channels are considered under partial channel dis-
tribution information. Specifically, the channel or its distribution
is not known but the latter is known to belong to a class of distribu-
tions where each member is within a certain distance (uncertainty)
from a nominal distribution. Relative entropy is used as a measure
of distance between distributions. Compound outage probability
defined asmin (over the transmitted signal distribution) -max (over
the channel distribution class) outage probability is introduced and
investigated. This generalizes the standard outage probability to
the case of partial channel distribution information. Compound
outage probability characterization (via 1-D convex optimization
and in a closed form), its properties, and approximations are given.
It is shown to have two-regime behavior: when the nominal outage
probability decreases (e.g., by increasing the SNR), the compound
outage first decreases linearly down to a certain threshold (related
to the relative entropy distance; this is the nominal outage-domi-
nated regime) and then only logarithmically (i.e., very slowly; this
is the uncertainty-dominated regime) so that no significant further
decrease is possible. This suggests the following design guideline:
the outage probability is decreased by increasing the SNR or op-
timizing the transmitted signal distribution (both decrease nom-
inal outage) in the first regime and by reducing the channel distri-
bution uncertainty (e.g., via better estimation) in the second one.
The compound outage depends on the relative entropy distance
and the nominal outage only, all other details (nominal fading and
noise distributions) being irrelevant. The transmit signal distribu-
tion optimized for the nominal channel distribution is shown to be
also optimal for the whole class of distributions. The effect of swap-
ping the distributions in relative entropy is investigated and an
error floor effect is established. The compound outage probability
under distance constraint is also investigated. The obtained re-
sults hold in full generality, i.e., for the general channel model with
arbitrary nominal fading and noise distributions.
Index Terms—Channel distribution uncertainty, compound

multiple-input multiple-output (MIMO) channel, outage proba-
bility/capacity, relative entropy distance.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) wireless
systems have received significant attention due to the

promise of high spectral efficiency [1], [2], which has been
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extensively investigated. As with any wireless system, their
channel capacity depends significantly on the channel state
information (CSI) available at the transmitter and the receiver
as well as the fading statistics experienced by the channel [3].
When the fading process is egrodic (i.e., the channel ”reveals”
its statistics to a single codeword), an appropriate performance
indicator is ergodic capacity [1], [3]. On the other hand, when
the channel is block-fading (or quasi-static), i.e., stays fixed
during a codeword transmission and changes from codeword
to codeword, its Shannon capacity is zero in many cases of
practical interest (i.e., Rayleigh fading) so that outage capacity
(capacity versus outage) and outage probability (for a given
target rate) are appropriate performance indicators [1]–[4]. In
the block-fading (quasi-static) regime, the channel capacity
is not affected by the receiver CSI1 but depends significantly
on the CSI available at the transmitter [3], [9], [12]. Since
the CSI is obtained via channel measurements, its accuracy
may be limited due to variability and difficult propagation
conditions (e.g., low SNR) in a wireless channel. The CSI
at the transmitter is further limited due to limitations of the
feedback channel (if any). This situation can be modeled via
a compound channel model, where the true channel is not
known but it is known to belong to a certain (limited) class of
channels and the corresponding compound channel capacity
theorems have been established [5]–[8]. While these theorems
treat all channels in the class equally and build a code that
performs well on any such channel, the corresponding capacity
is typically limited by the worst channel in the class and may be
low, even though most channels in class are good and the worst
channel is realized with low probability, i.e., it is a conservative
performance indicator. To avoid this problem, a concept of
composite channel has been introduced [8], [20], where each
channel in a class has associated probability measure so that
bad low-probability channels do not penalize significantly
the performance metric. The corresponding channel capacity
theorems can be proved via the concept of information density
[18], [20] or using the compound channel approach [3], [12].
Another possibility to model the uncertainty of CSI is to as-

sume that the transmitter knows only the channel distribution
but not the channel itself. A number of results onMIMO channel
capacity have been obtained under this assumption [9]–[12]. A
comprehensive review of the impact of channel uncertainty on
its performance and corresponding coding/decoding strategies
can be found in [8]. A concise review of more recent activities
on MIMO channels is available in [13]. The compound MIMO
channel capacities under the trace and spectral norm constraints
have been studied recently in [13]–[16]. A construction of a code
approaching thecompoundchannelcapacitycanbe found in [17].

1Since the receiver can always learn the channel via a training sequence,
which results in asymptotically negligible loss in the capacity in the quasi-static
mode (with sufficiently long coherence time) [3], full CSI at the receiver can be
assumed that significantly simplifies the analysis.
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In this paper, we consider a situation where even the channel
distribution information is not available at the transmitter;
rather, the transmitter knows that the channel distribution
belongs to a certain class centered around a nominal distri-
bution. This models a practical scenario where the channel
distribution information is obtained from multiple but limited
measurements so that the true distribution is known only with
finite accuracy (typically related to the number of independent
samples used for estimation). This also models a dynamic
scenario where the channel distribution information obtained
from past measurements may be outdated. The uncertainty in
the channel distribution information at the transmitter may also
be related to the limitation of the feedback channel used to
supply this information (so that only a quantized version of the
true distribution is fed back to the transmitter due to the limited
feedback bandwidth, which entails a quantization error). We
assume a quasi-static (block-fading) scenario with sufficiently
long coherence time so that CSI at the receiver is irrelevant.
Our channel model is quite general: we do not assume any par-
ticular nominal channel distribution and even the channel noise
can be arbitrary and its distribution uncertainty can be included
as well (except for examples, where a particular distribution
and noise are considered) so that the results are general too.
Relative entropy between two distributions is used as a measure
of distance so that the distribution uncertainty class includes
all distributions within certain relative entropy distance of the
nominal one. Similar approach was adopted in [21] to study the
ergodic capacity under channel distribution uncertainty2 and in
[22] to investigate an optimal control of stochastic uncertain
systems. A justification of relative entropy as a measure of
distance between distributions can be found in, e.g., [31] and
[32]. Our results on the compound outage probability provide
further justification, as they indicate that the relative entropy
distance limits the achievable outage probability (capacity) via
the error floor effect. When the nominal outage probability
is negligible and the distance is small, the compound outage
probability equals to the relative entropy distance (regardless
of all other details).
In a related line of research, the impact of noise distribution

uncertainty and optimal (robust) detection schemes have been
investigated in [23]–[25]. While the latter concentrates on error
rate performance of uncoded systems, our study here deals with
the channel outage probability, which is an ultimate bound on
error rate performance of any (coded or not) system and is also
achievable using capacity-approaching codes [18].
Since the channel is block-fading, the outage probability and

capacity are considered as main performance metrics, which we
term “compound outage probability/capacity” to emphasize that
it applies to a class of fading distributions (i.e., “compound dis-
tribution”) rather than any particular one. This parallels the con-
cept of compound channel, where a code is designed to operate
on any member in the class. In our case, a code is designed
to operate for any channel distribution in the class so that the
compound outage probability involves maximization over all
feasible channel distributions and minimization over the trans-
mitted signal distribution (subject to the power constraint), and
the corresponding compound outage capacity is derived from it.

2While the impact of channel distribution on the capacity is quite mild in the
ergodic regime (due to averaging over the channel statistics), it is much stronger
in the nonergodic regime (no averaging) [4].

We also consider a scenario where the transmitted signal distri-
bution is fixed a priori (e.g., universal code design).
The system/channel model and the performance metrics

(outage probability and capacity) are introduced in Section II.
Compound outage probability is defined and investigated in
Section III, which includes its closed-form characterization in
Theorem 1 (as 1-D convex optimization problem) and the worst
channel distribution (which is a piecewise constant scaling of
the nominal distribution). Remarkably, the compound outage
probability depends only on the nominal one and the relative
entropy distance, all other details (e.g., nominal fading and
noise distributions) being irrelevant. Properties of the com-
pound outage probability are given in Propositions 1–3, and its
two-regime asymptotic behavior is identified in Section III-B.
Specifically, as the nominal outage probability decreases (say
by increasing the SNR), the compound outage probability first
decreases linearly too (the nominal outage-dominated regime),
but after a certain threshold (equal to about the relative entropy
distance when the latter is small), it decreases only logarithmi-
cally (the uncertainty-dominated regime), i.e., very slowly so
that significant decrease is not possible anymore. Optimizing
the transmitted signal distribution in the latter regime does not
bring in significant improvement either so that any reasonable
distribution (e.g., isotropic signaling) will do as well. This
suggests the following design guideline to reduce the outage
probability efficiently: via increasing the SNR or optimizing the
transmitted signal distribution in the first regime (both decrease
the nominal outage probability) and via reducing the channel
distribution uncertainty (e.g., by more accurate estimation)
in the second one. Compact, closed-form approximations are
obtained for the compound outage probability in these two
regimes using the tools of asymptotic analysis. Theorem 2
shows that the transmit signal distribution optimal for the
nominal channel distribution is also optimal for the whole
class so that, e.g., known optimal transmit covariance matrices
for Gaussian MIMO channels (see e.g., [1], [9]–[11]) can be
“recycled.”
Since relative entropy is not symmetric, Section IV investi-

gates the impact of this asymmetry on the outage probability.
Swapping the distributions (nominal and true) is shown to re-
sult in the error floor effect: the compound outage probability is
bounded away from zero, does not matter how low the nominal
outage (or how high the SNR) is. The error floor depends on the
relative entropy distance: it increases with it; when it is small,
they are equal so that the relative entropy distance also serves as
the error floor (irreducible compound outage probability) in this
small-uncertainty regime. The uncertainty-induced error floor
studied in this paper supplements the three error-floor gener-
ating mechanisms in mobile wireless channels (due to temporal
and frequency dispersions of the channel and multiuser inter-
ference), which have been well studied in the past [33], [34].
In general, a sound system design should take into account all
of them. Theorem 3 provides a closed-form expression for the
compound outage probability that depends on a unique solution
of a single nonlinear equation. An alternative characterization is
via 1-D convex optimization. The worst case channel distribu-
tion and properties of the compound outage probability are also
given, including its two-regime behavior and compact approxi-
mations via asymptotic analysis.
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Based on the aforementioned results, compound outage ca-
pacity is studied in Section V. In Section VI, the class of distri-
butions is considered where the distance is defined via norm
(a particular case of corresponds to popular mean-square-
error (MSE) estimation) and its outage probability is related to
the aforementioned results. In particular, the compound outage
with relative entropy distance serves as a lower bound for this
case and the error floor effect is present as well. Section VII con-
cludes this paper. Proofs are given in the Appendix.

II. SYSTEM MODEL, OUTAGE PROBABILITY, AND CAPACITY

Let us consider a general discrete-time baseband MIMO
channel as shown in Fig. 1, where and are the input (trans-
mitted) and output (received) vectors (or sequences), and
denotes channel state. In the general case, the channel is de-
scribed by the conditional probability distribution
of given and , and the mutual information (per channel
use) supported by the channel for a given distribution of
and a given channel state is 3. We assume that
the channel is block-fading (nonergodic), i.e., a particular
channel realization is selected in the beginning and stays
fixed for the whole duration of codeword transmission; next
codeword will see a different channel realization.4 Channel
fading distribution is described by its probability density func-
tion (pdf) . Most of our results will hold in this general
scenario, which includes as special cases frequency-selective
(intersymbol interference) or frequency-flat (no ISI) Gaussian
MIMO channels.
We will not assume any particular fading and noise distribu-

tion (except for examples) so that our results are general and
apply to any such distribution. The transmitted signal, receiver
noise, and the channel are assumed to be independent of each
other. We also assume that the transmitter does not known the
channel but only has a partial knowledge of its distribution (as
explained later on); channel knowledge at the receiver is irrele-
vant in the block-fading environment with sufficiently long co-
herence time (i.e., quasi-static).
Main performance metrics in the block-fading regime are

outage probability and outage capacity [3], [4], [12].5 Outage
probability is the probability that the channel is not able to sup-
port the target rate . When the transmitter knows the channel
distribution (but not the channel itself), the outage probability is

(1)

where is the distribution of subject to the total power
constraint is the outage

3The channel state may include channel gain(s) as well as channel noise
distribution so that different channel realizations can “see” different noise dis-
tributions, which can also model the noise distribution uncertainty, e.g., as in
[23]–[25]. The two extreme scenarios are when all channel realizations “see” 1)
the same noise distribution but different channel gains or 2) the same gain but
different noise distributions.
4With a slight modification in notations, this block-fading model can also

be extended to the case where each codeword sees a finite number of channel
realizations, e.g., as in [12] and [19], and our results will hold in that case as
well.
5It can be further shown that the outage probability is the best achievable

average codeword error probability [18]–[20].

Fig. 1. General discrete-time baseband MIMO block-fading channel model.
No assumptions on noise and fading distributions are made.

probability for a given and theminimization is over all pos-
sible distributions of the input satisfying the power constraint.
Outage capacity is defined as the largest possible rate such that
the outage probability does not exceed the target value

(2)

Clearly, . Finally, one may also consider the
outage probability and capacity for a given (fixed) . Opera-
tional meaning of the outage capacity/probability follows from
the compound channel capacity theorems [6]–[8], [12], [19]
(which guarantee an existence of a code that works on every
channel in the no-outage set); see also [18] and [20] for amodern
treatment using the concept of information density.

III. COMPOUND OUTAGE PROBABILITY FOR A

CLASS OF CHANNELS

Consider the scenario where the transmitter has only par-
tial channel distribution information. Namely, it knows that the
channel pdf is within a certain distance of the nominal
distribution . We use the relative entropy as a measure of
the distance between two distributions so that all feasible distri-
butions satisfy the following inequality:

(3)

where is the relative entropy or Kullback–Leibler dis-
tance between the distributions, and is the maximum possible
distance in the uncertainty set to which belongs; both and

are known to the transmitter. Throughout this paper, we
assume that . In this scenario, the definition in (1) does
not apply (since the true distribution is not known) but can be
generalized to

(4)

and the outage capacity can be defined as in (2) with the sub-
stitution . Its operational meaning also follows
from the compound channel capacity theorems [7], [8], [12] or
from [18] and [20], since the optimal signaling does not de-
pend on the true channel distribution but only on the nominal
one and also the relative entropy distance , both known to
the transmitter. This problem setup models a practical situa-
tion where the channel distribution information is obtained from
measurements or physical modeling, which are never perfect.
It also accounts for the fact that the estimated channel distri-
bution may change with time in dynamic scenarios or that the
bandwidth-limited feedback provides only a quantized version
of the distribution which entails the quantization error. We term
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in (4)“compound outage probability” since it is a perfor-
mance measure of a class of channel distributions rather than
a single distribution. This approach parallels the work on com-
pound channel capacity [5]–[8], [13]–[16] where the channel is
not known to the transmitter but it is known to belong to a cer-
tain class.
To characterize the compound outage probability , we

adopt a two-step approach: first, we characterize the outage
probability for a given input distribution, i.e., no minimization
in (4), which also represents a practical situation where this
distribution is set a priori; then, it is minimized over all feasible
input distributions.

A. Step 1: Compound Outage for a Given Input Distribution

When the input distribution is fixed a priori, the com-
pound outage probability is

(5)

Its characterization is strikingly simple in the general case, i.e.,
for any noise and nominal fading distributions.

Theorem 1: For a given input distribution and arbitrary
nominal fading distribution , the outage probability in (5) can
be expressed as

(6)

where

(7)

is the nominal outage probability (i.e., the outage probability
under the nominal channel distribution). The worst channel dis-
tribution (the maximizer in (5)) is given by

(8)

where is the minimizing in (6), and is the indicator
of the outage set: if and 0 otherwise.
An alternative characterization of is as follows:

(9)

where is a unique solution of

(10)

if and otherwise. In the latter case,
and a maximizing channel distribution is

(11)

Proof: see the Appendix.

Fig. 2. Worst channel distribution over the nominal one. Note that the worst
distribution is a piecewise constant scaling of the nominal one.

Note that Theorem 1 effectively reduces the infinite-dimen-
sional optimization problem in (5) (the optimization there is
over the set of all admissible distributions ) to 1-D convex
optimization in (6), which can be effectively solved using nu-
merical algorithms [26]. This is accomplished using Lagrange
duality theory (see the Appendix for details). As we will see in
the following, this is not the only advantage: (6) and (9) also
provide a number of insights unavailable from (5). The alter-
native closed form in (9) requires only a unique solution of the
scalar nonlinear equation in (10), which can be found using any
suitable numerical technique (e.g., Newton–Raphson method;
no convergence problems are expected since the left-hand side
of (10) is monotonically decreasing in ).
It is remarkable that the nominal outage distribution enters the

compound outage probability in (6) only via the nominal outage
probability , all other its details being irrelevant, i.e., two dif-
ferent nominal distributions with the same nominal outage prob-
ability will produce the same compound outage probability.6

Note that the maximizing density in (8) mimics the nom-
inal one in a piecewise constant manner

(12)

where is the outage set so that the
right-hand side of (12) is independent of in each set and
is a scaled up version of in the outage set and scaled down
otherwise—see Fig. 2.
An additional advantage of (6) is that the resulting optimiza-

tion problem there is convex, i.e., the function

(13)

is convex in (see the Appendix) so that
in (6) can be solved efficiently using any known

numerical algorithm; the solution is unique and it satisfies
. Alternatively, the tools of asymptotic analysis

(see, e.g., [28] and [29]) can be used to obtain approximations

6We emphasize here that the knowledge of does not allow one to obtain a
better result for a given , beyond that available from the knowledge of .
On the other hand, is required to optimize over in the same way
as it is done for .
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Fig. 3. Properties of as a function of : concave, strictly increasing func-
tion, which saturates at ; .

(see Section III-B). This dual representation also provides a
number of insights, as indicated in the following.
Let us now consider the outage probability in (6) as a function

of the distance . A number of its properties follow.

Proposition 1: For a given input distribution , the com-
pound outage probability as a function of distance has
the following properties.
1) is concave in .
2) , i.e., the compound outage probability
equals the nominal one when .

3) is a nondecreasing function of , that is

(14)

and the equality holds if and only if
i.e., is a strictly increasing function of the distance

unless or .
Proof: see the Appendix.

Fig. 3 exemplifies the properties of .

Proposition 2: The compound outage probability has
the following properties.
1) if and only if .
2) if and only if .
3) , and the equality holds if and only if or

.

Proof: see the Appendix.

While in general the compound and nominal outage proba-
bilities can differ significantly, the former equals 0 if and only
if the latter does so. They are also equal when .

Proposition 3: The compound outage probability in (6) is an
increasing, concave function of the nominal outage , i.e.,

(15)

with the equality iff and the boundary conditions
and .

Proof: see the Appendix.

Proposition 4: The compound outage probability in
Theorem 1 can be bounded as follows:

(16)

Proof: see the Appendix.

B. Asymptotic Regimes

We now consider the compound outage in (6) in two limiting
regimes.
1) The uncertainty-dominated regime and fixed , i.e.,
the dominant source of outage events is from significant
deviation of the true channel distribution from the nominal
one (outage events under the nominal distribution can be
neglected).

2) The nominal outage-dominated regime and fixed ,
i.e., when the impact of channel distribution uncertainty is
negligible as outage events under the nominal distribution
dominate the performance.

Proposition 5: The outage probability in (6) in the low
nominal outage regime, and fixed , is as follows:

(17)

and the optimal (minimizing) in (6) is given by

This is the uncertainty-dominated regime (the main contribution
to is coming from rather than ).

Proof: see the Appendix.

Further analysis shows that the aforementioned approxima-
tions (without term) are accurate provided that .
Note from (17) that the main contribution to is coming
from (i.e., the uncertainty) rather than (i.e., the nominal
outage) since is a slowly varying function of so that
variations from the nominal channel distribution dominate the
outage events. Also, note that the relative entropy distance is
directly related to the compound outage probability, which in-
dicates that it is this distance that should be used as a measure
of accuracy in estimating the channel distribution from mea-
surements or physical modeling since it is directly related to the
system performance (outage probability and capacity).
Let us now consider the nominal outage-dominated regime

(i.e., fixed and ).

Proposition 6: In the low channel distribution uncertainty
regime, and fixed , the compound outage probability
is

(18)

and the optimal is given by

Proof: see the Appendix.
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Further analysis shows that the aforementioned approxima-
tion is accurate when and that the impact of un-
certainty is negligible, , when . Comparing
Propositions 5 and 6, one concludes that indeed there are two
regimes in the behavior of , as illustrated in Fig. 3.
1) The uncertainty-dominated regime (nominal outage is neg-
ligible), when so that

(19)

where means “scales as” so that depends linearly
on but only logarithmically (i.e., very slowly) on .

2) The nominal outage-dominated regime (uncertainty is neg-
ligible), when and

(20)

i.e., contributes very little to the outage probability.
These two regimes immediately suggest some design guide-

lines related to the outage probability. In the uncertainty-dom-
inated regime, the main way to reduce outage probability is
via decreasing the uncertainty of the channel distribution, e.g.,
via improved channel measurements or modeling; reducing
the nominal outage probability is not efficient here so that
minimizing it via the optimal transmitted signal distribution
is not worth the effort—any reasonable distribution (e.g.,
isotropic Gaussian signaling in MIMO channels) will do as
well. This approach, however, will bring little improvement in
the nominal outage-dominated regime, where the only way to
reduce the outage probability is via improving systems perfor-
mance under the nominal fading, e.g., by increasing the SNR or
optimizing the input distribution. Note that these conclusions
hold for any nominal channel distribution (e.g., not limited to
i.i.d. Rayleigh) and for any noise (not only Gaussian).
As an example, let us consider a 1 1 Rayleigh-fading

channel with Gaussian noise, in which case , when
and so that

(21)

i.e., the outage probability scales with SNR as in
regime 1 but only as in regime 2 so that increasing
the SNR is only efficient in the former case. When ,
increasing the SNR will first decrease , but only down
to about and after that point the decrease becomes loga-
rithmically slow. From a practical perspective, it means that

cannot be reduced significantly beyond by increasing
the SNR. This observation indicates that the relative entropy
distance is indeed an appropriate measure of channel dis-
tribution uncertainty in the nonergodic (block-fading) mode.
Fig. 4 illustrates the two-regime behavior of .
This two-regime behavior can also be linked to the way

channel distribution is obtained from measurements: a finite
number of fading channel realizations are measured and the
empirical channel distribution is derived based on it. However,
the relative accuracy of this empirical distribution is always
lower at the distribution tails, where fewer measurement points

Fig. 4. Two-regime behavior of the compound outage probability. Its approxi-
mations in (19) and (20) and nominal outage (set for convenience)
are also shown; . Note that both approximations are accurate in their
respective regimes. Decreasing the compound outage probability beyond about

requires exponentially high SNR and is not practical (it takes 60 dB
extra to go from to , while normally, i.e., without uncertainty, it
would take only 10 dB).

are available. On the other hand, when the average SNR is high,
as in regime 2, an outage event takes place when the channel
is very weak, i.e., at the distribution tail so that the inaccuracy
in the channel distribution estimation plays a dominant role
there. Ultimately, low compound outage probability can only
be achieved by ensuring sufficiently high accuracy of the esti-
mated distribution tail (small ), i.e., when a sufficient number
of independent measurements fall into that region.

C. Step 2: Minimizing Over the Input Distribution

Using Theorem 1, we are now in a position to characterize
the compound outage probability in (4).

Theorem 2: Consider a class of fading channels in (3). Its
compound outage probability in (4) can be found from

(22)

where is the optimized nominal outage prob-
ability so that the outage-minimizing input distribution for the
class of channel distributions in (3) and for the nominal distri-
bution are the same

(23)

Proof:

where (a) follows from (6) and (b) follows from the fact that
and can be swapped and is a monotonic
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function so that the minimization of the compound outage over
is equivalent to the minimization of the nominal outage.

A significance of Theorem 2 is that the infinite-dimensional
optimization in (4) is reduced to a 1-D convex optimization
in (22) and, furthermore, the optimal input distribution is the
same as for the nominal channel so that a significant number
of known results [1], [9]–[12] apply directly to the compound
fading channel as well, i.e., no new search of optimal input dis-
tribution/covariances is required.
When the compound outage in (22) is considered as a

function of the distance , its properties mimic those
in Proposition 1 with the substitution . Also, the results
and conclusions in Section III-B hold under this substitution. In
particular, optimizing the input distribution is worth the effort
only in the nominal outage-dominated regime.

IV. IMPACT OF ASYMMETRY

Since relative entropy is not symmetric, i.e.,
, we consider in this section the constraint

(24)

to see the impact of the order on the obtained results. One prop-
erty of the compound outage probability for this class of
distributions is immediate.

Proposition 7: For a given input distribution, the compound
outage under the distribution class in (24) is bounded as
follows:

(25)

(26)

and the bounds are achievable. When

(27)

Proof: Equation (25) follows from the fact that the lower
bound is achievable by

where and is the Dirac delta function, i.e., by
the distribution that mimics the nominal one except for placing
mass at zero (where the mutual information is zero). The
bound in (26) is trivial and is achievable when .
Equation (27) follows from for .

An important conclusion is immediate from (26):
, i.e., there is a saturation (error floor) effect in

the behavior of : even though (e.g., by
), . From (27), when in this

regime, i.e., cannot be made smaller than the relative entropy
distance , does not matter how large the SNR (or how small the
nominal outage) is. This is in contrast to (17), where
when , even though logarithmically slowly (i.e., no error
floor). The absence of error floor in the latter case should not
however be overestimated, since the convergence is

logarithmically slow in , i.e., requires exponentially large SNR
so that for all practical purposes, also saturates around ,
as indicated in Section III-B. Note also that (27) places and
on equal footing, re-enforcing our earlier conclusion that

is an adequate measure of fading uncertainty in the nonergodic
regime.
Let us now characterize precisely the compound outage prob-

ability for the distribution class in (24).

Theorem 3: Consider the compound outage probability for
the distribution class in (24) and a given input distribution

(28)

It can be expressed in the following form:

(29)

where is a unique solution of

(30)

The maximizing density in (28) is given by

(31)

where . An alternative characterization
of is

(32)
where

(33)

Proof: see the Appendix.

Note that Theorem 3 reduces the infinite-dimensional opti-
mization problem in (28) to the closed-form solution in (29) that
depends on a unique solution of a single monotonic nonlinear
equation in (30) (which can be efficiently found using any of the
known numerical techniques). The alternative representation in
(32) is a 1-D convex optimization problem. It follows from (31)
that the maximizing density mimics the nominal one , al-
beit with different constants in the outage and no outage sets

(34)

where is the outage set so that is
a scaled up version of in the outage set and scaled down
otherwise7 (to keep the normalization fixed), which is what one
would intuitively expect to maximize the outage probability.
Fig. 5 illustrates this behavior.
When is considered as a function of or , its proper-

ties mimic those for the other uncertainty class, which is sum-
marized in the following.

7Note that , with first equality iff and second one
iff .
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Fig. 5. Worst channel distribution over the nominal one. Note that the worst
one is a piecewise constant scaled version of the nominal one, which follows
the same tendency as for the other uncertainty set.

Fig. 6. Typical behavior of as a function of : strictly increasing, concave
function. The lower bound in (25) possesses the same properties and closely
approximates .

Proposition 8: For a given input distribution , the com-
pound outage probability as a function of distance has
the following properties.
1) is concave in .
2) is a strictly increasing function of

(35)

unless , in which case .
3) It is bounded as follows:

and the bounds are tight:
, or iff .

Proof: see the Appendix.

Fig. 6 shows this typical behavior of .

Proposition 9: The compound outage probability takes
on the extreme values as follows.
1) iff .
2) iff and .
3) iff or .

Proof: see the Appendix.

Proposition 10: is a concave, strictly increasing
function of the nominal outage

(36)

which is bounded as follows:

(37)

and the bounds are tight: and
.

Proof: see the Appendix.

Comparing the properties of in Propositions 9–10 to
those in Propositions 1–3, one observes that most of the prop-
erties are the same so that the relative entropy asymmetry does
not have much impact on the compound outage probability. One
notable difference is the error floor effect in (37).
Let us now consider asymptotic regimes.

Proposition 11: The compound outage probability in
Theorem 3 behaves in the low nominal outage regime
and fixed as follows:

(38)

Proof: see the Appendix.

Note that (38) implies that , i.e.,
the lower bound in (37) is tight. It also reaffirms the error floor
effect discussed previously. Note that the error floor de-
pends on the distance only, all other details (e.g., the nominal
distribution ) being irrelevant. Further analysis shows that the
approximation in (38) is accurate, i.e., , provided
that . This is also consistent with the lower bound in
(25) (third term is negligible under the latter condition).

Proposition 12: The compound outage probability in
Theorem 3 behaves in the small-uncertainty regime and
fixed as follows:

(39)

Proof: see the Appendix.

It is clear from (39) that , so that the lower
bound in (25) is tight in this case. It is also obviously tight when

and, as we have seen in Proposition 11, in the
case. In fact, numerical analysis shows that this lower bound is
a good approximation of over the whole range of —see
Fig. 7. Comparing (39) with (18), we conclude that the com-
pound outage probability is the same for the and

uncertainty sets in the low-uncertainty regime
(i.e., the asymmetry of relative entropy does not have any ef-
fect here) while the same cannot be said about the low nominal
outage regime (compare (38) with (17)).
It can be shown (via numerical analysis—see Fig. 7) that the

approximation in (39) is accurate, i.e.,

(40)
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Fig. 7. Two-regime behavior of the compound outage probability and its lower
bound in (25), the approximation in (40), and the nominal outage ;

. Note the saturation (error floor) effect: the compound outage cannot
be reduced below , in agreement with (26), does not matter how
high the SNR (or how low the nominal outage) is.

when and that the effect of uncertainty is negligible, i.e.,
, when , which parallels the conclusions made

in Section III-B.
Fig. 7 illustrates the two-regime behavior of the compound

outage probability and validates the aforementioned approxima-
tion. It also demonstrates that the lower bound in (25) is quite
tight over the whole SNR (nominal outage) range and thus can
be used instead of the true compound outage probability for de-
sign/analysis purposes to estimate the impact of channel distri-
bution uncertainty. The uncertainty-induced error floor clearly
visible in Fig. 7 resembles and supplements the error-floor effect
in mobile wireless channels, which is due to temporal and fre-
quency dispersions of the channel and multiuser interference.
Unlike the former, the latter has been well studied in the past
[33], [34]. In general, a sound system design should take into
account both of them.
We would like to emphasize that the aforementioned results

hold for an arbitrary nominal channel distribution (e.g.,
Rayleigh, Rician, Nakagami, log-normal, correlated and/or
nonidentically distributed, etc.)—it enters into the compound
outage probability only via the nominal outage , and also
for arbitrary noise. When the compound outage probability is
minimized over the input distribution

(41)

some of the aforementioned results (namely, (25)–(27), (38),
and (39), (40) when ) apply directly via the substitu-
tion , i.e., the optimal input distribution is the same as
for the nominal outage so that (23) holds. Furthermore, while
optimizing the input distribution to reduce the nominal outage
also reduces the compound outage probability in the low-uncer-
tainty regime (i.e., in (39)), it has negligible impact in the un-
certainty-dominated regime in (38) so that any reasonable input
distribution (e.g., isotropic signaling in MIMO channels) will
work equally well provided that .

V. COMPOUND OUTAGE CAPACITY

Let us now consider the compound outage capacity, which
extends the definition of outage capacity in (2) to a class of
distributions. Consider first the case when the input distribution
is given

(42)

where belongs to a distribution uncertainty class,
or .
It is clear that in general, where the optimization

over the input distribution is either used or not in both cases
simultaneously. Using the compound outage probability results
obtained previously, the compound outage capacity can be char-
acterized more precisely.

Proposition 13: The compound outage capacity in the low-
uncertainty regime ( and fixed target outage probability
) approaches the nominal outage capacity for both uncertainty
sets, and

(43)

where

(44)

is an adjusted target outage probability.
Proof: Follows directly from (18) and (39).

Note that the impact of channel distribution uncertainty on the
outage capacity is a tighter requirement on the nominal target
outage probability via the second term in (44), which is negli-
gible when .

Proposition 14: The compound outage capacity for the
uncertainty set satisfies the following inequality,

(45)

In particular, no transmission is possible at :
.
Proof: Follows from (25) and from .

Proposition 15: The compound outage capacity for the
uncertainty set in the regime satisfies the

following inequality:

i.e., serves as a measure of loss in the targeted outage proba-
bility due to the channel distribution uncertainty.

Proof: Follows from (25) and for
.

Proposition 16: The compound outage capacity in the low
target outage regime and fixed for the first uncertainty
set is

(46)

where
(47)

is the nominal target outage probability.
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Proof: Follows from (17) using the standard tools of
asymptotic analysis [28], [29].
Note that, in this regime, the compound outage capacity at

given target outage requires exponentially low (in ) nom-
inal target outage probability , i.e., a very significant loss,
which mimics the result in Proposition 14 (where the transition
is sharp unlike the present case where it is gradual).
When optimization over the input distribution is done, the

aforementioned results also apply with the substitution
and meaning the optimized nominal outage capacity.

VI. COMPOUND OUTAGE PROBABILITY VIA
DISTANCE CONSTRAINT

Let us now consider the channel distribution uncertainty class
of the form , where is
norm, . It can be characterized as follows.

Proposition 17: The compound outage probability for the
uncertainty class, , can be bounded as

follows:
(48)

(49)

(50)

(51)

(52)

where and are the compound outage proba-
bilities as functions of distance for the and

classes.
Proof: Equation (49) follows from the norm inequality

. Equation (50) follows from Pinsker
inequality [30] and the fact that

. Equations (51) and (52) follow from (25).

Note that there is an error floor effect here as well:
. The case corresponds

to the widely used MSE criterion (including channel estimation
and measurements) so that there is an error floor for the MSE
uncertainty class as well. Finally, when the compound outage
probability is minimized over the input distribution, the same
inequalities hold (where and are also minimized), and
the error floor is not affected by this. When is small (so that the
deviation of from is also small), the and relative entropy
distances can be shown to have the same order of magnitude so
that the corresponding compound outage probabilities will scale
similarly.

VII. CONCLUSION

Compound outage probability and capacity of a class of
fading MIMO channels with partial channel distribution in-
formation have been introduced and studied. These concepts
generalize well known and widely used concepts of outage
probability and capacity of fading channels with completely
known distribution to the case where only partial knowledge
of distribution is available. Relative entropy distance is used
as a measure of uncertainty, which is shown to be related
directly to the compound outage probability. Since relative
entropy distance is not symmetric, two uncertainty classes are

considered and worst case fading distributions are identified
for both. A number of properties, bounds, and approximations
of the compound outage probability are given. The input distri-
bution optimized for the nominal outage probability is shown
to be also optimal for the compound one. The nominal fading
distribution enters into the compound outage probability only
via the nominal outage probability, all other details being irrel-
evant, i.e., two different nominal distributions having the same
nominal outage will also produce the same compound outage
probability. Behavior of the compound outage probability re-
veals two distinct regimes: uncertainty-dominated regime and
nominal outage-dominated one. While increasing the average
SNR or optimizing the input distribution to reduce the outage
probability is effective for the latter, it has only negligible effect
in the former, which immediately suggest a design alternative
(via reducing uncertainty rather than increasing the SNR or
optimizing the input distribution). All these results are general
as they hold for arbitrary nominal fading distribution and also
for arbitrary noise (i.e., not only Gaussian).

APPENDIX

A. Proof of Theorem 1

The problem in (5) can be presented in this form8:

(53)
The problem is clearly convex (since the objective is linear and
the constraint set is convex). Furthermore, strong duality holds
(i.e., the duality gap is zero), since Slater condition (see, e.g.,
[26]) is satisfied. Therefore, the Karush–Kuhn–Tucker condi-
tions are sufficient for optimality [26]. The Lagrangian of this
problem is

(54)

and, taking the variational derivative (see, e.g., [27]) of with
respect to , one obtains the KKT conditions

(55)

(56)

(57)

(58)

The complementary slackness condition (57) implies that
the second term is zero, i.e., the optimum is achieved on the
boundary, if . In this case, using (55) and (56), one
obtains, after some manipulations

(59)

8An additional constraint is not included since our solution explicitly
satisfies it.
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where and are the solutions of (55)–(58), from which (8)
follows. Integrating , one obtains (9). is found from (57),
which results in (10). The latter equation has a unique solution

if , since and
if , where is the left-hand side of (10). On the other
hand, when , which is achieved by in
(11) and also . When , maximizing density
is not unique.
To obtain (6), note that, due to zero duality gap, the solution

to (53) equals to that of the dual problem

(60)

where is the dual function

(61)

and was eliminated using (56). Since is the dual function,
it is convex. Furthermore, when

for , i.e., strictly convex so that the problem in
(60) has a unique solution. Since when (see
Proposition 2), the problem in (60) has always a unique solu-
tion, which can be found from using any known
numerical algorithm. The tools of asymptotic analysis (e.g., [28]
and [29]) allow one to obtain a number of approximations.

B. Proof of Proposition 1

1) To prove item 1, note that in (6) is a pointwise min-
imum of a set of affine functions of (indexed by ) and
therefore is concave (see, e.g., [26]).

2) Using Lyapounov inequality

where and denotes expectation, for random
variable and ,
one obtains

and taking

so that is a
nonincreasing function of . Therefore

(62)

3) Define
. Then, with equality iff , in which

case or 0 (if or = 0). Taking
of both sides, one obtains

with equality iff . The latter
equality holds when or .

C. Proof of Proposition 2

1) Using (59)

(63)

from which it follows that iff or .
In both cases, .

2) Item 2 is proved in the same way as item 1 earlier.
3) The inequality is due to the fact that the distribution un-
certainty set always includes the nominal distribution. The
“if” part follows from aforementioned items 1 and 2 and
from item 2 of Proposition 1. The “only if” part is verified
using (63).

D. Proof of Proposition 3

It mimics the proof of item 3 in Proposition 1. Define
.

Then, with equality iff , in which
case . Taking of both
sides, one obtains with equality iff

, which is possible iff .
The concavity of follows from the fact that it is a
pointwise minimum of a set of concave functions of (indexed
by ), see (60).

E. Proof of Proposition 4

The lower bound was proved earlier. The upper bound fol-
lows from the following:

where the first inequality is obtained by setting and the
second one follows from for .

F. Proof of Proposition 5

Since in (13) is convex, a unique minimum in (6) can be
found by setting the derivative to zero, , which
can be expressed as

(64)

where . It is straightforward to see that
as so that (64) can be transformed to

(65)

where we have used and
. Using the techniques of asymptotic analysis (see,

e.g., [28] and [29]), the following equation

(66)
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has the solution when

(67)

Setting and , one
obtains, after some lengthy but straightforward manipulations,
the solution of (65) and corresponding

so that after some further manipulations

(68)

G. Proof of Proposition 6

In the and fixed regime, the minimizer in (6) is
(as follows from (62)) so that

and (64) can be transformed to

from which one obtains

so that

and

(69)

Further analysis shows that the aforementioned approximation
(without term) is accurate when .

H. Proof of Theorem 3

This proof follows along the same lines as that of Theorem
1, which is summarized in the following. The optimization
problem is

(70)

The problem is also convex and strong duality holds so that the
KKT conditions are sufficient for optimality. The Lagrangian is

(71)

and the KKT conditions are

(72)

(73)

(74)

(75)

After some manipulations, one obtains

(76)

where and are the solutions of (72)–(75). is found from
(74)

(77)

and is found from (73)

(78)

which can be transformed, after some manipulations, to (30).
The alternative characterization of follows from the dual

problem

(79)

where is the dual function

(80)

and is found from (78)

(81)

I. Proof of Proposition 8

Consider the following function:

(82)

so that

(83)

i.e., is a pointwise minimum of affine functions
of (indexed by ) and thus concave [26].
To prove 2), observe that

(84)

with the equality iff , so that

(85)
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where . If ,
then all inequalities in (85) hold with equality, which implies

and thus . The reverse implication is obvious.
The bounds in 3) are obvious. To prove achievability con-

ditions, note that , which proves
, and follows from (26).

J. Proof of Proposition 9

is obvious. The other way follows from
(29) after some manipulations.

follows from Proposition 8. The other
way follows from (25).

is in 3) of Proposition 8. The other way
follows from 2) of the same Proposition. The case is
obvious.

K. Proof of Proposition 10

Consider the following function:

(86)

so that

(87)

i.e., is a pointwise minimum of affine functions
of (indexed by ) and thus concave [26].
To prove that it is strictly increasing, follow the same steps as

in the proof of Proposition 8.
The lower bound in (37) is in (26) and the upper bound is

obvious. follows from (25).
follows from Proposition 11.

L. Proof of Proposition 11

It is straightforward to see that the left-hand side of (30) is
a strictly increasing function of , which
takes values in so that a solution is unique. It also follows
that as so that expanding in Taylor series,

, one obtains from (30)

(88)

where we have used , from which it follows
that

(89)

and also so that

(90)

Equation (89) suggests that the approximation in (90) (without
term) is accurate when , which is also confirmed

by numerical analysis.

M. Proof of Proposition 12
It follows from (30) that as so we use the

expansion

(91)

to transform (30) to

(92)

from which it follows that

(93)

and also that . Using these, one finally obtains

(94)
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