
On Optimal Signaling over Secure MIMO Channels

Sergey Loyka, Charalambos D. Charalambous

Abstract—Optimal signalling over the wire-tap MIMO Gaus-
sian channel is studied under the total transmit power constraint.
A direct proof of the necessary condition of optimality (signaling
on the positive directions of the difference channel) is given
using the necessary KKT conditions. Based on it, an explicit,
closed-form solution for the optimal transmit covariance matrix
is given when the latter is of the full rank. The cases of weak
eavesdropper and high SNR are considered. It is shown that
the optimal covariance does not converge to a scaled identity in
the latter regime. A refined estimate of the rank of an optimal
covariance matrix is given for the general case.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) architecture has

gain prominence in both academia and industry as a spectrally-

efficient approach to wireless communications [1]. With wide

deployment of wireless networks, security issues have recently

gained additional importance, including information-theoretic

approach at the physical layer [2]. The physical-layer security

in MIMO systems has been recently under active investiga-

tion [3]-[10]. It was demonstrated that Gaussian signaling is

optimal over the wire-tap Gaussian MIMO channels [6]-[10]

and the optimal transmit covariance has been found for MISO

systems [3] or in the 2-2-1 system [7] under the total power

constraint and in the general MIMO case under the transmit

covariance matrix constraint [5]. The high-SNR regime (SNR

→ ∞) has been studied in [9]. The general case is still

an open problem under the total power constraint, since the

underlying optimization problem is not convex and explicit

solutions are not known, except for some special cases. The

main contribution of this paper is an explicit, closed-form

solution for the optimal full-rank covariance under the total

power constraint at finite SNR (Theorem 2). Theorem 1 sets

the foundation for this giving a direct proof (via the necessary

KKT conditions) to a necessary condition of optimality, which

is a transmission of the positive directions of the difference

channel. The cases of high-SNR and of weak eavesdropper are

elaborated in Corollaries 3 and 4. The optimal covariance of

Theorem 2 is shown to have some properties similar to those

of the conventional water-filling, but with a few remarkable

differences. In particular, the optimal covariance does not

converge to a scaled identity in the high-SNR case and thus

isotropic signaling is sub-optimal in this regime. Proposition

1 shows that a transmission on the positive eigenspace of

the difference channel satisfies the necessary condition and
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is a convex optimization problem (so that all powerful tools

of convex optimization apply [11]). Corollary 1 refines the

estimate of the optimal covariance matrix rank given in [10]

for the general case.

II. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard wire-tap Gaussian MIMO

channel model,

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)

where x = [x1, x2, ...xm]T ∈ Cm,1 is the transmitted

complex-valued signal vector of dimension m×1, “T” denotes

transposition, y1(2) ∈ Cn,1 are the received vectors at the

receiver (eavesdropper), ξ1(2) is the circularly-symmetric ad-

ditive white Gaussian noise at the receiver (eavesdropper) (nor-

malized to unit variance in each dimension), H1(2) ∈ Cn1(2),m

is the n1(2)×m matrix of the complex channel gains between

each Tx and each receive (eavesdropper) antenna, n1(2) and

m are the numbers of Rx (eavesdropper) and Tx antennas

respectively. The channels H1(2) are assumed to be quasistatic

(i.e., constant for a sufficiently long period of time so that

the infinite horizon information theory assumption holds) and

frequency-flat, with full channel state information (CSI) at the

Rx and Tx ends.

For a given transmit covariance matrix R = E {xx+},

where E {·} is statistical expectation, the maximum achievable

secure rate between the Tx and Rx (so that the rate between

the Tx and eavesdropper is zero) is [5]-[10]

C(R) = ln
|I+W1R|
|I+W2R| = C1(R)− C2(R) (2)

where negative C(R) is interpreted as zero rate, Wi =
H+

i Hi, ()
+

means Hermitian conjugation, and the secrecy

capacity subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (3)

where PT is the total transmit power (also the SNR since the

noise is normalized). It is well-known that the problem in (3)

is not convex in general and explicit solutions for the optimal

Tx covariance are not known except for some special cases

(e.g. low-SNR or MISO channels). It was conjectured in [10]

that an optimal transmission in (3) is on the directions where

the main channel is stronger than the eavesdropper one (i.e. on

the positive directions of the difference channel W1 −W2).

A similar conclusion, albeit in a different (indirect) form, has

been obtained in [9] using the degraded channel approach.

Theorem 1 below gives a direct formulation and proof of

this fact using the necessary KKT conditions, which is also



instrumental for further development. In particular, Theorem

2 gives an explicit, closed-form solution for the optimal full-

rank covariance in (3) at finite SNR. A number of additional

insights follow.

III. OPTIMAL SIGNALING: SOLUTIONS AND PROPERTIES

The following Theorem gives a necessary condition of the

optimality in (3).

Theorem 1: Let R∗ be an optimal covariance in (3),

R∗ = argmax
R≥0

C(R) s.t. trR ≤ PT

and let ui+ be its active eigenvector (i.e. corresponding to a

positive eigenvalue). Then,

u+
i+(W1 −W2)ui+ > 0 (4)

i.e. a necessary condition for an optimal signaling strategy in

(3) is to transit over the positive directions of W1−W2 (where

the legitimate channel is stronger than the eavesdropper) 1.

Proof: see the Appendix.

It was demonstrated in [10] that rank(R∗) < m unless

W1 > W2
2, i.e. an optimal transmission is of low-rank

over a non-degraded channel. The Corollary below gives more

precise characterization.

Corollary 1: Let W1 − W2 = W+ + W−, where

W+(−) collects positive (negative and zero) eigenmodes of

W1 −W2 (found from its eigenvalue decomposition). Then,

rank(R∗) ≤ rank(W+) ≤ m, i.e. the rank of an optimal

covariance R∗ does not exceed the number of positive eigen-

values of W1 −W2 (the rank of W+).
Proof: follows from (4) using the fact that the eigenvectors

ui+ are orthogonal to each other.

When rank(W+) = 1, the optimal covariance R∗ and

capacity follow from Corollary 13:

Cs = lnλ1, R∗ = PTu1u
+
1 (5)

where λ1, u1 are the largest eigenvalue and corresponding

eigenvector of (I+PTW2)
−1(I+PTW1) or, equivalently, the

largest generalized eigenvalue and corresponding eigenvector

of (I + PTW1, I + PTW2), so that transmit beamforming

on u1 is the optimal strategy. Note that this result is more

general than those in [3][7] as the latter two apply to a single

antenna channel (either at the receiver or eavesdropper) while

the result above holds for any number of antennas at any

end. Furthermore, the signaling at (5) is also optimal for any

rank(W+) ≥ 1 at low SNR, where λ1, u1 become the largest

eigenvalue and corresponding eigenvector of W1 −W2.

One way to achieve the necessary condition in (4) is to

transmit over the positive eigenspace of W1 − W2, as the

following Proposition shows.

1After this paper has been submitted, we were informed that a weaker result
(≥ instead of >) was independently established in [14].

2
W1 > W2 means that W1 −W2 is positive definite.

3This result has been obtained before, albeit in a different way, in [14].

Proposition 1: The following covariance matrix satisfies the

necessary condition of Theorem 1:

R′ = argmax
R≥0

C+(R) s.t. trR ≤ PT (6)

where

C+(R) = ln
|I+W1+R|
|I+W2+R| (7)

and Wi+ = P+WiP+, P+ = U+U
+
+ is the projection

matrix on the positive eigenspace of W1 − W2, U+ is a

semi-unitary matrix whose columns are the eigenvectors of

W1 −W2 corresponding to its positive eigenvalues: W+ =
U+D+U

+
+ > 0, and D+ is the diagonal matrix of the positive

eigenvalues. The optimal (maximizing) covariance R′ in (5)

satisfies

span{vi+(R′)} ∈ span{vi+(W1 −W2)} (8)

where {vi+(R)} denotes a set of eigenvectors corresponding

to positive eigenvalues of matrix R.

Proof: see Appendix.

It follows from (6) that the transmission takes places on the

projected channels Wi+ = P+WiP+. It should be noted that

the eigenvectors of the optimal covariance R′ in (5) are not

necessarily the same as those of W+. Rather, they span the

same sub-space. In one special case, R′ and W+ do have the

same eigenvectors.

Corollary 2: Consider the secure MIMO channel in (1) such

that rank(W+) = 1. Then

R′ = PTu+u
+
+ (9)

where u+ is the only active eigenvector of W+ (corresponding

to a positive eigenvalue), i.e. the optimal transmission is

unique and on the positive eigenvector of W+ with the full

available power.

Proof: follows immediately from Proposition 1.

The problem in (6) has further significance: while the

problem Cs = maxR≥0C(R) is not convex, so that powerful

tools of convex optimization [11] cannot be used, the problem

maxR≥0 C+(R) is convex, to which all machinery of convex

optimization can be applied. The following proposition makes

this precise.

Proposition 2: C+(R) is a non-negative, concave and

non-decreasing function of R (strictly positive, concave and

increasing when the active eigenmodes of R are in the span

of the active eigenmodes of W+).
Proof: see Appendix.

It follows from Proposition 2 that transmission with the full

available power is optimal: trR′ = PT .

Let us now consider the original problem in (3) and obtain

its solution R∗ when the latter is of full rank.

Theorem 2: Consider the case of W1 > W2 > 0 (a

degraded full-rank channel) and PT > PT0, where PT0 is a

certain threshold power (i.e. sufficiently high but finite SNR).

Then, R∗ is of full rank and is given by:

R∗ = UΛ1U
+ −W−1

1 (10)



where the columns of the unitary matrix U are the eigenvectors

of W−1
2 − W−1

1 > 0, Λ1 = diag{λ1i} > 0 is a diagonal

positive-definite matrix, where

λ1i =
µi

2

(
√

1 +
4

λµi
− 1

)

(11)

and µi > 0 are the eigenvalues of W−1
2 − W−1

1 ; λ > 0 is

found from the total power constraint trR∗ = PT as a unique

solution of the following equation:

∑

i

µi

2

√

1 +
4

λµi
= PT +

1

2
tr(W−1

1 +W−1
2 ) (12)

The corresponding secrecy capacity is

Cs = ln
|W1|
|W2|

+ ln
|Λ1|
|Λ2|

(13)

where Λ2 = Λ1 + diag{µi}. PT0 can be found as a unique

solution of the following equation:

λ1min(PT0)λmin(W1) = 1

where λ1min = mini{λ1i} and λmin(W1) is the minimum

eigenvalue of W1.

Proof: see Appendix.

It should be pointed out that Theorem 2 gives an exact

(not approximate) optimal covariance at finite SNR (no PT →
∞) since PT0 is a finite constant that depends only on W1

and W2 and can be found numerically (in fact, it can be not

high at all, depending on W1 and W2). Corollary 4 below

makes a more concrete statement. 1st term in (13) C∞ =
ln |W1|

|W2|
is SNR-independent and the 2nd one ∆C = ln |Λ1|

|Λ2|
<

0 monotonically increases with the SNR. Furthermore, Cs →
C∞, ∆C → 0 as PT → ∞, in agreement with Theorem 2 in

[9].

Note also that the second term in (10) de-emphasizes weak

eigenmodes of W1. Since λ is monotonically decreasing as PT

increases (this follows from (12)), λ1i monotonically increases

with PT , and approaches λ1i ≈
√

µi/λ at sufficiently high

SNR, which is in contrast with the conventional water-filling

(WF), where the uniform power allocation is optimal at high

SNR. Furthermore, it follows from (11) that λ1i increases

with µi, i.e. stronger eigenmodes of W−1
2 − W−1

1 (which

correspond to larger eigenmodes of W1 and weaker ones of

W2) receive larger power allocation, which follows the same

tendency as the conventional WF. It further follows from (9)

that when W1 and W2 have the same eigenvectors, R∗ also

has the same eigenvectors, i.e. the optimal signaling is on the

eigenvectors of W1(2). While the necessary condition for full-

rank R∗ (W1 > W2) has been obtained before in [10], no

solution was found for R∗, which is given in Theorem 2 here.

The condition W2 > 0 can be further removed via a limiting

transition W2ǫ = W2 + ǫI → W2 as ǫ → 0+. The case

of singular W1 can also be included by observing that R∗

puts no power on the null space of W1 so that all matrices

can be projected, without loss of generality, on the positive

eigenspace of W1 and Theorem 2 will apply. With this in

mind, the conditions of Theorem 2 are both sufficient and

necessary for an optimal covariance to be of full-rank.

It is instructive to consider the case when the required chan-

nel is much stronger than the eavesdropper one, W1 ≫ W2,

meaning that all eigenvalues of W1 are much larger those of

W2.

Corollary 3: Consider the secure MIMO channel in (1)

under the conditions of Theorem 2 and when the eavesdropper

channel is much weaker than the required one,

λi(W2) ≪ m(PT + trW−1
1 )−1/4 (14)

where λi(W2) is i-th eigenvalue of W2, e.g. when W2 → 0

and fixed W1. Then the optimal covariance in (10) becomes

R∗ ≈ U1(λ
−1I−D−1

1 )U+
1 − λ−2W2 (15)

where W1 = U1D1U
+
1 is the eigenvalue decomposition, so

that the columns of U1 are the eigenvectors, and the diagonal

entries of D1 are the eigenvalues.

Proof: see Appendix.

An interpretation of (15) is immediate: the first term is the

standard water-filling on the eigenmodes of W1 (which is the

capacity-achieving strategy for the regular MIMO channel)

and the second term is a correction due to the secrecy

requirement: those modes that spill over into the eavesdropper

channel get less power to accommodate the secrecy require-

ment.

Let us know consider the high-SNR regime.

Corollary 4: The optimal covariance R∗ in (10) in the high-

SNR regime

PT ≫ √
µ1

∑

i

√
µi (16)

(e.g. when PT → ∞), where µ1 = maxi µi, simplifies to

R∗ ≈ Udiag{di}U+, di =
PT

√
µi

∑

i

√
µi

(17)

The corresponding secrecy capacity is

Cs ≈ ln
|W1|
|W2|

− 1

PT

(

∑

i

√
µi

)2

(18)

Proof: follows from Theorem 2 along the same lines as that

of Corollary 3.

Note that the optimal signaling is on the eigenmodes of

W−1
2 − W−1

1 with the optimal power allocation given by

{di}. This somewhat resembles the conventional water-filling,

but also has a remarkable difference: unlike the conventional

WF, the secure WF in (17) does not converge to the uniform

one in the high-SNR regime 4. However, strong eigenmodes

of W−1
2 −W−1

1 (which corresponds to weak modes of W2

and strong ones of W1) do get more power, albeit in a form

different from that of the conventional WF.

4The sub-optimality of the isotropic signalling suggested in Theorem 2 of
[9] is hiding in the o(1) term there. 2nd term of Eq. (18) above refines that
o(1) term.



IV. CONCLUSION

Optimal signalling over the wire-tap Gaussian MIMO chan-

nel has been studied under the total power constraint. Based on

the necessary condition of the optimality, an explicit, closed-

form solution is given for the optimal transmit covariance

when the latter is of full rank. While the optimal signalling

has some similarities to the conventional water-filling, it also

reveals a number of differences: the optimal signalling does

not converge to isotropic at high SNR. The weak eavesdropper

and high-SNR regimes were considered, and a refined estimate

of the rank of the optimal covariance matrix is given for the

general case.
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V. APPENDIX

Proof of Theorem 1: Using Lagrange multiplier technique

[11][12], the optimization problem in (3) has the following

Lagrangian:

L = − ln |I+W1R|+ln |I+W2R|+λ(trR−PT )−tr(MR)
(19)

where λ ≥ 0 is a Lagrange multiplier responsible for the

power constraint trR ≤ PT and M ≥ 0 is a (positive

semi-definite) matrix Lagrange multiplier responsible for the

constraint R ≥ 0. The associated KKT conditions (see e.g.

[11]) can be expressed as:

λ(I+W1R)(I+RW2) = W1 −W2 +M (20)

MR = 0, λ(trR − PT ) = 0, (21)

R ≥ 0, M ≥ 0, λ ≥ 0, trR ≤ PT

where (20) is obtained from ∂L/∂R = 0,

∂L/∂R = (I+W2R)−1W2−(I+W1R)−1W1+λI−M = 0

(22)

and the two equalities in (21) are the complementary slackness

conditions. Since the original problem is not convex, the KKT

conditions are not sufficient for optimality [11]. However,

since the (affine) constraints trR ≤ PT , R ≥ 0 clearly

satisfy the Slater condition [11][12] and since the maximum

is achievable (since the constraint set is compact and the

objective function is continuous), the KKT conditions are

necessary for optimality [12]. We further need the following

technical Lemma.

Lemma 1: Let A,B,C ≥ 0 be positive semi-definite

matrices and let ABC be Hermitian. Then ABC ≥ 0.

Proof: Since A,C ≥ 0, there exists a non-singular matrix

S such that SAS+ = Da ≥ 0,SCS+ = Dc ≥ 0 are diagonal

[13]. Using the latter,

ABC = SDaBDcS
+

where B = S+BS ≥ 0. Observe further that

λi(DaBDc) = λi((DcDa)
1/2B(DcDa)

1/2) ≥ 0

(since (DcDa)
1/2B(DcDa)

1/2 ≥ 0), where λi(B) means

an eigenvalue of matrix B. Since DaBDc is Hermitian

(because ABC is) and has non-negative eigenvalues, it is

positive semi-definite [13], DaBDc ≥ 0. It follows that

ABC = SDaBDcS
+ ≥ 0. Q.E.D.

Note that this Lemma is a generalization of a well known

fact: AB ≥ 0 if A,B ≥ 0 and AB is Hermitian [13]. We

further prove that Z = (I + W1R)(I + RW2) > 0 when

R > 0; the case of singular R will follow from the standard

continuity argument [13]. Assuming R > 0,

Z = (R−1 +W1)R
2(R−1 +W2) (23)

Now identify the right-hand side of (23) with A,B,C and

use Lemma 1 to obtain Z ≥ 0 (noting that Z is Hermitian

from (20)). Therefore, it follows from (20) that W1 −W2 +
M ≥ 0 (since λ > 0, as λ = 0 implies W1 ≤ W2

and thus Cs = 0 - trivial case not considered here). Since

|(I+W1R)(I+RW2)| > 0, it further follows that Z > 0

and W1−W2+M > 0. Now, let ui+ be an active eigenvector

(corresponding to a positive eigenvalue) of R∗. Then,

0 < u+
i+(W1 −W2 +M)ui+ = u+

i+(W1 −W2)ui+

where the equality follows from MR = 0. Q.E.D.
With more efforts, a stronger statement can be proved:

U+
r+(W1 −W2)Ur+ > 0

where the columns of Ur+ are {ui+}.

Proof of Proposition 1: Notice that

C+(R) = ln
|I+W1+R|
|I+W2+R| = ln

|I+W1R+|
|I+W2R+|

(24)



where R+ = P+RP+ is the projected covariance. Any

component of R eliminated by the projection will not af-

fect C+(R) but can possibly increase the total power, since

trR+ ≤ trR. Therefore, the optimal covariance R′ in (6) has

to satisfy

span{vi+(R′)} ∈ span{U+} = span{vi+(W1 −W2)}
(25)

(in which case trR+ = trR) and thus clearly satisfies (4).

Q.E.D.

Proof of Proposition 2: We will need the following tech-

nical Lemma.

Lemma 2: Consider the function

f(X) = ln
∣

∣I−B(A+X)−1B
∣

∣ ,

where A,B,X ≥ 0 are positive semi-definite matrices, I is the

identity matrix, BA−1B ≤ I. It has the following properties:

1) f(X) is increasing in X: X1 ≤ X2 → f(X1) ≤ f(X2).
2) f(X) is concave in X:

f(αX1 + βX2) ≥ αf(X1) + βf(X2),

for α+ β = 1, 0 ≤ α, β ≤ 1.

Proof: 1st property follows from the (easy to verify) fact

that −B(A+X)−1B is increasing in X (in the matrix positive

definite ordering sense [13]). 2nd one is obtained from the

following chain argument:

f(αX1 + βX2) = ln
∣

∣I−B(A+ αX1 + βX2)
−1B

∣

∣ (26)

(a)

≥ ln
∣

∣I− αBA−1
1 B− βBA−1

2 B
∣

∣

(b)

≥ α ln
∣

∣I−BA−1
1 B

∣

∣+ β ln
∣

∣I−BA−1
2 B

∣

∣

= αf(X1) + βf(X2)

where Ai = A+Xi; (a) follows from the facts that F (X) =
X−1 is convex in X and F (X) = ln |X| is increasing [11][13];

(b) follows from the fact that F (X) = ln |X| is concave [11].

Q.E.D.
We now assume that W2+ > 0. The case of singular

W2+ will follow from the standard continuity argument [13].

Observe that

C+(R) = ln
|W1+|
|W2+|

+ ln

∣

∣W−1
1+ +R

∣

∣

∣

∣W−1
2+ +R

∣

∣

(27)

= c+ ln
∣

∣I−∆W(W−1
2+ +R)−1

∣

∣

= c+ ln
∣

∣

∣
I−∆W1/2(W−1

2+ +R)−1∆W1/2
∣

∣

∣

where c = ln |W1+| − ln |W2+| and ∆W = W−1
2+ −W−1

1+,

and apply Lemma 2 to the last term of the last expres-

sion in (27). It is easy to verify that BA−1B ≤ I (since

W−1
2+−W−1

1+ ≤ W−1
2+) and that B ≥ 0 (since W1+ ≥ W2+).

Proposition 2 follows. Q.E.D.

Proof of Theorem 2: It follows from Proposition 2 that

C(R) is concave when W1 > W2 (no need for projection) so

that the problem in (3) is convex and thus the KKT conditions

are sufficient for optimality. Assuming R > 0 and using M =
0 (which follows from MR = 0), one obtains from (22),

R−1
1 −R−1

2 = λI (28)

where Ri = W−1
i + R, i = 1, 2. Let R1 = UΛ1U

+ be

the eigenvalue decomposition, where the columns of unitary

matrix U are the eigenvectors, and Λ1 > 0 is a diago-

nal matrix of the corresponding eigenvalues. Using this in

(28), one obtains Λ−1
1 − (U+R2U)−1 = λI and therefore

U+R2U = Λ2 is diagonal, so that R2 = UΛ2U
+ is the

eigenvalue decomposition of R2, from which it follows that

R1 and R2 have the same eigenvectors. Using this in (28) one

obtains

Λ1 = (λI +Λ−1
2 )−1 (29)

Furthermore,

R2 −R1 = W−1
2 −W−1

1 = U(Λ2 −Λ1)U
+ (30)

so that the columns of U are also the eigenvectors of

W−1
2 −W−1

1 and the diagonal entries of Λ2−Λ1 = diag{µi}
are its eigenvalues. Combining the latter with (29), one

obtains after some manipulations (11). (10) follows from

R1 = W−1
1 +R and R1 = UΛ1U

+. It is straightforward to

see that λ > 0 (otherwise W1 ≤ W2), so that transmission

with the full power is optimal and (12) follows from the

power constraint trR = PT . For (10) to be a valid solution,

we need UΛ1U
+ > W−1

1 . This is insured by observing

that the left-hand side of (12) is monotonically decreasing

in λ, so that the latter is monotonically decreasing as PT

increases and, from (11), λ1i also monotonically increases.

Therefore, for sufficiently large PT , PT > PT0 for some finite

PT0, the minimum eigenvalue of Λ1 exceeds the maximum

one of W−1
1 and thus the condition UΛ1U

+ > W−1
1

follows. Therefore, (10)-(12) solve the KKT conditions and

thus achieve the global optimum. It can be further seen that

the solution is unique. Q.E.D.

Proof of Corollary 3: Using
√
1 + x ≈ 1 + x/2 − x2/8

when x ≪ 1 in (11), one obtains λ1i ≈ λ−1 + (λ2µi)
−1, and

using this in (12), one obtains λ ≈ m(PT + trW−1
1 )−1. The

condition x ≪ 1 is equivalent to λµi ≫ 4, which in turn is

equivalent to (14), and the latter also implies mini λi(W1) ≫
maxi λi(W2) (i.e. the eavesdropper channel is indeed much

weaker than the main one), from which it follows that W−1
2 −

W−1
1 ≈ W−1

2 , and applying these in (10), one obtains (15).

Q.E.D.


