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Abstract—Several optimization strategies for instantaneous
rate and/or power allocation in the coded V-BLAST are studied
analytically. Outage probabilities and system capacities of these
strategies in a spatial multiplexing system are compared under
generic settings. Since the conventional waterfilling algorithm
is suboptimal for the coded V-BLAST, a recently-proposed
”fractional waterfilling” algorithm is studied, which simultane-
ously maximizes the system capacity and minimizes the outage
probability. A comparative, closed-form performance analysis
of this and other algorithms is presented, including bounds on
the outage probability and its low-outage approximations. The
fractional waterfilling algorithm attains the full MIMO channel
diversity and outperforms the other algorithms by a wide margin.

I. INTRODUCTION

V-BLAST algorithm has received a significant attention as

a reasonable-complexity way to approach high spectral effi-

ciencies promised by information-theoretic studies of MIMO

channels [1]. Since it suffers from the error propagation effect,

a number of efforts have been reported to improve the perfor-

mance of the uncoded V-BLAST using adaptive power and/or

rate allocation techniques [2]-[5]. Uncoded systems, however,

are rare and most practical systems are coded. This motivates

the study of coded V-BLAST. While the error rate analysis of

coded systems is a formidable task hardly possible in a closed-

from (except for some special cases), the analysis becomes

feasible when powerful capacity-approaching codes are used

(e.g. LDPC, turbo-codes or polar codes) [6][7]. Following this

approach, we assume here that capacity-achieving temporal

codes are used for each stream in the V-BLAST, so that the

per-stream rates are set equal to the corresponding capacities

and there are no errors when streams are not in outage, and

also no error propagation in-between the streams.

This approach has been used by Zhang and Cioffi [9], who

considered an instantaneous optimization of power, rate and

antenna mapping for the coded zero-forcing (ZF) V-BLAST

to minimize the total transmit power for given data rate under

zero outage constraint, assuming capacity-achieving temporal

codes or realistic ones via an SNR gap to capacity. The

optimization in [9] is carried out under zero outage constraint,

which requires unlimited power investment into particularly

bad channel realizations (to support the target rate) and is

not feasible when the peak power is constrained (i.e. by an

RF power amplifier). Unlike [9], we allow non-zero outage
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probability and minimize it by proper power/rate allocation,

under the total instantaneous power constraint, which auto-

matically constraints the peak power as well. While [9] makes

use of the conventional waterfilling (WF) algorithm to assign

powers and rates, this algorithm does not achieve the maxi-

mum V-BLAST system capacity1 (because of the successive

interference cancelation) so that we consider here a recently-

proposed ”fractional waterfilling” (FWF) algorithm that does

maximize the system capacity [8]. While the complexity of the

new FWF algorithm is higher compared to the conventional

WF, its incremental complexity is small when the number of

transmitters is not too large, as in realistic MIMO systems.

Since [8] did not study the performance of the FWF, the

present paper concentrates on its closed-form performance

analysis, also in comparison to other known algorithms. To

the best of our knowledge, it is the first time when the outage

performance of waterfilling-type algorithms is presented in

a compact, closed form. In particular, this paper shows that

the FWF is superior to the conventional WF in terms of the

outage probability when applied to the coded ZF V-BLAST;

additionally, the FWF significantly outperforms the WF at

low SNR for particularly bad channel realizations. We also

consider instantaneous (per-stream) rate allocation (IRA) and

joint instantaneous power/rate allocation (IPRA) to minimize

the outage probability of the coded ZF V-BLAST under the

constrained total transmit power and a given target rate. Since

the total transmit power is limited, the peak power of RF

amplifiers is limited as well.

Section II introduces the system model. In Section III,

we briefly summarize the relevant prior results that are used

in the following analysis, including a description of the

fractional water-filling algorithm. A closed-form comparative

performance analysis of the IRA, the WF and the FWF is

presented in section IV. In the low outage regime, the WF

achieves the same diversity gain as the IRA, while the FWF

brings in an additional diversity gain, achieving the full MIMO

channel diversity (Corollary 2) and attaining simultaneously

the minimum possible outage probability and the maximum

system capacity under the total power constraint. In the low

rate (also known as wideband) regime, the outage probabilities

of all the instantaneous optimization strategies discussed in the

paper are found in explicit, closed form (Theorem 3). Section

V gives an example to compare the average and instantaneous

optimization, to demonstrate the superiority of the FWF and to

1The system capacity is the capacity of an extended channel, which includes
the channel itself and also the V-BLAST transmission/processing architecture.



validate the analytical results and conclusions via simulations.

Due to similar processing strategies, most of these results

also apply to multiuser detection and inter-symbols equaliza-

tion systems that use successive interference cancelation.

II. SYSTEM MODEL

Motivated by lower complexity and to make the analysis

feasible, we consider unordered ZF V-BLAST. The standard

baseband discrete-time MIMO system model is used [5],

r = HΛs + ξ =
∑m

i=1
hi

√
αisi + ξ (1)

where s = [s1, s2, ...sm]T and r = [r1, r2, ...rn]T are the

vectors representing the Tx and Rx symbols respectively, “T ”

denotes transposition, H = [h1,h2, ...hm] is the n×m matrix

of the complex channel gains between each Tx and each Rx

antenna, where hi denotes i-th column of H, n and m are the

numbers of Rx and Tx antennas respectively, n ≥ m, ξ is the

vector of circularly-symmetric additive white Gaussian noise

(AWGN), which is independent and identically distributed

(i.i.d.) in each receiver, Λ = diag
(√

α1, . . . ,
√

αm

)

, where

αi is the power allocated to the i-th transmitter (stream).

For the unoptimized V-BLAST, the total power is distributed

uniformly among the transmitters, α1 = α2 = ... = αm = 1.

The channel will be assumed to be either ergodic, in which

case the key performance measure is the ergodic system

capacity, or non-ergodic (quasi-static block-fading fading), in

which case the key performance measures are the outage

probability and the outage capacity and also the instantaneous

system capacity (for given channel realization) [7]. Details of

a mathematical model of the uncoded V-BLAST, on which our

model of the coded V-BLAST is based, and its analysis can

be found in [2][5][10] and are omitted here.

III. PRIOR RESULTS

Below, we briefly summarize the relevant prior results from

[8] to set the stage for further analysis in Section IV.

A. Instantaneous vs. Average Optimization

Let us consider a generic spatial multiplexing system (not

only V-BLAST) operating in a fading channel of generic

statistics (not only i.i.d. Rayleigh), which is quasi-static (non-

ergodic or ”slow block fading”). The main performance indi-

cator in this setting is the system outage probability, i.e. the

probability that the system cannot support a target total rate

mR [6][7],

Pout = Pr{C < mR} (2)

where C is the instantaneous (i.e. for given channel realization)

system capacity (i.e. the sum of per-stream capacities), and

an optimization strategy should target this measure. On the

other hand, when the channel is ergodic, the mean (ergodic)

capacity C is an appropriate performance measure and its

optimization is of interest. In both scenarios, the optimization

can be instantaneous (i.e. for each channel realization) or

average (i.e. based on the channel statistics), and may include

per-stream power, rate or joint power/rate allocation.

Let us compare the performance of four different opti-

mization strategies: average power and/or rate allocation αC

to maximize the mean capacity, average power/rate alloca-

tion αout to minimize the outage probability, instantaneous

power/rate allocation αC to maximize the instantaneous sys-

tem capacity, instantaneous power/rate allocation αout to

minimize the outage probability, all subject to the total power
∑m

i=1 αi = m constraint,

αC = arg max
α(γ0) C(α), (3)

αout = arg min
α(γ0) Pout(α), (4)

αC = arg max
α(γ0,H) C(α), (5)

αout = arg min
α(γ0,H) Pout(α), (6)

where C, C and Pout are considered as functions of the power

and/or rate allocation α 2, and γ0 is the average SNR. These

optimization strategies can be ordered as follows [8].

Theorem 1. The outage probabilities of the optimization

strategies in (3)-(6) are ordered as follows,

Pr{C(αC) < mR} ≥ Pr{C(αout) < mR} (7)

≥ Pr{C(αout) < mR} = P ⋆
out (8)

= Pr{C(αC) < mR} (9)

i.e. the instantaneous optimizations of the capacity and outage

probability achieve the same lowest outage probability P ⋆
out,

the average optimization of the outage probability gives an in-

termediate result, and the average optimization of the ergodic

capacity is the worst.

We further remark that under an average (or fixed) rate

allocation, the inequality in (8) becomes equality, i.e. instan-

taneous power allocation is not better than the average one.

The importance of (9) in Theorem 1 is due to the fact that

while the problem in (6) is non-convex, has multiple solutions

(see [8] for examples) and difficult to deal with in general,

either numerically or analytically, the problem in (5) has a

well-known solution via the waterfilling (when no successive

interference cancelation is used at the receiver) or via the

fractional waterfilling for the coded V-BLAST (see Section

III-C).

B. Instantaneous Rate Allocation (IRA)

Let us consider the optimum instantaneous rate allocation

(IRA) with the uniform power allocation, αi = 1, across

all streams of the coded V-BLAST. With the uniform rate

allocation, i.e. when the per-stream target rate is R, the system

outage takes place if any of the streams is not able to support

this rate, i.e. if the capacity of at least one stream is lower

than the target rate,

Pu
out = 1 −

m
∏

i=1

(1 − Pr{Ci < R}); (10)

2to simplify the notations, rate allocation is also incuded in α here.



where Ci = ln(1 + giγ0) is the instantaneous capacity of i-th
stream in [nat/s/Hz], gi = |hi⊥|2 is i-th stream power gain,

hi⊥ is i-th column of the channel matrix projected onto the

subspace orthogonal to span{hi+1, . . . ,hm}; we also used

the fact that in the i.i.d. Rayleigh fading channels different gi

are independent of each other [2][10].

When the IRA is employed and capacity-achieving codes

are used for each stream, the per-stream rates are set equal to

the corresponding per-stream instantaneous capacities Ci. The

system outage probability is then given by

P IRA
out = Pr

{

∑

i

Ci < mR

}

, (11)

i.e. the outage takes place only when the sum capacity is below

the target rate mR.

C. Joint Instantaneous Power/Rate Allocation (IPRA)

The IPRA solves the problem in (5), which also solves (6).

The key observation here is that, contrary to what one would

expect [9], the conventional waterfilling algorithm (WF) does

not provide an optimal solution to (5). Indeed, an implicit

assumption behind the conventional WF is that the channel

gains do not depend on the allocated power. This is not so for

the V-BLAST because the SIC forces the equivalent channel

gains gi = |hi⊥|2 to depend on the allocated powers, albeit

in a binary way: if some transmitters are not active (αi = 0),

there is no need to project out interference from those streams.

Thus, turning off i−th stream affects the gains of lower-

level streams g1...gi−1. This results in (5) being a non-convex

problem for the V-BLAST, for which the conventional WF is

in general not a solution. However, the problem can be split

into 2m−1 convex sub-problems, one per each set of inactive

transmitters, and each of the sub-problems can be solved via

the conventional WF algorithm. The following theorem [[8],

Theorem 5] makes this idea precise.

Theorem 2 (FWF). The joint optimum allocation of instan-

taneous power/rate for the coded V-BLAST (i.e. (5)) is given

by the Fractional Waterfilling Algorithm (FWF) below:

• A. Split the problem: for l = 1, ..., 2m−1

Select a set of participating transmitters: if i-th bit in m-

digit binary representation of 2l − 1 (l is an index of the

set) is l(i) = 1, then transmitter i participates in l-th set (1st

transmitter always participates).

Calculate the per-stream gains with interference from yet-

to-be-detected symbols projected out, gl
i = |hl

i⊥|2, h
l
i⊥ ⊥

{

hi+1l
(i+1), . . . ,hml(m)

}

, for i = 1, . . . , m.

• B. Do the WF on the set of participating transmitters:

Calculate the power allocation:

αl
i = l(i)(νl − 1/(γ0g

l
i))+,

where x+ = x if x > 0 and 0 otherwise, and the water level

νl is found from the total power constraint
∑m

i=1 αl
i = m. The

per-stream and total capacities are:

Cl
i = ln

(

1 + γ0α
l
ig

l
i

)

, Cl =

m
∑

i=1

Cl
i .

• C. Finalize: End for (l)

The optimum power and rate allocations are given by αl⋆

i

and Cl⋆

i , where l⋆ = arg maxl C
l.

While the FWF is more complex than the conventional WF,

its incremental complexity is low for small m. Following

Theorem 1, the FWF algorithm not only maximizes the

instantaneous capacity C but also minimizes the system outage

probability Pout and thus maximizes the outage capacity. As

the further analysis shows, the FWF outperforms the WF by

a wide margin.

IV. PERFORMANCE ANALYSIS

In this section, we present a comparative performance

analysis of the unoptimized and optimized systems in different

operating regimes.

A. Any SNR, any rate

Proposition 1. For any channel realization, the system capac-

ities of the coded V-BLAST with the FWF, the WF, the IRA and

the uniform power/rate allocation are bounded as follows:

ln (1 + mγ0gmax) ≤CFWF ≤ m ln (1 + γ0gmax) (12)

ln (1 + mγ0gmax⊥) ≤CWF ≤ m ln (1 + γ0gmax⊥) (13)

ln (1 + γ0gmax⊥) ≤CIRA ≤ m ln (1 + γ0gmax⊥) (14)

Cu = m ln
(

1 + γ0 min
i

|hi⊥|2
)

(15)

where gmax = maxi |hi|2, gmax⊥ = maxi |hi⊥|2 are the

maximum unprojected and projected stream gains. The bounds

are tight (i.e. there are channel realizations that achieve

them). The relationship Cu ≤ CIRA ≤ CWF ≤ CFWF

always holds. Moreover, Cu = CIRA = CWF = CFWF =
m ln

(

1 + γ0|h1|2
)

if and only if H
+
H = |h1|2I, where

I is the identity matrix, i.e the channel is orthogonal. No

optimization is required in this case.

Proof: The left expression in (12) is the capacity in

the regime with only one active transmitter, αimax
= m,

where imax = arg maxi |hi|2 (gimax
= |himax

|2 as there

is no interference to project out when only one stream is

active). Since the optimal capacity cannot be smaller, the lower

bound in (12) holds. The upper bound in (12) is obtained

by considering a hypothetical system where all per-stream

gains are equal to maxi |hi|2. The bounds for conventional

waterfilling (13) follow from the same reasoning. The dif-

ference between the two stems from the fact that the WF

is oblivious to the possibility that some transmitters may

be inactive and hence do not require projecting out their

subspace, so that the maximum possible gain for the WF is

maxi |hi⊥|2. The lower bound for IRA capacity in (14) is

the largest term in the sum CIRA =
∑

i ln
(

1 + γ0|hi⊥|2
)

.

The upper bound is obtained by upper bounding each term



of the sum. For the regular V-BLAST (uniform power/rate

allocation), the weakest stream dominates the performance:

Cu = m maxR {R ≤ Ci, i = 1 . . .m} = m mini Ci, which is

equivalent to (15).

Proposition 2. The outage probabilities of the FWF, the WF,

the IRA and the uniform power/rate allocation are ordered in

an arbitrary-fading channel as follows:

PFWF
out ≤ PWF

out ≤ P IRA
out ≤ Pu

out

with the equality if m = 1. In the i.i.d. Rayleigh-fading

channel, the equalities are achieved only if m = 1.

Proof: Each inequality follows from the fact that its left-

hand side corresponds to optimization over a feasible set that

is larger compared to that of its right-hand side.

Based on Proposition 1, the outage probabilities can now

be characterized in a more specific way.

Corollary 1. For any R and any γ0, the outage probabilities

of the coded V-BLAST with the uniform power/rate allocation,

the IRA, the WF and the FWF in the i.i.d. Rayleigh fading

channel are bounded as follows:

Fm
n (z) ≤ PFWF

out ≤ Fm
n (zm/m) (16)

m
∏

i=1

Fn−m+i (z) ≤ PWF
out ≤

m
∏

i=1

Fn−m+i (zm/m) (17)

m
∏

i=1

Fn−m+i (z) ≤ P IRA
out ≤

m
∏

i=1

Fn−m+i (zm) (18)

Pu
out = 1 −

m
∏

i=1

(1 − Fn−m+i (z)) (19)

where z = (eR − 1)/γ0, zm = (emR − 1)/γ0, Fk(x) = 1 −
e−x

∑k−1
l=0 xl/l! is the outage probability of k-th order MRC.

Proof: Observe that |hi|2 ∼ χ2
2n, all independent of each

other, and |hi⊥|2 ∼ χ2
2(n−m+i), and also independent of each

other [10]. For X ∼ χ2
2k, we have Pr {X < x} = Fk (x).

Using these facts, the bounds of Corollary 1 follow from the

bounds of Proposition 1.

B. Low outage probability regime

The diversity gains can now be characterized in the low-

outage regime based on Corollary 1. The diversity gain can

be found from [6]

d = − lim
γ0→∞

lnPout/ ln γ0. (20)

or by inspection when a closed-form low-outage approxima-

tion of Pout is available.

Corollary 2. For fixed R, the diversity gains of the unopti-

mized V-BLAST, the IRA, the WF and the FWF are related as

follows:

du = n − m + 1 ≤ dWF = dIRA

=

m
∑

i=1

(n − m + i) ≤ dFWF = nm

The equality is achieved for m = 1 only, i.e. only the FWF

achieves the full MIMO channel diversity nm for m > 13.

Proof: Using the well-known approximation Fk(x) =
xk/k! + o(xk), x → 0, in the upper and lower bounds to

Pout in each equation of Corollary 1 and substituting it into

(20), one observes that the lower and upper bounds give the

same diversity gain, which is therefore the diversity gain.

The instantaneous rate allocation is the most efficient of

all the techniques in terms of incremental improvement as it

brings significant diversity gain and keeps the rate close to the

capacity. When m > 1, the full MIMO channel diversity is

achieved by the FWF only.

C. Any SNR, low rate (wideband) regime

The R ≪ 1 regime here is also known as the wideband

regime [11] (since R is in [nat/s/Hz], i.e. the rate per unit

bandwidth), which is a popular solution for many systems (e.g.

CDMA).

Theorem 3. For any γ0 and low rate R ≪ 1, the outage prob-

abilities of the coded V-BLAST with the uniform power/rate

allocation, the IRA, the WF and the FWF in the i.i.d. Rayleigh

fading channel are given by4

Pu
out = 1 −

m
∏

i=1

(1 − Fn−m+i (x)) ≈ xn−m+1

(n − m + 1)!
, (21)

P IRA
out ≈ FdIRA

(mx) ≈ 1

dIRA!
(mx)

dIRA , (22)

PWF
out ≈

m
∏

i=1

Fn−m+i (x) ≈ xdIRA

∏m
i=1(n − m + i)!

(23)

PFWF
out ≈ Fm

n (x) ≈ xnm

(n!)m
(24)

where the second approximation in each case holds at the low

outage regime, x = R/γ0 ≪ 1.

Proof: Follows from Corollary 1 by applying the low rate

approximation emR − 1 ≈ mR and observing that the lower

and upper bounds coincide.

Note that the FWF not only has a higher diversity gain, but

also an SNR gain of
∏m

i=1 n!/(n − m + i)! over the WF.

D. Low SNR regime

The next result characterizes the optimization strategies at

the low SNR regime. We emphasize that low SNR does not

imply high error rate in coded systems, unlike uncoded ones.

For example, the outage probability of the coded system is

small at low SNR as long as R/γ0 ≪ 1. Many practical

systems (e.g. CDMA) operate in this regime [6][11].

Theorem 4. In the low SNR regime, mγ0 maxi |hi|2 ≪ 1,

the instantaneous capacities of the regular (unoptimized) V-

3This conclusion is not in contradiction to Corollary 9 of [8] since the latter
(as well as Theorem 7 in [8]) requires all streams to be active, which is not
the case for fixed R and γ0 → ∞.

4to the best of our knowledge, it is the first time when the outage probability
of the waterfilling algorithms is found in an explicit, closed form.



BLAST and of the IRA, the WF, and the FWF are given by

Cu ≈ mγ0 min
i

|hi⊥|2 (25)

CIRA ≈ γ0

m
∑

i=1

|hi⊥|2 (26)

CWF ≈ mγ0 max
i

|hi⊥|2 (27)

CFWF ≈ mγ0 max
i

|hi|2 (28)

and these capacities are attained by the following power/rate

allocations:

• (26) is attained by RIRA
i = γ0|hi⊥|2,

• (27) is attained by αWF
imax

= m, RWF
imax

= mγ0|himax⊥
|2, and

0 otherwise, where imax = arg maxi |hi⊥|2 is the strongest

projected channel,

• (28) is attained by αFWF
imax

= m, RFWF
imax

= mγ0|himax
|2

and 0 otherwise, where imax = arg maxi |hi|2 is the strongest

unprojected channel.

Proof: In the capacity expressions of Proposition 1, apply

the approximation ln (1 + x) ≈ x, which is valid for x ≪ 1,

and observe that the lower and upper bounds coincide.

It is clear from (27), (28) that the unordered FWF performs

as well as the WF combined with the optimal ordering.

Corollary 3. In the low SNR regime, the following holds:

1) Cu = CIRA = CWF = mγ0|h1⊥|2 if and only if

|h1⊥|2 = . . . = |hm⊥|2.

2) Cu = CWF if Cu = CIRA, i.e. if there is no advantage

in the IRA (compared to the unoptimized system), there is

no advantage in the WF either, only the FWF may bring

an improvement.

3) CWF = CFWF if and only if imax = arg maxi |hi⊥|2 =
m or himax

⊥ {himax+1, . . . ,hm}.

Additionally, it follows from Theorem 4 that the FWF

significantly outperforms the WF, CWF ≪ CFWF , when

maxi |hi⊥| ≪ maxi |hi| and their performance is close

otherwise.

V. EXAMPLE

Let us consider 2x2 V-BLAST in the i.i.d. Rayleigh fading

channel under the optimization strategies discussed above.

Outage probabilities of the V-BLAST with these strategies

obtained by Monte-Carlo simulations and the approximations

above are shown in Fig. 1. As follows from the analysis, both

the IRA and the FWF provide a significant improvement over

the unoptimized system. As per Corollary 2, the conventional

WF fails to achieve the minimum outage probability for a

given total rate and to provide any diversity gain over the IRA

(both have the diversity gain of 3), while the FWF achieves the

full MIMO diversity of 4, outperforming both the IRA and the

WF by a wide margin. Note also a significant advantage of the

instantaneous optimizations over the average ones. The low-

rate approximations in Theorem 3 are remarkably accurate.

Fig. 1. Outage probability vs. average SNR of the instantaneous optimization
strategies for 2 × 2 V-BLAST in i.i.d. Rayleigh fading channel, R = 0.1

[nat/sec/Hz], the approximations (lines) from Theorem 3 and Monte-Carlo
simulations (symbols); average power, rate and power/rate (APA, ARA and
APRA) allocations are also shown for comparison.

VI. CONCLUSION

Optimum instantaneous rate and joint power-rate allocations

for the coded V-BLAST have been studied. A number of

closed-form bounds and approximations have been given to

study the performance of the IRA, the FWF and the WF.

While the conventional WF algorithm fails to maximize the

capacity of the coded V-BLAST, the recently proposed FWF

maximizes its capacity and outperforms the other strategies by

a wide margin, achieving the full MIMO channel diversity.
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