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Abstract—Diversity-multiplexing tradeoff (DMT) was charac-
terized asymptotically (SNR-� infinity) for i.i.d. Rayleigh fading
channel by Zheng and Tse [1]. The SNR-asymptotic DMT over-
estimates the finite-SNR one [2]. This paper outlines a number
of additional limitations and difficulties of the DMT framework
and discusses their implications. Using the recent results on the
size-asymptotic (in the number of antennas) outage capacity
distribution, the finite-SNR, size-asymptotic DMT is derived
for a broad class of fading distributions. The SNR range over
which the finite-SNR DMT is accurately approximated by the
SNR-asymptotic one is characterized. The multiplexing gain def-
inition is shown to affect critically this range and thus should be
carefully selected, so that the SNR-asymptotic DMT is an accurate
approximation at realistic SNR values and thus has operational
significance to be used as a design criterion. The finite-SNR
diversity gain is shown to decrease with correlation and power
imbalance in a broad class of fading channels, and such an effect
is described in a compact, closed form. Complete characterization
of the outage probability (or outage capacity) requires not only
the finite-SNR DMT, but also the SNR offset, which is introduced
and investigated as well. This offset, which is not accounted for in
the DMT framework, is shown to have a significant impact on the
outage probability for a broad class of fading channels, especially
when the multiplexing gain is small. The analytical results and
conclusions are validated via extensive Monte Carlo simulations.
Overall, the size-asymptotic DMT represents a valuable alterna-
tive to the SNR-asymptotic one.

Index Terms—Diversity-multiplexing tradeoff (DMT), MIMO
fading channel, outage probability/capacity, spatial correlation.

I. INTRODUCTION

M ULTIANTENNA (MIMO) systems are able to provide
either high spectral efficiency (spatial multiplexing) or

low error rate (high diversity) via exploiting multiple degrees of
freedom available in the channel, but not both simultaneously
as there is a fundamental tradeoff between the two. This di-
versity-multiplexing tradeoff (DMT) is best characterized using
the concepts of multiplexing and diversity gains [1]. Fundamen-
tally, this is a tradeoff between the outage probability , i.e.,
the probability that the fading channel is not able to support the
transmission rate , and the rate , which can be expressed via
the outage capacity distribution

(1)
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where is the instantaneous channel capacity (i.e., capacity
of a given channel realization), and is its cumulative
distribution function (cdf). Defining the multiplexing gain as

(2)

where is the average SNR at the receiver, and the diversity
gain as1

(3)

the SNR-asymptotic tradeoff for the independent
identically distributed (i.i.d.) Rayleigh fading channel with the
coherence time in symbols can be compactly
expressed as [1]

(4)

where , are the number of transmit (Tx), receive (Rx) an-
tennas, for integer values of , and using the linear interpolation
in-between. The motivation for the definition of in (2) is that
the mean (ergodic) capacity scales as at high
SNR

(5)

and the motivation for the definition of in (3) is that scales
as at high SNR

(6)

where is a constant independent of the SNR2. The DMT in (4)
has been extended to multiple-access channels in [3].

While the SNR-asymptotic approach provides a significant
insight into MIMO channels and also into performance of var-
ious systems that exploit such channels, it has also a number
of limitations. Specifically, it does not say anything about op-
erational significance of and at realistic (i.e., low to mod-
erate) SNR. In other words, how high is the SNR required to
approach the asymptotes in (2), (3) with reasonable accuracy,
so that, for example, can be used to accurately estimate
using (6) and (4)? It was observed in [2], based on a lower bound
on for Rayleigh and Rician channels, that the finite-SNR
DMT lies well below the curve in (4), and the convergence of
the finite-SNR DMT to the asymptotic value in (4) as the SNR

1While the original definition in [1] employed the average error rate, the def-
inition in (3) is equivalent to it since the average error rate is dominated by the
outage probability [35]. This definition has also been used in [2].

2But, as we demonstrate later on, this constant is a function of the multi-
plexing gain and limits the applicability of the SNR-asymptotic DMT, even at
high SNR, for some systems.
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grows is slow, so that (4) becomes an accurate approximation for
the finite-SNR DMT only at unrealistically high SNR. There-
fore, proper modifications to the asymptotic results and defi-
nitions are required to improve its accuracy for realistic SNR
values. Using the SNR-asymptotic DMT to compare
two systems may give incorrect results at low to moderate SNR.
The estimates of finite-SNR DMT based on lower bounds on
the outage probability in correlated Rayleigh and Rician chan-
nels obtained in [2] are not in an explicit closed-form (e.g., (4))
and require a numerical procedure to evaluate, which limits the
insight that can be extracted from such results.

Another approach to the problem has been presented in [4]
and [5], where the rate is not required anymore to satisfy the con-
dition in (2), but rather belongs to a rate region

, . Based on the concept of rate
regions, it has been demonstrated that there exists a tradeoff be-
tween the outage probability and the rate termed “throughput-
reliability tradeoff (TRT),” which can be expressed, for the i.i.d.
Rayleigh fading channel, in a compact form as

(7)

where , .
While the rigorous result still requires , the TRT is more
accurate at finite SNR values compared to (4), and it provides
a reasonably accurate finite-SNR answer to the important ques-
tion “what does a 3 dB buy in MIMO channels?” [5]. However,
(7) does overestimate the outage probability at low to moderate
SNR values [4].

While the original DMT formulation of Zheng and Tse is lim-
ited to i.i.d. Rayleigh fading channels, a generalization to a class
of channels satisfying a number of conditions on the distribu-
tion function (including Rician, Nakagami, and Weibull fading,
which may be nonidentical or correlated, provided that the cor-
relation matrices are of full rank) has been presented in [6]. In
particular, it has been shown that full-rank correlation does not
affect the DMT, confirming the earlier result in [2] for Rayleigh
and Rician channels, and that the DMT is the same in the Rician
and Rayleigh channels. Similarly to the original SNR-asymp-
totic DMT, the results in [6] require . An in-depth
study of the DMT in the uncorrelated Rician channel have been
presented in [7], confirming the earlier result in [6] that the
SNR-asymptotic DMT of Rayleigh and Rician channels are the
same. While most of the results in [7] still require ,
a finite-SNR DMT has been presented for SIMO/MISO chan-
nels. The SNR-asymptotic DMT of double-scattering MIMO
channels under Rayleigh fading has been found in [8], which,
in the case of a single double-scattering process (equivalent to
the single keyhole channel in [26]), is given by [9]

(8)

i.e the DMT curve of the single keyhole channel is significantly
lower comparing to that of the full-rank Rayleigh-fading chan-
nels [compare (8) to (4): while the maximum diversity gain in
(8) is , it is in (4)]. It was also elegantly demon-
strated in [8], based on asymptotic singular value inequalities,

that full-rank correlation does not affect the DMT for any fading
distribution.

Other directions of active research in this area include the
DMT studies of frequency-selective channels [11], of channels
with antenna selection [12], of half/full duplex relay channels
under various protocols [13]–[15], of ARQ channels [17] and
the impact of partial channel state information at the transmitter
[16]. Finally, inspired by the DMT framework, a number of
space-time coding techniques have been proposed that achieve
the diversity-multiplexing tradeoff [18]–[22]. In particular,
using an explicit code construction, it has been demonstrated
in [19] that the DMT for is the same as that with

, i.e., the minimum number of symbols required
to achieve the DMT is rather than .

In the present paper, we adopt a different approach to DMT
analysis, which allows us to evaluate a finite-SNR DMT in a
closed form for a broad class of fading channels. To evaluate the
DMT for arbitrary SNR in a certain channel, one would need to
know the outage capacity distribution of that channel.
While some results of this kind are available in the literature,
their complexity prevents any analytical development, which is
the ultimate reason for using in most studies. On the
other hand, a number of compact analytical results, which hold
at finite SNR, have recently appeared on the outage capacity
distribution of asymptotically large systems, i.e., when either

or , or both [23]–[30]. For a broad class of
fading distributions (under mild technical conditions), it turns
out to be Gaussian with the mean and the variance determined
by the SNR and specifics of the channel.

We exploit these size-asymptotic results to derive the diver-
sity-multiplexing tradeoff at finite SNR and also for a broad class
of fading distributions (e.g., not necessarily Rayleigh i.i.d. chan-
nels), which we term here “size-asymptotic DMT” to distinguish
it from the SNR-asymptotic one in (4). The advantage of this ap-
proach is that its results apply at any finite SNR and, thus, have
operational significance at realistic SNR values. Furthermore,
since the fading distribution is allowed to belong to a broad class
rather than being narrowly defined, the results are robust from the
practical viewpoint. Since all practical systems operate at finite
SNR, the SNR-asymptotic DMT in (4) serves only as an approx-
imation. It is thus important to evaluate the rate of convergence to
the limit in (4). Our approach demonstrates that the convergence
of the finite-SNR DMT to the SNR-asymptotic one in (4) as the
SNR grows is very slow (as ) for moderately-large sys-
tems and also depends on the system size and multiplexing
gain : while the convergence to the SNR asymptote in (4) is
achieved at high but realistic SNR values (e.g., 20 dB) for smaller
systems (e.g., 2 2) and large , it is only achieved at unrealis-
tically high SNR (e.g., 80 dB) for larger systems (e.g., 10 10).
On the other hand, the size-asymptotic capacity distributions re-
sult in compact closed-form approximations of the DMT at real-
istic SNR values, which are also sufficiently accurate for small
systems (e.g., 2 2)3.

The multiplexing gain definition is shown to affect critically
the rate of convergence of the finite-SNR DMT to the SNR-
asymptotic one: when the multiplexing gain is defined via the

3This follows from our results on the size-asymptotic DMT in Section III, and
also from earlier results in [23]–[30] on the outage capacity distribution under
fixed rate (which corresponds to � � �).
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mean (ergodic) capacity, the convergence (within reasonable
accuracy) takes place at realistic SNR values. Furthermore, in
this case the diversity gain can also be used to estimate the outage
probability with reasonable accuracy. The multiplexing gain
definition via the high-SNR asymptote of the mean capacity (as
in [1]) results in very slow rate of convergence for moderate to
large systems and, hence, the SNR-asymptotic DMT cannot be
used at realistic SNR values. For this definition, the high-SNR
threshold required to achieve the DMT in (4) within reasonable
accuracy increases exponentially in the number of antennas
and in the multiplexing gain. Furthermore, the SNR-asymptotic
diversity gain in (3) cannot be used alone to estimate in
(6) at any SNR (even very large) since the constant , termed
“SNR offset”, can be very large (e.g., ) for moderate to large
systems. The SNR offset can be somewhat eliminated by proper
modifications of (2) and (3), which speed up the convergence
in SNR, but the problem still persists. On the contrary, the
size-asymptotic approach which we advocate here provides not
only the finite-SNR DMT, but also the SNR offset and thus an
accurate estimate of the outage probability (unless the SNR is
very high). The finite-SNR diversity gain is shown to decrease
with correlation and power imbalance in the channel according
to the measure of the latter two introduced in [26], [29], i.e.,
unlike the SNR-asymptotic DMT, the size-asymptotic DMT ad-
equately describes the outage probability in correlated channels.
Furthermore, the effect of correlation and power imbalance on
the finite-SNR DMT is described in a compact, closed form for
a broad class of fading distributions.

Systems with unequal number of Tx and Rx antennas exhibit
qualitatively-different behavior from those with equal number
of antennas: while the size-asymptotic DMT of the latter con-
verges to the SNR-asymptotic DMT as the SNR grows, that of
the former does not. The size-asymptotic DMT does however
provide an accurate approximation of the true DMT at low to
moderately-high SNR, even for a modest number of antennas.
In this case, the size-asymptotic DMT is complementary to the
SNR-asymptotic one: while the latter is accurate at very high
SNR, the former is accurate at low to moderately-high SNR.
Combining these two, one obtains a DMT estimate that is accu-
rate at the whole SNR range.

Systems/codes are often designed and compared based on
their SNR-asymptotic DMT [18]–[22]. However, better DMT
does not imply better outage probability at finite SNR, because
of the contribution of the SNR offset ignored in the DMT frame-
work. Likewise, equal DMT does not imply equal outage prob-
ability. These qualitative observations are substantiated in the
paper via a quantitative analysis based on the size-asymptotic
theory. The main results are summarized as follows:

• The size-asymptotic, finite-SNR DMT is derived for a
broad class of full-rank and rank-deficient fading channels,
which is not only accurate at realistic SNR values, but is
also an important part in an accurate characterization of
the outage probability. (Theorems 4–6, Propositions 3, 4).

• The SNR offset, which is a missing link between the diver-
sity gain and the outage probability, is introduced and char-
acterized via the size-asymptotic theory for a broad class
of fading channels. The diversity gain along is shown to be
inadequate in characterizing the outage probability. While

the multiplexing gain definition via the mean capacity re-
sults in a moderate SNR offset, the other definitions (via
the high-SNR approximations of the mean capacity) result
in a very high SNR offset (Theorem 4, Proposition 3).

• A number of limitations and difficulties of the DMT
framework at finite SNR are discussed. This includes a
significant impact of the multiplexing gain definition on
the finite-SNR DMT (unlike the SNR-asymptotic one),
very slow convergence of the finite-SNR DMT to the
SNR-asymptotic one, and anomalous behavior of the
outage probability at low to moderately high SNR under
the DMT framework. (Section III-A).

• Correlation and power imbalance are shown to have a neg-
ative impact on the finite-SNR DMT, which is character-
ized for a broad class of fading channels via the measure of
correlation and power imbalance introduced in [26], [29].
(Theorems 5, 6)

• The outage capacity distribution of rank-deficient (double-
scattering, multi-keyholes, relay) correlated channels sub-
ject to a broad class of fading distributions is obtained in
the size-asymptotic regime (Theorem 3).

The rest of the paper is organized as follows. In Section II, we
introduce the basic system model and briefly review the asymp-
totic outage capacity distributions (Theorems 1–3). Section III
discusses the main limitations and difficulties of the DMT
framework and presents the size-asymptotic, finite-SNR DMT
and SNR offset for a broad class of full-rank and rank-deficient
fading channels (Theorems 4–6, Propositions 3, 4). Finally,
Section IV concludes the paper. The proofs are collected in
Appendix.

II. SYSTEM MODEL AND OUTAGE CAPACITY DISTRIBUTION

The standard baseband discrete-time system model is adopted

(9)

where and are the Tx and Rx vectors correspondingly, is
the frequency-flat, block-fading channel matrix, i.e., the
matrix of the complex channel gains between each Tx and each
Rx antenna, and are the numbers of Tx and Rx antennas,
and is the additive white Gaussian noise (AWGN), which is as-
sumed to be , i.e., independent and identically dis-
tributed (i.i.d.) in each branch. The assumptions on the distri-
bution of follow those of the asymptotic capacity distribu-
tions (discussed later): the entries of are assumed to be either:
(i) i.i.d. but otherwise arbitrary fading (this includes Rayleigh
fading as a special case) [27]; (ii) unitary-independent-unitary
(UIU) [28]; (iii) correlated Rayleigh-fading with separable cor-
relation structure [24], [30]; or (iv) follow the statistics of the
correlated double-scattering or keyhole channel [26], [29].

When full channel state information (CSI) is available at the
Rx end but no CSI at the Tx end, the instantaneous channel
capacity (i.e., the capacity of a given channel realization ) in
nats/s/Hz is given by the celebrated log-det formula [31], [32]

(10)

where is the average SNR per Rx antenna (contributed by all
Tx antennas), “ ” denotes conjugate transpose.
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For large , , the distribution of takes on a remarkably
simple form in a number of cases4:

Theorem 1: Let be an channel matrix whose entries
are i.i.d. zero mean random variables with unit variance and

. As and is a constant,
the instantaneous capacity in (10) is asymptotically (in )
Gaussian, with the following mean and variance :

(11)

(12)

where .
Proof: See [27, Theorem 2.76].

Moreover, from [28, Theorem 5], the instantaneous capacity
of a channel whose channel matrix has independent but not
necessarily identically distributed entries is also asymptotically
Gaussian, as both , with the mean and variance de-
fined by (11) and (12), respectively, if the channel gain matrix

is asymptotically mean double-regular (see [28, Defini-
tion 3]). This implies that the instantaneous capacity of a broad
class of so-called unitary-independent-unitary (UIU) channels
[28] is also asymptotically Gaussian.

At moderate to high SNR, (11) and (12) can be approximated
as5

(13)

where is the SNR offset

.
(14)

Note that Theorem 1 applies to a broad class of channels, not
only Rayleigh or Rician ones (only these channels were consid-
ered in [1], [2]), and also includes the channels not considered
in [6].

4Other asymptotic results are also available in the literature. However, we will
rely only on these theorems in the present paper.

5Similar approximations, but without ��
�
� term, can be found elsewhere

in the literature. They, however, become accurate for significantly larger SNR,
� � �� � � � �� ��, while the approximation in (13) is already accurate at � �
� ��.

Theorem 2: Let be an matrix of a Rayleigh-fading
channel with separable (Kronecker) correlation struc-
ture, such that , where

, are transmit and
receive correlation matrices, respectively, operator
creates a column vector by stacking the elements of colum-
nwise, is the Kronecker product, and is the transpose of

. Then, as , and

(15)

where and are spectral and Frobenius norms respec-
tively, the instantaneous capacity in (10) is asymptotically
Gaussian with the following mean and variance

(16)

(17)

where , , are the eigenvalues of ,
is the SNR offset, and the approximation

holds at high SNR, when , under the normalization
.

Proof: See [24], [25].

When both and is a constant, it
has been shown that under certain general conditions on the
channel correlation, the instantaneous capacity of a Rayleigh-
fading channel with the Kronecker correlation structure is also
asymptotically Gaussian [30]. Note that the UIU channels con-
sidered in [[28], Theorem 5] and those in [30] do not overlap,
unless , (uncorrelated case).

Theorems 1 and 2 apply to full-rank channels. Rank-deficient
channels can be considered via the multi-keyhole model in [26],
[29]. Using [26, Theorems 4, 7], [25, Comment 5], and Von-
Neumann trace inequality [37], the following theorem follows.

Theorem 3: Consider a rank-deficient channel of the form
, , where

are complex modal amplitudes, and are modal Tx and
Rx channel vectors, which are independent of each other, with
correlation matrices , .
Assume the following conditions hold:

(a) , , where and
are zero mean, unit variance, complex circular sym-
metric random vectors with i.i.d. entries (not necessarily
Gaussian),

(b) for some and ,
where is the central moment of
of order , and is any entry of or ,

(c)
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As , the instantaneous capacity of this channel
is asymptotically Gaussian with the following mean and
variance:

(18)

where is the total SNR (combined from all Rx antennas),
is the SNR offset, ,
, and is any entry of .

The approximation holds at moderate to high SNR, when
. If , are Gaussian, then

.
Proof: See Appendix.

It should be noted that the channel model in Theorem 3 co-
incides with the amplify-and-forward relay channel when each
relay node has a single antenna and the relay noise is negligible
(see [41] for examples of such cases). Therefore, under this con-
dition, the relay channel will have the same outage capacity and
the DMT as the multikeyhole one. Additionally, from [29, The-
orem 2], the channel in Theorem 3 converges to a Rayleigh-
fading one as , whose outage capacity is also asymp-
totically Gaussian [30]. The condition (c) in Theorem 3 implies
that the channel is “asymptotically uncorrelated” in the sense
that the measure of correlation and power imbalance approaches
zero [25, Comment 5].

Using the asymptotic outage capacity distributions above, the
outage probability can now be compactly expressed as

(19)

where . It follows from (19)
that reliable transmission (low ) is possible when

and, for a given rate, the larger the mean capacity and the
smaller the variance , the smaller is. In the following
sections, we exploit (19) to evaluate the finite-SNR DMT.

III. FINITE-SNR DMT VIA SIZE-ASYMPTOTIC

CAPACITY DISTRIBUTION

We begin with a motivation of the size-asymptotic analysis as
an alternative to the SNR-asymptotic one by pointing out some
limitations and difficulties of the DMT framework when applied
to finite (realistic) SNR values.

A. Limitations and Difficulties of the DMT Framework at
Finite SNR

Multiplexing Gain Definitions: While a finite-SNR DMT
analysis requires using finite-SNR analogs of the definitions in

(2), (3), their straightforward extensions, i.e.

(20)

produce a number of difficulties pointed out below. In partic-
ular, the convergence of the finite-SNR DMT to the asymptotic
one in (4) as the SNR grows is very slow and can be signifi-
cantly improved if is defined via , or via , which is
motivated by (13) and takes into account the SNR offset6

(21)

(22)

where (21) defines the rate via the mean capacity per degree of
freedom, . Note that, at finite SNR,
corresponds to . While the SNR-asymptotic DMT is the
same for all 3 definitions of the multiplexing gain, there is a sig-
nificant difference at finite SNR, both in terms of diversity gain
and SNR offset. The difference in diversity gains does not dis-
appear unless the SNR is unreasonably high, and the difference
in SNR offsets does not disappear at any SNR, does not matter
how high. This motivates the study of all three definitions to se-
lect the best one at finite SNR.

Diversity Gain and SNR Offset: Another finite-SNR diffi-
culty is that when behaves as in (6), which serves as a
baseline model for the finite-SNR DMT analysis, the finite-SNR
diversity gain includes the effect of the
SNR offset and is not equal to the “true” diversity gain , un-
less is very (unrealistically) high. The difference between

and can be significant when the SNR offset is significant
(i.e., either too high or too low). A definition of the finite-SNR
diversity gain introduced in [2] partially eliminates this problem
and captures the differential effect of diversity, i.e., how much
increase in SNR is required to decrease by certain amount

(23)

When is as in (6) and , are SNR independent, ,
i.e., this definition recovers precisely the “true” diversity gain at
finite SNR. Furthermore, since the differential diversity gain
is insensitive to the SNR offset in (6), the convergence to the
SNR-asymptotic value is faster. For sufficiently high SNR, both
definitions of the diversity gain [in (23) and (20)] give similar re-
sults and, when the limit exists, [7].
However, cannot be reliably estimated from alone since
it captures only the differential effect of increasing SNR and is
independent of the offset , which may significantly affect
(see, for example, Fig. 1). Motivated by (6), we define the SNR
offset for given as

(24)

On the other hand, given both the diversity gain and the SNR
offset, the outage probability can be estimated from (6). Thus,
the SNR offset provides the missing link between the DMT and

6Reference [33] gives a detailed discussion of the importance of SNR offset
in the capacity analysis of MIMO systems. Note that this offset is missing in (5).
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Fig. 1. Outage probability versus SNR for various definitions of the multi-
plexing gain; � � � � ��, � � �, ���� � �; solid line—asymptotic
from (11), (12), (19), circles—Monte Carlo simulations (�� trials); dashed
line—� � ��� . Note high SNR offset �� � �� �. Asymptotic approxima-
tion is accurate for all multiplexing gain definitions but (20) at very high SNR.

outage probability7, and also indicates how far away the rough
estimate is. Using the size-asymptotic results
above, the SNR offset can be evaluated with sufficient accuracy,
even for small to moderate-size systems, as demonstrated.

Outage Probability in the DMT Framework: While the di-
versity gain provides some indication of the performance, its
usefulness lies in its relation with the outage probability (or
the average error rate) as the latter is the ultimate performance
indicator, not the diversity gain itself. To demonstrate the im-
pact of multiplexing gain definitions and to test the suitability
of size-asymptotic capacity distribution to predict the outage
probability of finite-size systems under the DMT framework,
Figs. 1 and 2 compare the outage probability versus SNR from
the asymptotic result in (19) (evaluated based on and
given by Theorem 1) to Monte Carlo (MC) simulations for i.i.d.
Rayleigh-fading channel using the multiplexing gain definitions
in (20)–(22). A good agreement between the size-asymptotic
and MC results is observed even for small system size

, demonstrating that the size-asymptotic theory is prac-
tically relevant. Figs. 1 and 2 also demonstrate a limitation of
the DMT framework with the multiplexing gain definitions in
(20) and (22), which is the anomalous behavior of the outage
probability (increasing with the SNR) for low to moderate SNR
range. This is due to the fact that the rate on the corre-
sponding interval, but it increases faster than with the SNR,
so that decreases; after the anomalous region this
tendency is reversed. This never happens if multiplexing gain is
defined via the mean capacity as in (21). Also note a high SNR
offset ( , see (6)) in for and .
This makes it impossible to estimate from the diversity
gain alone, i.e., using (as suggested in [35]), no
matter how high the SNR is . The rough estimation
works only if is on the order of unity. When this is not the case

has to be accounted for as well.

7While, for most channels at finite SNR, � and � are not SNR-independent
constants but rather slowly-varying functions of the SNR, the DMT framework
can still be used.

Fig. 2. Outage probability versus SNR for various definitions of the multi-
plexing gain; � � � � �, � � �, ���� � �; solid line—asymptotic from (11),
(12), (19), circles—Monte Carlo simulations (�� trials); dashed line—� �
��� . The SNR offset is small in this case �� � �� and the convergence is
achieved at realistic SNR. Asymptotic approximation is accurate for all mul-
tiplexing gain definitions. The exact outage is obtained by integration of the
Wishart eigenvalue density (see, e.g., [31]).

The following proposition formalizes this limitation of the
DMT framework for a broad class of fading channels.

Proposition 1: Consider a finite SNR DMT, such that
as . Assume that and that the

outage probability is as in (6). Then, as , i.e.,
unbounded SNR offset for small .

Proof: See Appendix.

Majority of known channels satisfy the conditions of Propo-
sition 1, i.e., the diversity gain is bounded for small , and the
probability of zero channel capacity is zero. Proposition 1 im-
plies that when is small, there always is a very significant SNR
offset under the model in (6). We conclude that when comparing
two systems, does not imply at finite
SNR, since it may be that and the latter effect is dom-
inant. Likewise, does not imply at
any SNR, unless . Hence, using the DMT curves alone
to compare two systems may produce incorrect results, even at
very high SNR. This suggests that the SNR offset should also
be included in the DMT framework. Fig. 3 shows the offset
versus evaluated for a 2 2 i.i.d. Rayleigh-fading channel at

. It follows that at and the rough esti-
mate is reasonably accurate. However, rapidly
decreases at and it is impossible to estimate from the
rough approximation above in this range. This observation may
have significant consequences for the design of DMT-achieving
codes (see [18]–[22] for examples of such designs).

The problem of significant SNR offset is somewhat elimi-
nated, for moderate to high , by using the multiplexing gain
definition in (22), as becomes a moderate constant, but the
anomalous behavior of the outage probability is not eliminated
so that its estimation from the diversity gain alone at
is not possible. Using the definition in (21) eliminates most of
the problem, leaving only the moderate offset . For
smaller systems (Fig. 2), this problem is not that severe and the
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Fig. 3. SNR offset versus multiplexing gain (21) in 2� 2 i.i.d. Rayleigh fading
channel at ��� � �� ��. While the offset is not significant at � � ��	,
it rapidly becomes significant at � � � so that the rough estimate � �

��� is not accurate anymore. The Gaussian approximation is not accurate
when � � �, but is accurate when multiplexing gain is moderate to high, which
is a practically important range for modern systems (see, e.g., [40]).

SNR offset disappears at , but the anomalous be-
havior of the outage probability at low to moderate SNR for all
definitions of the multiplexing gain but in (21) is still present.

B. Size-Asymptotic DMT and SNR Offset

In this section, the finite-SNR DMT is analyzed via the size-
asymptotic capacity distribution in (19) under the multiplexing
gain definitions in (20)–(22) to show their advantages and dis-
advantages when applied to realistic systems (low to moderate
SNR, moderate or small system size). The following proposition
is instrumental in using the generic Gaussian capacity distribu-
tion for the size-asymptotic DMT analysis.

Proposition 2: The size-asymptotic DMT under the outage
capacity distribution in (19) is

(25)

(26)

where is the mean capacity per degree of freedom
in the channel, is the channel rank,

, and is the multiplexing gain defined via
the mean capacity in (21).

Proof: See Appendix.

Note that is somewhat similar to the
original Zheng-Tse DMT in (4), but also has two notable
differences: (i) for a full-rank channel, it depends only on

, not on individually, and coincides
with (4) when ; (ii) there is no linear interpolation
for noninteger .8 While is independent of the SNR,
the first two factors in (25) describe the effect of SNR and
also of channel correlation. As will be demonstrated below,

8This also holds true for most fading channels at finite SNR [38].

under certain circumstances , so that the
size-asymptotic DMT converges to the SNR-asymptotic one
for integer .

To simplify the analysis and to get some insight, we use below
high but finite SNR approximations, i.e., , but not

. These approximations, as it is demonstrated below, hold true
already at low or moderate SNR levels and allow one to quantify
the effect of SNR on the DMT and, in particular, to establish the
SNR levels at which the asymptotic results in [1] are sufficiently
accurate.

Theorem 4: Consider a full-rank, i.i.d., arbitrary fading
channel under the conditions of Theorem 1. Its size-asymptotic
finite-SNR DMT can be approximated as

(27)

where the multiplexing gain is defined via the mean
capacity. The SNR offset is

(28)

(29)

where and the approxima-
tion in (28) holds for and ;
when , and , for . The outage
probability can be estimated as .

Proof: See Appendix.

Note that the first factor in (27) is identical to the SNR-asymp-
totic DMT in (4) (except for missing linear interpolation), and
the second term represents the effect of the finite SNR. The
i.i.d. Rayleigh channel considered in [1] and Rician one con-
sidered in [2] are special cases of Theorem 4. Note also that

and the convergence of
to the SNR-asymptotic in (4) takes place when the second
term in (27) can be neglected, which we set, somewhat arbitrary,
as (i.e., within 10% accuracy), so that

(30)

The following proposition shows that, unlike the SNR-
asymptotic DMT, the finite-SNR one depends crucially on the
definition of multiplexing gain, which also has a significant
effect on the SNR offset.

Proposition 3: The size-asymptotic DMT of a full-rank i.i.d.
channel under conditions of Theorem 1 with the approx-

imations in (13) and under the multiplexing gain definitions in
(20) and (22), is

(31)
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(32)

If , then . The SNR offset is given by

(33)

(34)

Proof: Along the same line as for Theorem 4.

It follows from Theorem 4 and Proposition 3 that
(without linear interpolation) as for all 3 multi-

plexing gain definitions, but the convergence rate is the fastest
for and the slowest for :

at high SNR such that

(35)

(36)

For moderate to large system size only results in
the convergence at realistic SNR values (see Fig. 4), so that the
SNR-asymptotic DMT has operational significance only for this
multiplexing gain definition. Comparing (33) and (34) to (29),
one concludes that the SNR offsets for and

are the same, but there is an additional SNR offset
factor for , which can be very significant
for large or , as examples below demonstrate. Based on (29),
(33), and (34), we remark that the SNR offset is exponen-
tially large in the diversity gain for various multiplexing
gain definitions. While the term somewhat reduces the
offset, it is a minor effect since increases very slowly
with the SNR.

Figs. 4 and 5 compare the differential diversity gain evaluated
via the asymptotic distribution with the moments in (11) and
(12) to the approximations in (27), (31), and (32), and Fig. 6
does the same for the SNR offset. Few observations are in order:

• The size-asymptotic analysis provides reasonable accuracy
in estimating both the diversity gain and the SNR offset,
even for small systems.

• The original multiplexing gain definition in (20), which
was used in [1], results in extremely slow convergence (as

) of the finite-SNR DMT to the SNR-asymptotic
one for large systems (see Fig. 4 and also Fig. 7), making
the results inapplicable at realistic SNR values. The SNR
offset is very high in this case, at for

, [see Fig. 1 and (33)], which makes the
rough approximation inaccurate at any SNR.
The high-SNR threshold increases exponentially in system
size and in the multiplexing gain [see (35)].

Fig. 4. Differential diversity gain versus SNR for various definitions of the
multiplexing gain; � � � � ��, � � �, ���� � �; solid line—asymptotic
from (11), (12), (19), dashed—approximations in (27), (31), (32). Convergence
to the asymptotic result in (4) is achieved at � � �� 	
 and � � �� 	
 for the
multiplexing gain definitions in (20) and (22), respectively, and at � � �� 	

for that in (21), so only the latter has operational significance at realistic SNR.

Fig. 5. Differential diversity gain versus SNR for various definitions of the mul-
tiplexing gain; � � � � �, � � �, ���� � �. Convergence to the asymptotic
result in (4) is achieved at � � �� 	
 for the multiplexing gain definitions in
(20) and (22), and at � � �� 	
 for that in (21), i.e., faster convergence for
smaller systems.

• The high-SNR offset in (22) improves the convergence,
but yet not enough to achieve it at realistic SNR for large
systems.

• The multiplexing gain definition via the mean capacity
in (21) is the best, with the convergence at realistic SNR
values, which is also independent of any system parame-
ters, unlike those in (20) and (22).

• Comparing Figs. 4 and 5, one concludes that the conver-
gence of the finite-SNR DMT to the SNR-asymptotic one
for the multiplexing gains in (20) and (22) is significantly
affected by the system size: for small systems, all three def-
initions give roughly the same (fast) convergence, achieved
at realistic SNRs; for large systems, only the definition in
(21) results in convergence at realistic SNRs.

• Unlike large systems (see Fig. 1), the SNR offset for
smaller systems (see Fig. 2) is moderate for all multi-
plexing gain definitions, so that the rough approximation
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Fig. 6. SNR offset � versus SNR for 2� 2 system and � � ��� �� � �; Ap-
proximations 1 and 2 are as in (28) and (29). The SNR offset is a slowly varying
function of the SNR, which converges to the asymptotic one in (29) at high SNR.
The size-asymptotic model provides a reasonable approximation, even for small
systems, over the whole SNR range. The exact offset was obtained via the exact
outage probability obtained by integration of the Wishart eigenvalue density.

can be used, unless , as indicated in
Proposition 1. In the latter case, the rough approximation
cannot be used regardless of the multiplexing gain defini-
tion and the system size, since, for the baseline model in
(6), and this is the dominant effect, which makes
the DMT framework inapplicable in this case.

While the results above have been obtained for chan-
nels, similar results also hold for channels, which is
briefly summarized later. A more detailed discussion can be
found in [38].

Proposition 4: Under the conditions of Theorem 1, the size-
asymptotic DMT of a full rank channel, , is given
by

(37)

where , , and
.

Proof: See Appendix.

Note that the first term in (37) is somewhat similar to the
SNR-asymptotic DMT of Zheng and Tse in (4), but is affected
only by , not and individually, and no linear
interpolation is present. The size-asymptotic DMT here does not
converge to the SNR-asymptotic one as , which is due
to the fact that the accuracy of the Gaussian approximation for
finite-size systems decreases as one moves to the distribution
tail [38]. Yet, the approximation in (37) is more accurate than
the SNR asymptotic one in (4) for low to moderate SNR range,
as Fig. 7 demonstrates. Based on this, we observe that the size-
asymptotic and SNR-asymptotic results are complementary in
this case: while the latter is more accurate at very high SNR,
the former is better at low to moderately high SNR, so that the
DMT can be approximated for the whole SNR range as

(38)

Fig. 7. Differential diversity gain versus SNR for various definitions of the mul-
tiplexing gain; � � ��, � � �, � � ���, 	��	 � ��
; solid line—size-asymp-
totic from (11), (12), (19), dashed—approximation in (37). The size-asymptotic
diversity gain is accurate up to about 40 dB, and the multiplexing gain definition
via the mean capacity is the best one. Similar results can also be observed for
smaller-size channels.

C. The Impact of Correlation and Power Imbalance

While all the results above apply to independent channel, sim-
ilar results can also be obtained for correlated ones based on
Theorem 2.

Theorem 5: Under the conditions of Theorem 2, the size-
asymptotic DMT of a correlated, full-rank Rayleigh-
fading channel is given by

(39)

where is the transmit correlation matrix, is the SNR offset,
all defined in Theorem 2, and .

Proof: See Appendix.

Note the presence of Zheng-Tse term . The term
is the average capacity per degree of freedom, which includes
the effect of correlation at the Rx end via the SNR offset , and

is the measure of correlation and power imbalance at
the Tx end [26], [29]. Thus, unlike the SNR-asymptotic DMT
[6], both of these factors decrease the finite-SNR one. In the
absence of correlation (i.e., , (39) reduces to
(37) (with , , as it should be.

D. Rank-Deficient Channels

The size-asymptotic approach can also be used for rank-defi-
cient channels via the double-scattering or multikeyhole models
in [26] and [29] based on Theorem 3.

Theorem 6: Under the conditions of Theorem 3, the size-
asymptotic DMT of a rank-deficient correlated channel is given
for as

(40)

where is the SNR offset in Theorem 3 and .
Proof: See Appendix.
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Note that this expression has a structure very similar to
that in (39). In particular, the diversity gain decreases with
the measures of correlation and power imbalance at both
ends , , it is proportional to the
Zheng-Tse-like term and to the mean capacity per
degree of freedom . Extensive numerical experiments
show that (40) provides a reasonable approximation to the true
DMT at low to moderate SNR range. Furthermore, unlike the
SNR-asymptotic approach, the size-asymptotic one provides a
reasonably accurate estimate of the outage probability at low to
moderate SNR range and, thus, can be used as a design criterion
for practically important SNR ranges.

IV. CONCLUSION

While the SNR-asymptotic DMT is an elegant framework to
compare various MIMO systems and channels and also to obtain
a number of design guidelines, its use at finite SNR has a number
of limitations, which are discussed in this paper. To overcome
these limitations, the finite-SNR DMT is obtained for a broad
class of fading channels, including full-rank and rank-deficient
(double-scattering, keyhole, relay) ones, based on recent results
on size-asymptotic outage capacity distribution in such channels.
Since the DMT alone is not sufficient to characterize adequately
the outage probability, the SNR offset has been introduced and
characterized via the size-asymptotic theory. The size-asymp-
totic, finite-SNR DMT in combination with the SNR offset can
be used to characterize accurately the outage probability and also
to produce some design guidelines valid at realistic SNR values,
including such effects as correlation and power imbalance in
the channel. All results and conclusions have been validated via
extensive Monte Carlo simulations. Overall, the size-asymptotic
approach is a viable alternative to the SNR-asymptotic one since
the former produces the results that hold at realistic SNR and for
a broad class of fading distributions (i.e., robust), and include
the effect of correlation and power imbalance in the channel.

APPENDIX

Proof of Theorem 3: The following Lemma is instrumental.

Lemma 1: Let , where is a zero mean, unit
variance, i.i.d. complex random vector, and is a positive semi-
definite (correlation) matrix. Then, the mean and variance of

are

(41)

where is any entry of . If is Gaussian, then .
Proof:

(42)

where are the eigenvalues of and we have used the fact that
.

Without loss of generality, we assume that and are
normalized: . The channel
of Theorem 3 is the multikeyhole model in [26, Theorem 7], as
whose instantaneous capacity converges in probability to

(43)
if (i) ,

and (ii) ,
for every .

Condition (i) follows from (b) in Theorem 3. Using
Von-Neumann trace [37] and Cauchy–Schwarz inequalities,

, where and are positive
semidefinite. Thus, a sufficient condition for (ii) to hold
is , .
From [25, Comment 5], ,

where , and from [25, Theorem 1],
iff as , so that (ii)

holds under condition (c) of Theorem 3.
Let . Under conditions (a)

to (c), is asymptotically Gaussian as as follows
from [26, Theorem 4], [25, Theorem 1]. To find the moments
of , define a function and note
that . From the Lemma
above and under adopted normalization

, .
Since is a smooth function (first-order derivative is con-
tinuous) in the neighborhood of , using Cramer
Theorem [39, Theorem 7], the mean and the variance of as

are

(44)

and

(45)

where , , and is any
entry of . If are Gaussian, then .
Since converges to a sum of , which are asymptotically
Gaussian and independent (due to the mode independence),
is asymptotically Gaussian with the mean and variance

(46)

and (18) follows. The approximations follow in a straightfor-
ward way.
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Proof of Proposition 1: From (6), .
For , and

. Therefore, as .

Proof of Proposition 2: We use the following upper-bound

(47)

On the log-log scale, the gap between and the upper-bound
is almost a constant, so that the diversity gain is accurately cap-
tured by the upper bound. By substituting this upper-bound in
(20), (23) and after some manipulations, one obtains (25) and
(26).

Proof of Theorem 4: For square channels, , from
Theorem 1

(48)

where . It is straightforward to see
that

(49)

so that, after some manipulations

(50)

from which (13) follows. From this and using , one
obtains:

(51)

Substituting (51) into the upper bound in (47) and after some
lengthy by straightforward manipulations, keeping only the
lower-order (dominating) terms, one obtains

(52)

where and quantifies the effect of finite
SNR

(53)

Interpreting the term in (52) as a high-SNR offset (similarly
to [33]), the diversity gain in (20) becomes .

Using (52), the differential diversity gain (23) can be expressed
as , which, after some
manipulations, can be simplified to (27).

While the upper bound in (47) is of sufficient accuracy to
evaluate the diversity gains, a more refined approximation is
required to capture accurately the SNR offset

(54)

from which the outage probability can be approximated, for
and , as

(55)

Using this in (24), the SNR offset becomes

(56)

It is straightforward to see that , so that (56)
simplifies to (28), and (29) follows. Note that the SNR offset in
(28) can also be identified by inspection of (55). From Proposi-
tion 1, when , and , for
by inspection of (19).

Proof of Proposition 4 (Sketch): This follows mostly the
steps of that of Theorem 4: Using (13) and (21), the outage prob-
ability can be approximated, via the upper bound in (47), as

(57)

where

(58)

is the diversity gain. Substituting (57) into (23) gives in (37).

Proof of Theorem 5 (Sketch): Following Theorem 2, we use
the approximation , assuming ,
to evaluate the capacity variance. Using the multiplexing gain
definition in (21), the outage probability at moderate to high
SNR can be approximated via the upper bound in (47) as in (57),
where

(59)

is the finite-SNR diversity gain. Using this in (23), (31) follows
after some straightforward manipulations.

Proof of Theorem 6 (Sketch): Using the high SNR approx-
imation in (18), the outage probability can be approximated as
in (57) with

(60)

where the SNR offset is as in Theorem 3. Using this in (23),
(40) follows.
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