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Abstract — This paper provides a partial answer to the
question: "what is the best angular density of multipath in MIMO
channels?" using the size-asymptotic theory of Toeplitz matices
for uniform 2-D and 3-D antenna arrays. A Kroneckertype
approximation of the array correlation structure is proposed and
used to find the angular densities that completelyeliminate
correlation between any elements of antenna arrayand thus
maximize the asymptotic MIMO capacity for a broad dass of
fading distributions. At half-wavelength spacing, he best angular
density is shown to be non-uniform, which implies hat the
popular Clarke’s (Jake’s) model does not representhe best case
scenario. The asymptotic results are validated viéMlonte-Carlo
simulations, and a number of practical guidelines dr antenna
design and optimal orientation are provided.

|l. INTRODUCTION

There are two major propagation-related factors dfifect
the capacity of MIMO fading channels: (i) antennaagn
configuration (e.g. geometry, element spacing), &idthe

density provides an example of a scenario whereatitenna
array and its electromagnetic environment are neatcim
information-theoretical sense (capacity-wise).

In the present paper, the problem of the best angidnsity
is solved for a broad class of MIMO channels witlifarm 2-
D and 3-D antenna arrays. While the relationshipvéen
propagation channel characteristics, antenna ateaign and
the channel capacity are rarely amenable to a difisen
analysis, we go around this difficulty by using asymptotic
approximation of the channel capacity (when the lmemof
antennas is large). This allows us to obtain thgt agular
density in a closed-form for a general class offfgahannels
(not only Rayleigh/Rice), and also an insight asvhy it is of
that particular form. The size-asymptotic approhah already
been successfully used in a number of works, arsdbesn
proven to be reasonably accurate for channelsavtioderate
number of antennas. For example, asymptotic outagacity
distribution of correlated MIMO Rayleigh-fading ¢hreels has

angular density of multipath. A number of capacitP€en obtained in [6]. The impact of correlation dre

optimization problems, which take into account éhéactors,

asymptotic capacity of unitary-independent-unitafylU)

have been formulated and solved. The impact of languchannels has been studied in [7]. By letting thenimer of

density on spatial correlation and channel capduity been
discussed in [1]. The effect of fading correlation the
mean/instantaneous capacity and cut-off rate has btidied
in [2]. The uniform angular density within a sectms been
investigated and the requirements on antenna etespacing
have been formulated in [3]. Various models of noiform

angular densities (e.g. Gaussian, Laplacian, Casing have

transmit antennas go to infinity and using circtilematrices
theory, an interesting effect of capacity saturatio circular
antenna arrays of a fixed aperture has been shov#j ifor
the uniformly distributed multipath.

The emphasis of this paper is on information-théorather
than electromagnetic analysis of uniform 2-D arid 8ntenna
arrays, which also dictates the assumptions we make

been proposed and validated under various promagatiParticular, we follow a simplified model of isotriepantenna

conditions [4].

The question traditionally asked in most of theprorks,
in one form or another, isvhat is the effect of such-and-such
angular density on the channel capacity (correlation,

array elements, which is widely used in the antearmay
theory and information-theoretic literature [9]. €lhmain
contributions are:

* We show that when the number of antennas is lahge,

diversity, etc.)?”. The only exception is [5], where an oppositdnStantaneous and mean capacity of a broad classiMdO

guestion has been pose®hét is the best angular density of
multipath in MIMO channels?". While being an intriguing
guestion from a theoretical viewpoint, it is alsmagically-
relevant. Specifically, the capacity-maximizing aleg density
found in [5] for a broad class of MIMO channelstwitniform
linear arrays (ULA) provided a benchmark for preaiy
existing densities to compare with, as well as tedsome
practical guidelines for antenna design when thgulan
density is Gaussian, as adopted by IEEE 802.11st. 8wular

channels (not necessarily Rayleigh-fading) with aahitrary
correlation structure (not necessarily unitary-meledent-
unitary UIU) does not depend on a particular channe
distribution, but only on the correlation betweemtemnas.
This generalizes/extends the known results obtagaelier for
Rayleigh and UIU channels.

* We propose an approximation of multidimensionabyrr
correlation structure as a Kronecker product of ULA
correlation matrices. The approximation advantages (i) it



is reasonably accurate, (i) it allows applying theell
developed theory of Toeplitz matrices to analydismuilti-
dimensional antenna arrays, and (iii) it is scaaftd 2-D
antenna correlation matrix is approximated by threngcker
product of two ULA correlation matrices, etc.).
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where Qg = E{h¢h["} and Gy =E{gkg} , hx and gy are
the k™ columns ofH andH" respectively.
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* Using the Kronecker-type approximation and Szego ag n — o, the capacity per Rx antenna converges as

Theorem [10], we find the multipath angular dendiat
maximizes capacity of a broad class of MIMO chasweth
uniform 2-D and 3-D antenna arrays. The capacityimiaing
angular density is shown to be non-uniform, i.ee flopular
Clarke’s (Jake’s) model [11] does not always regméshe
best-case multipath scenario.

II. ASYMPTOTIC CAPACITY

Consider an equivalent base-band discrete mode& of

MIMO channel withn; Tx andn, Rx antennas
y =Hx+w,

(1)

P _
@c-C" ©C-C, (5)
p
where C" =n/tIndet]l +ygR, ], and — denotes convergence
in probability.
Proof: Main steps to provéa) are given in [5]. A proof of
(b) follows from (a) using Jensen inequality

Theorem 1 allows splitting the effect of correlatiat the
transmit and receive ends and indicates that inmpsytic
approximation the channel capacity does not depmmda
particular distribution oH , or R¢, but only onR; . Since the
condition (4) does not hold when the Tx end isyfalbrrelated

where x andy are transmit and receive vectors respectivelyb], which corresponds to small antenna spacing, we

H is the channel matrix whose elemelft$),,, k=1..n;,
m=1..n;, represent the complex channel gains fronf
transmit tok™" receive antennas, and is the AWGN noise
vector. We adopt the following assumptions: (i) tttennel
state information (CSI) is available at the Rx éndl not at the
Tx end, (i) x OCN (O, R /ni1) %, where O means identically
distributed, | is identity matrix, and B is the total
transmitted power, which does not depends mn (this
achieves the ergodic capacity of the i.i.d. Raylefgding
channel [1], and is a reasonable transmissioneglyatith no
Tx CSI in general), (ii)w O CN (0,Ngl), where Ng is the
noise variance in each receive antennas, (iv) tremel is
frequency flat and quasi-static (slow block fading)

The instantaneous capaciy (i.e. the capacity of a given
channel realization) and mean capadtyper Rx antenna of
the MIMO channel in natural uni{iat] are [1]

C=nlIndet] +yo /nn MH"],C=EC), (2

where operatoE denotes expectation ang is the SNR per
Rx antenna. Without loss of generality is normalized so
that E{||H||2} =nn;, where | | is Frobenius norm. The
transmit and receive correlation matrices are eefiras
R, =n*E{HH"} and R, =n/'E{H"H} respectively. Due
to the adopted normalizatiotr{R,} =n, and tr{R¢ =n,
where tr
asymptotic instantaneous and mean capacity of thgOM
channel whem; and n, go to infinity.

Theorem 1 Let H be a complex circular symmetric

random matrix (not necessarily Gaussian, i.i.d.with a
separable correlation structure as in [6], [7])d #me following
conditions are satisfied ag,n, — oo :

N
M n2 Y > Ka(HomHuHicHim) - 0,
k,m=1n)=1

®3)

where K4(HamHHikHim) is the fourth order cumulant of

circular symmetric random variables.

1 In practice this assumption corresponds to capagiproaching codes.

stands for trace. The following theorem gives

conjecture that (4) is satisfied if the antennacBgpexceeds a
certain minimum. Note thaC" is the upper bound on the
mean capacity of MIMO channels with a finite numbur
antennas C <C") [3], i.e. following Theorem 1, this bound is
asymptotically tight. Conditions (3) and (4) aral®rated in
detail in [5]. It can be shown that as special saBeeorem 1
includes a number of popular channel models sugl@sand
correlated Rayleigh/Rice, UIU channels for whick tiesults
in (5) are known, see e.g. [6], [7]. In particuldrH is i.i.d.
complex circular symmetric Gaussian, it is strefigiwtard to
show that Theorem 1 holds ifm, o o N /{1y =0, i.e. n
has to increase much faster than

Theorem 1 will be used later on to find the besttipath
angular density in terms of channel capacity. Hawein
order to proceed toward this goal, an approximatérthe
antenna array correlation structure is proposedh@ next
section.

Consider a uniform rectangular array (URA) lying the
XY plane with n, and ny antennas alongx and y
coordinates respectively, so that = n, [hy, . Assume that the
correlation between the antenna elements abongpordinate
does not depend oy and is given by matribR,, and the

KRONECKERTYPE APPROXIMATION

correlation alongy coordinate does not depend @&nand is
given by matrix Ry. The following Kronecker-type
approximation of the URA correlation matrix is posed:

R, =R, ORy, (6)

where 0 denotes the Kronecker product. Following (6), zero
correlation between two antennd@g and A located in a row
(along x or y coordinate), enforces zero correlation between
A and all the antenna elements in the column cantgisy ,

e.g. if (Rx), =0, where (Rx), , is the k,m element of

2 We show later a case when this condition impliest i, has to increase
much faster tham, .
% In general convergence in the mean implies comverg in probability, but
not vise versa [12].



Ry, then the whole block (Rr)i,j =0,
i=(k-Dny+1,..kn,, j=(m-ny+1,..mn,. From (6),
R, is the Kronecker product of two ULA correlation tniges
Rx and Ry, which are Toeplit‘k Therefore, even thougR,

may not be Toeplitz, its approximation (6) has eaefliz
structure.

To assess the accuracy of the Kronecker-type appation
we use the scalar measure of correlatiph|R, || O[1/n,,1]°
that accounts for total correlation between mudtiphtennas
and simultaneously affects the diversity measur @utage
capacity distribution of MIMO channels when a numioé
antennas is large [13], [14h;2|R,|=1/{yn, corresponds to
a case where the antennas are completely uncedelae.
R; =1, for fully correlated antennas/*|R.|=1, i.e. R,
has a single non-zero eigenvalue equoal The higher the
nt|R|, the lower the outage capacity at outage prottesili
<0.5[14]. From (6)

YR = nt Ry 5 Ry (7)

i.e. under the Kronecker-type approximation the suea of

correlation of the Rx antenna is the product of the

corresponding measures Bfy andRy .
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Fig. 1 Measure of correlation of 3x3 URA vs. antenna Smaci
Uniformly distributed multipath.

Consider a URA in a uniformly distributed 3-D mphih.
It is straightforward to show that in this case theeplitz

and (8). The dotted line is obtained via Monte-Garl
simulation, when the multipath is uniformly distiled. It can
be seen that the main lobd € 0.5) is well approximated by
(6), while there is small discrepancy on the tail<0.5). At
d =0.75, the measure of correlation is very close to the
minimum n;Y2=1/3, which corresponds to an uncorrelated
URA.

The following corollary is based on Theorem 1 atitizes
the Kronecker-type approximation of URA correlation
structure.

Corollary 1: Consider a MIMO channel that satisfies the
conditions of Theorem 1 and whose correlation matri
R =Rx0ORy has a Toeplitz structure. LeR, be non-
degenerate and square-summabie. O<Z°k°:_m|Rk|2 <o,
where Ry is the generating vector &, . As n,, ny andny
go to infinity, the channel capacity per Rx anteopaverges
as

T 1T
C - (2n)-2j j IN[1+Yohx ) Ay (V)ldudv,  (9)
—T—Tt
where Ay(u) and Ay(v), u,vO(-tT] are the spectrums of
Rx and Ry respectively.
Proof: Due to Szego Theorem [10], using the fact that th
eigenvalues of R, are given by the product of the
corresponding eigenvalues Bfy andRy .

Maximum Asymptotic Capacity: It is straightforward to
show using Hadamard inequality th@k detR )< 1 for any
nxn correlation matrixR normalized such thatr(R) =n.
Therefore, the asymptotic capacity in (5) is maXxiwhen
R, =1, i.e. the channel is uncorrelated at the Rx ersing)
Kronecker approximation (6), this implies that bd&y =1,
Ry =1 with corresponding spectrums

Ax(U) =Ay(u) =1, ub(-m (10)

From (9) and (10), the channel maximal capacity Rer
antenna is Cpax =In(1+yg), i.e. in the asymptotic
approximation, each additional Rx antenna may aegethe
total capacity by the amount not beyond the capadian 1x1
AWGN channel. The multipath angular density thatiewes
the maximumC,,ax for a broad class of MIMO channels with
uniform 2-D and 3-D antenna arrays is derived i th

matrix-generating vectdtof R, and R, are the same and following sections.

given by
R = 3§ (1kd) , (8)

IV. BESTANGULAR DENSITY FORURA
Consider a MIMO channel in a 3-D multipath enviramt

where Jo(X) is zero-order Bessel function of the first kind, ot R(x,y) denote the spatial correlation between two
andd, eitherdy or dy, is the antenna spacing in wavelengthgntennas at spacingx? +y2 . The multipath wave-number

along x or y coordinates respectively. Fig. 1 shows thgpectrum and the correlation function are relatgd tie
measure of correlation of a 3x3 URA vs. antennacisga Equrier Transform 9]

d =dx =dy. The solid line is calculated analytically usirg) (

k)= @02 [ [ Recy)e 68y, (1)

—00 —00

4 Toeplitz correlation matrix physically corresportdsuniform antenna array
geometry, when correlation depends on the spacatgden elements only,
but not on their positions.

® The measure applies to a set of normalized ctiwalanatrices such that ’ If R, is non-degenerate and absolutely summable, it sddisfies the
trR, =n, . condition of Corollary 1, sinc&” _[R[*<(Y." |R|) .

6 The generating vector of amxn Toeplitz matrix R is defined as & The spectrum of a matriR is given by A(u) = :}m Re™ , where R is
R.n=(R)» ksm=1..n, where(R),, is an element oR [10]. the generating vector & and j =(-1)"2 [10].



where k, and ky are x and y components of the wave-
vector k . f(ky,ky) is often referred as the joint probability
densny. f“r‘c“o’? (PDF) Oﬂ.(x and ky due to ‘h‘? following and the corresponding spatial correlation funcison
properties [9]: (i) f (kx,ky) is real and non-negative assuming
that R(x,y) is Hermitian for bothx and y, (ii) under R(x, y) = sinc(2x)sinc(2y), (17)

normalizationR(0,0)= 1, jwj f (K, Ky )dkeky =1. where sinc(x) = sin(x) /() .

foo(6.0) =--5in@), 60[0;11, U021 (16)

Consider now a receiving URA of 'SOUODIC antenna Proof: Using (15) and Jacobian transformation from
elements, when the correlation between the eleniergven  Cartesian to spherical coordinates.

by a .Toeplltz6ma}tni<h_Rr =RxURy (as suggested by Theorem 2 suggests that whaly =dy, =1/2, the best
approximation (6)). In this case multipath angular densityg (6, @) is non-uniform in terms of
Ren = R(dxN,0), Ryn =R(0,dyn), n=0,1,2.., (12) 9, and circular symmetric in terms af. The latter is well
where R,, and R,, are the Toeplitz matrix-generating explained by the rotational symmetry of the URAhwin
vectors of R, and R, respectively. It is straightforward to aSymptotically large number of antennas. Furtheememce

show that due to (6)R(x,y) can be thus factorized as the marginal distribution 0 is uniform, it follows that in the
R(x,y) = R(X,0)R(0,y), SO '£hat using (11) dx =dy =1/2 case the elevation and azimuth angles are

_ independent.
Fka,ky) = T (k) Ty (ky) (13) As a particular case of statement (ii) of Theorenits
i.e. under the Kronecker approximatiomk, and k, are straightforward to show using (14), that for anytoouous
independent. multipath angular density with no specular compdsigno
From the geometry of the problem, the link betwagn Dirac’s delta functions in the density), (15) alwdyolds true
ky and the angles of arrival of multipath componeists asdy,dy — o, and henceC - Crax.
Py = kydy = 2rd, sinB cosp, Yy =kydy = 2@y, sind sing, As a general remark, we note that when a given langu
where 60[0; ] and @[J[0;2m) are the elevation and azimuthdensity eliminates correlation between any two elatis) of a
angles, Y, Y, represent the phase difference between twdRA of spacing Jyx?+y?, it also does so for spacing
adjacent antennas along and y coordinates respectively. y(nx)?+(my)? , wheren andm are integers.
From (12) R, and Ry, are the samples of the continuous 5
function R(x,y), hence the relationship between the c | ‘
spectrums A, (u), Ay(u) of Ry, Ry and the spectrum _45b--——_ =
f(kx,ky) of R(x,y) is given by the sampling theorem,
u) =21 L fyy (u=2m
Ax(U)=2my 7y ),uD(_m]' 1)
Ay(u) = ZHZHZ_OO fy, (u=-2m)
where fy, (U) = fx(u/dy)/dx, fy,(u)="fy(u/dy)/dy are
the PDF's ofy, and g, respectively. Therefore, under the

A
3]
\

N

w
4]

B e S T

Mean Capacity [Nat/Hz/sec]
N
U w

conditions of Theorem 1 and following Corollary @ne 2f) R T B ¥,=20d8
obtains t.he condition to achieve the maximal capaCinax by islx . — Asymp. via Kron. Approx. |
substituting (10) in (14)C — Cpax if ' x  Monte-Carlo
2y fy, (U-2m)=1 Y 05 1 15
. ,ud(-tcrg (15) dzdxzdy [wavelength]
21'[2 n=-w f‘“y Uu-2m)=1 Fig. 2 Mean capacity per Rx antenna vs. antenna spacidgr®
from which we obtain the following: URA, 2x2 Rx URA. "Sine" distributed multipath (16).

Theorem 2 Consider a MIMO channel equipped with a Even though Theorems 1 and 2 are based on the size-
URA at the Rx end. Under the conditions of Theoremas asymptotic  assumptions and  the Kronecker-type
both n; and n; go to infinity, the following holds: approximation, simulations show that their resajiply to the

(i) if either dy or dy <1/2, there are no suchfy, (u), channels with a finite (moderate) number of antenrand
fy, (u) that C - Cmax, i.e. the upper bound is nottherefore practically relevant. As an example, Righows the
achievable. mean capacity per Rx antenna vs. antenna spacing

(i) if both dyx,dy 21/2, there is a class ofy, (u), fy, (u) d=dy =dy. The solid line is calculated analytically using
such thatC — Cpay, i.€. the maximizingfy, (u), fy, (u) are (5b) and (17). The dotted line is obtained via MoeGarlo
not unique. simulation of a MIMO Rayleigh-fading channel wittx4

(i) if dy=dy=1/2, C - Cnax for @, and Yy transmitting and 2x2 receiving URA's when the npalth at
distributed uniformly, i.e. fy, (u)=fy, ()= (2m™. The both ends is distributed according to (16). It banseen that
corresponding multipath angular density is "Sinistributed the mean and asymptotic capacities well coincidee t

discrepancy does not exceed 2.5% of the capacikinman
even though the simulated MIMO channel has a maeera



number of antennas. Moreover, the asymptotic thpoegicts
well the behavior of the mean capacity. In bothastptic and
finite cases the capacity maxima occudat n/2, n=1,2,..,

where the channel becomes uncorrelated. Thereforen
though (16) is obtained under the asymptotic astiong it is
still the best angular density in terms of the meapacity
when the number of antennas is finite.

Simultaneous analysis of Figs. 1 and 2 shows Heatdte of
correlation decreasing or capacity increasing wvétitenna
spacing depends very much on the angular dendity.rate is
faster when the density follows (16) as comparedthe
uniform one. Particularly, in the former case thearmel
becomes uncorrelated (achieves capacity maximum)
d =0.5, while in the latter this happens @t= 0.75. Thus the
Clarke’s (Jake’s) model [11], wheré; ((6,¢) is assumed to
be uniform, does not represent the best case scewhen
dy =dy =1/2.

V. BESTANGULAR DENSITY FORUCA

Consider a uniform cubic array (UCA) of receive eaamta
elements in a 3-D multipath environment. As in tHeA case,
assume that the correlation between the antennaests
along x coordinate does not depend gn and z, and is
given by matrixR, the correlation along/ coordinate does
not depend orx and z, and is given by matribR, and the
correlation alongz coordinate does not depend gnand y ,

and is given by matrixR ;. Applying the same concept as for
the URA, the Kronecker-type approximation of the AJC [5]

correlation matrix is

R, =R,OR,OR, (18)

From the geometry of the problem the link betwelea t

components of the wave-vect&r: ky, ky, k, and the angles
of arrival of multipath is @y =kydy =210, SINO cosp,
Py =kydy =2mdy sin@ sinp, and Y, =k,d, =2, cosH,

the system design, the URA and UCA should be mauinte
parallel to that plane in order to increase theacép. We note
that following the discussion in Section Il, thisideline holds
for a broad class of MIMO channels, not necess&dyleigh-
fading.
VI. CONCLUSION

It is of particular interest to search propagataenarios,
where the multipath distribution fits the best daguensity.
In such scenarios the antenna array and the mihltipauld be
matched in a probabilistic sense providing maxim&MO
capacity. In addition, the bestg,(6,¢) can be used as a
theoretical benchmark indicating, for example, Hawaway a
@iven angular density is from the best one, whighurn, can
provide useful tips on optimal antenna spacing angy
orientation for practically existing propagatiornvegonments.
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