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Abstract – This paper provides a partial answer to the 

question: "what is the best angular density of multipath in MIMO 
channels?" using the size-asymptotic theory of Toeplitz matrices 
for uniform 2-D and 3-D antenna arrays. A Kronecker-type 
approximation of the array correlation structure is proposed and 
used to find the angular densities that completely eliminate 
correlation between any elements of antenna arrays and thus 
maximize the asymptotic MIMO capacity for a broad class of 
fading distributions. At half-wavelength spacing, the best angular 
density is shown to be non-uniform, which implies that the 
popular Clarke’s (Jake’s) model does not represent the best case 
scenario. The asymptotic results are validated via Monte-Carlo 
simulations, and a number of practical guidelines for antenna 
design and optimal orientation are provided. 

I. INTRODUCTION 

There are two major propagation-related factors that affect 
the capacity of MIMO fading channels: (i) antenna array 
configuration (e.g. geometry, element spacing), and (ii) the 
angular density of multipath. A number of capacity 
optimization problems, which take into account these factors, 
have been formulated and solved. The impact of angular 
density on spatial correlation and channel capacity has been 
discussed in [1]. The effect of fading correlation on the 
mean/instantaneous capacity and cut-off rate has been studied 
in [2]. The uniform angular density within a sector has been 
investigated and the requirements on antenna element spacing 
have been formulated in [3]. Various models of non-uniform 
angular densities (e.g. Gaussian, Laplacian, Cosine etc.) have 
been proposed and validated under various propagation 
conditions [4].  

The question traditionally asked in most of the prior works, 
in one form or another, is “what is the effect of such-and-such 
angular density on the channel capacity (correlation, 
diversity, etc.)?”. The only exception is [5], where an opposite 
question has been posed: "what is the best angular density of 
multipath in MIMO channels?". While being an intriguing 
question from a theoretical viewpoint, it is also practically-
relevant. Specifically, the capacity-maximizing angular density 
found in [5] for a broad class of MIMO channels with uniform 
linear arrays (ULA) provided a benchmark for practically 
existing densities to compare with, as well as led to some 
practical guidelines for antenna design when the angular 
density is Gaussian, as adopted by IEEE 802.11n. Best angular 

density provides an example of a scenario where the antenna 
array and its electromagnetic environment are matched in 
information-theoretical sense (capacity-wise). 

In the present paper, the problem of the best angular density 
is solved for a broad class of MIMO channels with uniform 2-
D and 3-D antenna arrays. While the relationship between 
propagation channel characteristics, antenna array design and 
the channel capacity are rarely amenable to a closed-form 
analysis, we go around this difficulty by using an asymptotic 
approximation of the channel capacity (when the number of 
antennas is large). This allows us to obtain the best angular 
density in a closed-form for a general class of fading channels 
(not only Rayleigh/Rice), and also an insight as to why it is of 
that particular form. The size-asymptotic approach has already 
been successfully used in a number of works, and has been 
proven to be reasonably accurate for channels with a moderate 
number of antennas. For example, asymptotic outage capacity 
distribution of correlated MIMO Rayleigh-fading channels has 
been obtained in [6]. The impact of correlation on the 
asymptotic capacity of unitary-independent-unitary (UIU) 
channels has been studied in [7]. By letting the number of 
transmit antennas go to infinity and using circulant matrices 
theory, an interesting effect of capacity saturation in circular 
antenna arrays of a fixed aperture has been shown in [8] for 
the uniformly distributed multipath. 

The emphasis of this paper is on information-theoretic rather 
than electromagnetic analysis of uniform 2-D and 3-D antenna 
arrays, which also dictates the assumptions we make. In 
particular, we follow a simplified model of isotropic antenna 
array elements, which is widely used in the antenna array 
theory and information-theoretic literature [9]. The main 
contributions are: 
• We show that when the number of antennas is large, the 
instantaneous and mean capacity of a broad class of MIMO 
channels (not necessarily Rayleigh-fading) with an arbitrary 
correlation structure (not necessarily unitary-independent-
unitary UIU) does not depend on a particular channel 
distribution, but only on the correlation between antennas. 
This generalizes/extends the known results obtained earlier for 
Rayleigh and UIU channels. 
• We propose an approximation of multidimensional array 
correlation structure as a Kronecker product of ULA 
correlation matrices. The approximation advantages are: (i) it 



 

 

is reasonably accurate, (ii) it allows applying the well 
developed theory of Toeplitz matrices to analysis of multi-
dimensional antenna arrays, and (iii) it is scalable (a 2-D 
antenna correlation matrix is approximated by the Kronecker 
product of two ULA correlation matrices, etc.).  
• Using the Kronecker-type approximation and Szego 
Theorem [10], we find the multipath angular density that 
maximizes capacity of a broad class of MIMO channels with 
uniform 2-D and 3-D antenna arrays. The capacity-maximizing 
angular density is shown to be non-uniform, i.e. the popular 
Clarke’s (Jake’s) model [11] does not always represent the 
best-case multipath scenario.  

II.  ASYMPTOTIC CAPACITY 

Consider an equivalent base-band discrete model of a 
MIMO channel with tn  Tx and rn  Rx antennas 

= +y Hx w , (1) 

where x  and y  are transmit and receive vectors respectively, 
H  is the channel matrix whose elements ( )kmH , 1... rk n= , 

1... tm n= , represent the complex channel gains from thm  
transmit to thk  receive antennas, and w  is the AWGN noise 
vector. We adopt the following assumptions: (i) the channel 
state information (CSI) is available at the Rx end but not at the 
Tx end, (ii) ( , / )T tP n∝x 0 ICN

1, where ∝  means identically 
distributed, I  is identity matrix, and TP  is the total 
transmitted power, which does not depends on tn  (this 
achieves the ergodic capacity of the i.i.d. Rayleigh fading 
channel [1], and is a reasonable transmission strategy with no 
Tx CSI in general), (iii) 0( , )N∝w 0 ICN , where 0N  is the 
noise variance in each receive antennas, (iv) the channel is 
frequency flat and quasi-static (slow block fading). 

The instantaneous capacity C  (i.e. the capacity of a given 
channel realization) and mean capacity C  per Rx antenna of 
the MIMO channel in natural units [ ]nat  are [1]  

1
0ln det[ / ],  ( )H

r tC n n C E C−= + γ ⋅ =I HH ,      (2) 

where operator E  denotes expectation and 0γ  is the SNR per 
Rx antenna. Without loss of generality H  is normalized so 
that 2{ } t rE n n=H , where  is Frobenius norm. The 
transmit and receive correlation matrices are defined as 

1 { }H
r tn E−=R HH  and 1 { }H

t rn E−=R H H  respectively. Due 
to the adopted normalization { }r rtr n=R  and { }t ttr n=R , 
where tr  stands for trace. The following theorem gives 
asymptotic instantaneous and mean capacity of the MIMO 
channel when tn  and rn  go to infinity. 

Theorem 1: Let H  be a complex circular symmetric 
random matrix (not necessarily Gaussian, i.i.d. or with a 
separable correlation structure as in [6], [7]), and the following 
conditions are satisfied as ,t rn n → ∞ : 

(i) 2
4

, 1 , 1

( ) 0
t rn n

t nm nk lk lm
k m n l

n H H H H−

= =
κ →∑ ∑ ,         (3) 

where 4( )nm nk lk lmH H H Hκ  is the fourth order cumulant of 
circular symmetric random variables.  

 
1 In practice this assumption corresponds to capacity-approaching codes. 

(ii) 
1/2 1/ 2

2 2 2
2

, 1 , 1

1
{ } { } 0

t rn n

kl kl r
t k l k l

tr tr
n = =

    
 + − →           
∑ ∑Q G R

2, (4) 

where { }H
kl k lE=Q h h  and { }H

kl k lE=G g g , kh  and kg  are 
the thk  columns of H  and HH  respectively. 

As tn → ∞ , the capacity per Rx antenna converges as  

* *( ) ;   ( ) 
p

a C C b C C→ → ,  (5) 

where * 1
0ln det[ ]r rC n−= + γI R , and 

p

→  denotes convergence 
in probability. 

Proof: Main steps to prove (a) are given in [5]. A proof of 
(b) follows from (a) using Jensen inequality3. 

Theorem 1 allows splitting the effect of correlation at the 
transmit and receive ends and indicates that in asymptotic 
approximation the channel capacity does not depend on a 
particular distribution of H , or tR , but only on rR . Since the 
condition (4) does not hold when the Tx end is fully correlated 
[5], which corresponds to small antenna spacing, we 
conjecture that (4) is satisfied if the antenna spacing exceeds a 
certain minimum. Note that *C  is the upper bound on the 
mean capacity of MIMO channels with a finite number of 
antennas ( *C C≤ ) [3], i.e. following Theorem 1, this bound is 
asymptotically tight. Conditions (3) and (4) are elaborated in 
detail in [5]. It can be shown that as special cases Theorem 1 
includes a number of popular channel models such as i.i.d. and 
correlated Rayleigh/Rice, UIU channels for which the results 
in (5) are known, see e.g. [6], [7]. In particular, if H  is i.i.d. 
complex circular symmetric Gaussian, it is straightforward to 
show that Theorem 1 holds if ,lim / 0t tn n r tn n→∞ = , i.e. tn  
has to increase much faster than rn .  

Theorem 1 will be used later on to find the best multipath 
angular density in terms of channel capacity. However, in 
order to proceed toward this goal, an approximation of the 
antenna array correlation structure is proposed in the next 
section. 

III.  KRONECKER-TYPE APPROXIMATION 

Consider a uniform rectangular array (URA) lying on the 
XY  plane with xn  and yn  antennas along x  and y  
coordinates respectively, so that r x yn n n= ⋅ . Assume that the 
correlation between the antenna elements along x  coordinate 
does not depend on y  and is given by matrix xR , and the 
correlation along y  coordinate does not depend on x  and is 
given by matrix yR . The following Kronecker-type 
approximation of the URA correlation matrix is proposed: 

r x y= ⊗R R R , (6) 

where ⊗  denotes the Kronecker product. Following (6), zero 
correlation between two antennas 1A  and 2A  located in a row 
(along x or y coordinate), enforces zero correlation between 

1A  and all the antenna elements in the column containing 2A , 
e.g. if ( ) , 0x k m =R , where ( ) ,x k mR  is the ,k m  element of 

 
2 We show later a case when this condition implies that tn  has to increase 
much faster than rn . 
3 In general convergence in the mean implies convergence in probability, but 
not vise versa [12]. 



 

 

xR , then the whole block ( ) , 0r i j =R , 
( 1) 1,...,x xi k n kn= − + , ( 1) 1,...,y yj m n mn= − + . From (6), 

rR  is the Kronecker product of two ULA correlation matrices 
xR  and yR , which are Toeplitz4. Therefore, even though rR  

may not be Toeplitz, its approximation (6) has a Toeplitz 
structure.  

To assess the accuracy of the Kronecker-type approximation 
we use the scalar measure of correlation 1 [1/ ,1]r r rn n− ∈R 5 
that accounts for total correlation between multiple antennas 
and simultaneously affects the diversity measure and outage 
capacity distribution of MIMO channels when a number of 
antennas is large [13], [14]. 1 1/r r rn n− =R  corresponds to 
a case where the antennas are completely uncorrelated, i.e. 

r =R I , for fully correlated antennas 1 1r rn− =R , i.e. rR  
has a single non-zero eigenvalue equal rn . The higher the 

1
r rn− R , the lower the outage capacity at outage probabilities 
0.5< [14]. From (6) 

1 1 1
r r x x y yn n n− − −= ⋅R R R , (7) 

i.e. under the Kronecker-type approximation the measure of 
correlation of the Rx antenna is the product of the 
corresponding measures of xR  and yR .  

0 0.5 1 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

su
re

 o
f C

or
re

la
tio

n

d=d
x
=d

y
 [wavelength]

 

 

Kron. Approx.
Monte-Carlo

n
r
-1/2

 
Fig. 1 Measure of correlation of 3x3 URA vs. antenna spacing. 

Uniformly distributed multipath. 

Consider a URA in a uniformly distributed 3-D multipath. 
It is straightforward to show that in this case the Toeplitz 
matrix-generating vectors6 of xR  and yR  are the same and 
given by 

2
0 ( )kR J kd= π ,  (8) 

where 0( )J x  is zero-order Bessel function of the first kind, 
and d , either xd  or yd , is the antenna spacing in wavelengths 
along x  or y  coordinates respectively. Fig. 1 shows the 
measure of correlation of a 3x3 URA vs. antenna spacing 

x yd d d= = . The solid line is calculated analytically using (6) 
 
4 Toeplitz correlation matrix physically corresponds to uniform antenna array 
geometry, when correlation depends on the spacing between elements only, 
but not on their positions. 
5 The measure applies to a set of normalized correlation matrices such that 

r rtr n=R . 
6 The generating vector of an n n×  Toeplitz matrix R  is defined as 

( )k m kmR − = R , , 1...k m n= , where ( )kmR  is an element of R  [10]. 

and (8). The dotted line is obtained via Monte-Carlo 
simulation, when the multipath is uniformly distributed. It can 
be seen that the main lobe ( 0.5d < ) is well approximated by 
(6), while there is small discrepancy on the tail (0.5d ≥ ). At 

0.75d ≈ , the measure of correlation is very close to the 
minimum 1/ 2 1/ 3rn− = , which corresponds to an uncorrelated 
URA.  

The following corollary is based on Theorem 1 and utilizes 
the Kronecker-type approximation of URA correlation 
structure. 

Corollary 1 : Consider a MIMO channel that satisfies the 
conditions of Theorem 1 and whose correlation matrix 

r x y= ⊗R R R  has a Toeplitz structure. Let rR  be non-
degenerate and square-summable7, i.e. 20 kk

R
∞

=−∞< < ∞∑ , 
where kR  is the generating vector of rR . As xn , yn  and tn  
go to infinity, the channel capacity per Rx antenna converges 
as  

2
0(2 ) ln[1 ( ) ( )]x yC u v dudv

π π
−

−π −π

→ π + γ λ ⋅λ∫ ∫ ,      (9) 

where ( )x uλ  and ( )y vλ , , ( ; ]u v ∈ −π π  are the spectrums of 
xR  and yR  respectively8. 
Proof: Due to Szego Theorem [10], using the fact that the 

eigenvalues of rR  are given by the product of the 
corresponding eigenvalues of xR  and yR . 

Maximum Asymptotic Capacity: It is straightforward to 
show using Hadamard inequality that 0 det( ) 1≤ ≤R  for any 
n n×  correlation matrix R  normalized such that ( )tr n=R . 
Therefore, the asymptotic capacity in (5) is maximal when 

r =R I , i.e. the channel is uncorrelated at the Rx end. Using 
Kronecker approximation (6), this implies that both x =R I , 

y =R I  with corresponding spectrums  

( ) ( ) 1x yu uλ = λ = , ( ; ]u ∈ −π π   (10) 

From (9) and (10), the channel maximal capacity per Rx 
antenna is max 0ln(1 )C = + γ , i.e. in the asymptotic 
approximation, each additional Rx antenna may increase the 
total capacity by the amount not beyond the capacity of an 1x1 
AWGN channel. The multipath angular density that achieves 
the maximum maxC  for a broad class of MIMO channels with 
uniform 2-D and 3-D antenna arrays is derived in the 
following sections. 

IV.  BEST ANGULAR DENSITY FOR URA 

Consider a MIMO channel in a 3-D multipath environment. 
Let ( , )R x y  denote the spatial correlation between two 
antennas at spacing 2 2x y+ . The multipath wave-number 
spectrum and the correlation function are related by the 
Fourier Transform [9] 

( )2( , ) (2 ) ( , ) x yj k x k y
x yf k k R x y e dxdy

∞ ∞
− ⋅ + ⋅−

−∞ −∞

= π ∫ ∫ ,       (11) 

 
7 If rR  is non-degenerate and absolutely summable, it also satisfies the 
condition of Corollary 1, since ( )22

n nn n
R R

∞ ∞

=−∞ =−∞
≤∑ ∑ . 

8 The spectrum of a matrix R  is given by ( ) jnu
kn

u R e
∞

=−∞
λ =∑ , where kR  is 

the generating vector of R  and 1/ 2( 1)j = −  [10]. 



 

 

where xk  and yk  are x  and y  components of the wave-
vector k . ( , )x yf k k  is often referred as the joint probability 
density function (PDF) of xk  and yk  due to the following 
properties [9]: (i) ( , )x yf k k  is real and non-negative assuming 
that ( , )R x y  is Hermitian for both x  and y , (ii) under 
normalization (0,0) 1R = , ( , ) 1x y x yf k k dk dk

∞ ∞

−∞ −∞
=∫ ∫ . 

Consider now a receiving URA of isotropic antenna 
elements, when the correlation between the elements is given 
by a Toeplitz matrix r x y= ⊗R R R  (as suggested by 
approximation (6)). In this case  

, ( ,0)x n xR R d n= , , (0, )y n yR R d n= , 0,1,2...n = ,  (12) 

where ,x nR  and ,y nR  are the Toeplitz matrix-generating 
vectors of xR  and yR  respectively. It is straightforward to 
show that due to (6) ( , )R x y  can be thus factorized as 

( , ) ( ,0) (0, )R x y R x R y= , so that using (11)  

( , ) ( ) ( )x y x x y yf k k f k f k= , (13) 

i.e. under the Kronecker approximation, xk  and yk  are 
independent. 

From the geometry of the problem, the link between xk , 
yk  and the angles of arrival of multipath components is 

2 sin cosx x x xk d dψ = = π θ φ , 2 sin siny y y yk d dψ = = π θ φ , 
where [0; ]θ ∈ π  and [0;2 )φ ∈ π  are the elevation and azimuth 
angles, xψ , yψ  represent the phase difference between two 
adjacent antennas along x  and y  coordinates respectively. 
From (12) ,x nR  and ,y nR  are the samples of the continuous 
function ( , )R x y , hence the relationship between the 
spectrums ( )x uλ , ( )y uλ  of xR , yR  and the spectrum 

( , )x yf k k  of ( , )R x y  is given by the sampling theorem, 

( )

( )

( ) 2 2

( ) 2 2

x

y

x n

y n

u f u n

u f u n

∞
ψ=−∞

∞
ψ=−∞

λ = π − π

λ = π − π

∑

∑
, ( ; ]u ∈ −π π ,     (14) 

where ( ) ( / ) /x x x xf u f u d dψ = , ( ) ( / ) /y y y yf u f u d dψ =  are 
the PDF's of xψ  and yψ  respectively. Therefore, under the 
conditions of Theorem 1 and following Corollary 1, one 
obtains the condition to achieve the maximal capacity maxC  by 
substituting (10) in (14): maxC C→  if 

2 ( 2 ) 1

2 ( 2 ) 1

x

y

n

n

f u n

f u n

∞
ψ=−∞

∞
ψ=−∞

π − π =

π − π =

∑

∑
, ( ; ]u ∈ −π π           (15) 

from which we obtain the following: 

Theorem 2: Consider a MIMO channel equipped with a 
URA at the Rx end. Under the conditions of Theorem 1, as 
both tn  and rn  go to infinity, the following holds: 

(i) if either xd  or yd 1/ 2< , there are no such ( )xf uψ , 
( )yf uψ  that maxC C→ , i.e. the upper bound is not 

achievable. 
(ii) if both , 1/ 2x yd d ≥ , there is a class of ( )xf uψ , ( )yf uψ  

such that maxC C→ , i.e. the maximizing ( )xf uψ , ( )yf uψ  are 
not unique. 

(iii) if 1/ 2x yd d= = , maxC C→  for xψ  and yψ  
distributed uniformly, i.e. 1( ) ( ) (2 )x yf u f u −

ψ ψ= = π . The 
corresponding multipath angular density is "Sine" distributed 

,
1

( , ) sin( )
4

fθ φ θ φ = θ
π

, [0; ]θ ∈ π , [0;2 )φ ∈ π      (16) 

and the corresponding spatial correlation function is 

( , ) (2 ) (2 )R x y sinc x sinc y= , (17) 

where ( ) sin( ) /( )sinc x x x= π π . 
Proof: Using (15) and Jacobian transformation from 

Cartesian to spherical coordinates. 

Theorem 2 suggests that when 1/ 2x yd d= = , the best 
multipath angular density , ( , )fθ φ θ φ  is non-uniform in terms of 
θ , and circular symmetric in terms of φ . The latter is well 
explained by the rotational symmetry of the URA with an 
asymptotically large number of antennas. Furthermore, since 
the marginal distribution of φ  is uniform, it follows that in the 

1/ 2x yd d= =  case the elevation and azimuth angles are 
independent. 

As a particular case of statement (ii) of Theorem 2, it is 
straightforward to show using (14), that for any continuous 
multipath angular density with no specular components (no 
Dirac’s delta functions in the density), (15) always holds true 
as ,x yd d → ∞ , and hence maxC C→ . 

As a general remark, we note that when a given angular 
density eliminates correlation between any two elements of a 
URA of spacing 2 2x y+ , it also does so for spacing 

2 2( ) ( )nx my+ , where n  and m  are integers. 
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Fig. 2 Mean capacity per Rx antenna vs. antenna spacing. 4x4 Tx 

URA, 2x2 Rx URA. "Sine" distributed multipath (16). 

Even though Theorems 1 and 2 are based on the size-
asymptotic assumptions and the Kronecker-type 
approximation, simulations show that their results apply to the 
channels with a finite (moderate) number of antennas, and 
therefore practically relevant. As an example, Fig. 2 shows the 
mean capacity per Rx antenna vs. antenna spacing 

x yd d d= = . The solid line is calculated analytically using 
(5b) and (17). The dotted line is obtained via Monte-Carlo 
simulation of a MIMO Rayleigh-fading channel with 4x4 
transmitting and 2x2 receiving URA's when the multipath at 
both ends is distributed according to (16). It can be seen that 
the mean and asymptotic capacities well coincide, the 
discrepancy does not exceed 2.5% of the capacity maximum 
even though the simulated MIMO channel has a moderate 



 

 

number of antennas. Moreover, the asymptotic theory predicts 
well the behavior of the mean capacity. In both asymptotic and 
finite cases the capacity maxima occur at / 2d n= , 1,2,...n = , 
where the channel becomes uncorrelated. Therefore, even 
though (16) is obtained under the asymptotic assumptions, it is 
still the best angular density in terms of the mean capacity 
when the number of antennas is finite.  

Simultaneous analysis of Figs. 1 and 2 shows that the rate of 
correlation decreasing or capacity increasing with antenna 
spacing depends very much on the angular density. The rate is 
faster when the density follows (16) as compared to the 
uniform one. Particularly, in the former case the channel 
becomes uncorrelated (achieves capacity maximum) at 

0.5d = , while in the latter this happens at 0.75d ≈ . Thus the 
Clarke’s (Jake’s) model [11], where , ( , )fθ φ θ φ  is assumed to 
be uniform, does not represent the best case scenario when 

1/ 2x yd d= = . 

V. BEST ANGULAR DENSITY FOR UCA 

Consider a uniform cubic array (UCA) of receive antenna 
elements in a 3-D multipath environment. As in the URA case, 
assume that the correlation between the antenna elements 
along x  coordinate does not depend on y  and z , and is 
given by matrix xR , the correlation along y  coordinate does 
not depend on x  and z , and is given by matrix yR  and the 
correlation along z  coordinate does not depend on x  and y , 
and is given by matrix zR . Applying the same concept as for 
the URA, the Kronecker-type approximation of the UCA 
correlation matrix is  

r x y z= ⊗ ⊗R R R R   (18) 

From the geometry of the problem the link between the 
components of the wave-vector k : xk , yk , zk  and the angles 
of arrival of multipath is 2 sin cosx x x xk d dψ = = π θ φ , 

2 sin siny y y yk d dψ = = π θ φ , and 2 cosz z z zk d dψ = = π θ , 
where xd , yd  and zd  are the antenna element spacing in 
wavelengths along x , y  and z  coordinates respectively. Let 

( )xf uψ , ( )yf uψ  and ( )zf uψ  be the marginal PDF's of xψ , 
yψ  and zψ , which can be proven to be independent under 

approximation (18). Adding z  coordinate and applying the 
same arguments as for the URA we obtain the following: 

Theorem 3: Consider a MIMO channel equipped with a 
UCA at the Rx end. Under the conditions of Theorem 1 and 
for 1/ 2x y zd d d= = = , maxC C→  as both tn  and rn  go to 
infinity, when xψ , yψ  and zψ  are uniformly distributed, i.e. 

1( ) ( ) ( ) (2 )x y zf u f u f u −
ψ ψ ψ= = = π . The corresponding 

multipath angular density is non-uniform and given by (16). 
Proof: following the same arguments as for Theorem 2.  

The fact that the best multipath angular density (16) is non-
uniform has certain practical implications. Consider, for 
example, a 3-D environment, where the multipath is not 
isotropic, but concentrated around a horizontal plane. 
Theorems 2 and 3 suggest that regardless of any specifics of 

the system design, the URA and UCA should be mounted in 
parallel to that plane in order to increase the capacity. We note 
that following the discussion in Section II, this guideline holds 
for a broad class of MIMO channels, not necessarily Rayleigh-
fading. 

VI.  CONCLUSION 
It is of particular interest to search propagation scenarios, 

where the multipath distribution fits the best angular density. 
In such scenarios the antenna array and the multipath would be 
matched in a probabilistic sense providing maximal MIMO 
capacity. In addition, the best , ( , )fθ φ θ φ  can be used as a 
theoretical benchmark indicating, for example, how far away a 
given angular density is from the best one, which, in turn, can 
provide useful tips on optimal antenna spacing and array 
orientation for practically existing propagation environments. 
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