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Abstract— A statistical model of interference in wireless 
networks is considered, which is based on the traditional 
propagation channel model, a Poisson model of random spatial 
distribution of the nodes in 1-D, 2-D and 3-D spaces (with both 
uniform and non-uniform densities), and a threshold-based 
model of the receiver performance. The power of the dominant 
interferer is used as a major performance indicator, instead of a 
traditionally-used aggregate interference power, since the 
former is an accurate approximation of the latter. This simplifies 
the problem significantly so that compact closed-form 
expressions are obtained for the outage probability, including 
the case when a given number of strongest interferers are 
suppressed: the outage probability is shown to scale down 
exponentially in this number. The effect of Rayleigh and log-
normal fading can also be included in the analysis. The positive 
effect of linear filtering (e.g. by directional antennas) is 
quantified via a new statistical selectivity parameter. The 
analysis culminates in formulation of an explicit tradeoff 
relationship between the network density and the outage 
probability, which is a result of the interplay between random 
geometry of node locations, the propagation path loss and the 
distortion effects at the victim receiver. 

I. INTRODUCTION

Wireless communication networks have been recently a 
subject of extensive studies, both from information-theoretic 
and communication perspectives, including development of 
practical transmission strategies and fundamental limits 
(capacity) to assess the optimality of these strategies [1]. 

Mutual interference among several links (e.g. several 
users) operating at the same time places a fundamental limit 
to the network performance. The effect of interference in 
wireless networks at the physical layer has been studied from 
several perspectives [2]-[6]. A typical statistical model of 
interference in a network includes a model of spatial location 
of the nodes, a propagation path loss law (which includes the 
average path loss and, possibly, large-scale (shadowing) and 
small-scale (multipath) fading) and a threshold-based receiver 
performance model. The most popular choice for the model of 
the node spatial distribution is Poisson point process on a 
plane [2]-[6]. Based on this model and ignoring the effect of 
fading, Sousa [3] has obtained the characteristic function (CF) 
of the aggregate (total) interference at the receiver, which can 
be transformed into a closed-from probability density function 
(PDF) in some special cases, and, based on it, the error rates 
for direct sequence (DS) and frequency hopping (FH) 
systems. While using the LePage series representation, Ilow 
and Hatzinakos [4] have developed a generic technique to 
obtain the CF of aggregate interference from a Poisson point 
process on a plane (2-D) and in a volume (3-D), which can be 

used to incorporate the effects of Rayleigh and log-normal 
fading in a straightforward way. Relying on a homogeneous 
Poisson point process on a plane, Weber et al [5] have 
characterized the transmission capacity of the network subject 
to the outage probability constraint via lower and upper 
bounds. In a recent work, Weber et al [6] use the same 
approach to characterize the network transmission capacity 
when the receivers are able to suppress some powerful 
interferers. 

A common feature of all these works is the use of 
aggregate interference (either alone or in the form of signal-
to-interference-plus-noise ratio), and a common lesson is that 
it is very difficult to deal with: while the CF of aggregate 
interference can be obtained in a closed form, the PDF or 
CDF are available only in a few special cases. This limits 
significantly the amount of insight that can be extracted from 
such a model, especially if no approximations or bounds are 
used. 

To overcome this difficulty, we adopt a different 
approach: instead of relying on the aggregate interference 
power as a performance indicator, we use the power of the 
dominating interfering signal [8]-[10]. While this is clearly an 
approximation, closed-form performance evaluation becomes 
feasible and significant insight can be extracted from such a 
model. Furthermore, since the aggregate interference is 
dominated by the most powerful interferer in the region of 
low outage probability (i.e. the practically-important region), 
both models give roughly the same results. This observation 
is also consistent with the corresponding results in [5][6], 
when the “near-field” region contains only one interferer. 
Thus, in the framework of [5][6], our results represent the 
(tight) lower bound on the outage probability. 

Using this model, we study the power distribution of the 
dominant interferer in various scenarios, which is further used 
to obtain compact closed-form expressions for the outage 
probability of a given receiver (or, equivalently, of the link of 
a given user) in the 1-D, 2-D and 3-D Poisson field of 
interferers, for both uniform and non-uniform average node 
densities and for various values of the average path loss 
exponent. Comparison to the corresponding results in [3] 
(obtained in terms of the error rates) indicates that the 
dominant contribution to the error rate is due to the outage 
events caused by the closest (i.e. dominant) interferer, which 
increases with the average node density. The proposed 
method is flexible enough to include the case when a given 
number of strongest interferers are suppressed. The outage 

On Node Density – Outage Probability Tradeoff 
in Wireless Networks 

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

191978-1-4244-2571-6/08/$25.00 ©2008 IEEE



probability is shown to scale down exponentially in this 
number. Contrary to [6], we do not rely in this case on the 
simplifying assumption of canceling all interferers in the disk 
with the given average number of interferers; neither we 
assume that only interferers more powerful than the required 
signal are cancelled (the last assumption affects significantly 
the result), i.e. our analysis of interference cancellation is 
exact. The proposed method can also be used to include the 
effect of fading. Specifically, using the same technique as in 
[4] (developed for the aggregate interference), we argue that 
Rayleigh fading has a negligible effect on the distribution of 
dominant interferer’s power and the effect of log-normal 
fading (shadowing) is to shift the distribution by a constant 
non-negligible factor. 

Our analysis culminates in the formulation of the outage 
probability-network density tradeoff: for a given average 
density of the nodes, the outage probability is lower bounded 
or, equivalently, for a given outage probability, the average 
density of the nodes is upper bounded. This tradeoff is a result 
of the interplay between a random geometry of node 
locations, the propagation path loss and the distortion effects 
at the victim receiver.  

Using the method developed, we analyze the beneficial 
effect of linear filtering (e.g. by directional antennas, which 
attenuate some interferers based on their angles of arrival ) on 
the outage probability and on the tradeoff via a new statistical 
selectivity parameter (Q-parameter), which is somewhat 
similar to the traditional antenna gain, but also includes the 
statistical distribution of interferers over the filtering variables 
(e.g. angles of arrival). 

Our analysis is based on the framework originally 
developed in [8]-[10]. 

The paper is organized as follows. In Section II, we 
introduce the system and network model. In Section III, the 
distribution of the dominant interference-to-noise ratio is 
given for this model. Based on this, the node density – outage 
probability tradeoff is presented in Section IV. The impact of 
linear filtering is analyzed in Section V. 

II. NETWORK AND SYSTEM MODEL

As an interference model of wireless network at the physical 
layer, we consider a number of point-like transmitters (Tx) 
and receivers (Rx) that are randomly located over a certain 
limited region of space mS , which can be one ( 1m = ), two 
( 2m = ),or three ( 3m = ) -dimensional (1-D, 2-D or 3-D). 
This can model location of the nodes over a highway or a 
street canyon (1-D), a residential area (2-D), or a downtown 
area with a number of high-rise buildings (3-D). In our 
analysis, we consider a single (randomly-chosen) receiver and 
a number of transmitters that generate interference to this 
receiver. We assume that the spatial distribution of the 
transmitters (nodes) has the following properties: (i) for any 
two non-overlapping regions of space aS  and bS , the 
probability of any number of transmitters falling into aS  is 
independent of how many transmitters fall into bS , i.e. non-
overlapping regions of space are statistically independent; (ii) 
for infinitesimally small region of space dS , the probability 

( 1, )k dS= of a single transmitter ( 1k = ) falling into dS  is 
( 1, )k dS dS= = ρ , where ρ  is the average spatial density of 

transmitters (which can be a function of position). The 
probability of more than one transmitter falling into dS  is 
negligible, ( 1, ) ( 1, )k dS k dS> << =  as 0dS → . Under 
these assumptions, the probability of exactly k  transmitters 
falling into the region S  is given by Poisson distribution, 

( , ) / !N kk S e N k−=  (1) 

where 
S

N dS= ρ  is the average number of transmitters 
falling into the region S . If the density is constant, then 
N S= ρ . Possible scenarios to which the assumptions above 
apply, with a certain degree of approximation, are a sensor 
network with randomly-located non-cooperating sensors; a 
network(s) of mobile phones from the same or different 
providers (in the same area); a network of multi-standard 
wireless devices sharing the same resources (e.g. common or 
adjacent bands of frequencies) or an ad-hoc network. 

Consider now a given transmitter-receiver pair. The power 
at the Rx antenna output rP  coming from the transmitter is 
given by the standard link budget equation [7], 

r t t rP PG G g=  (2) 

where tP  is the Tx power, ,t rG G  are the Tx and Rx antenna 
gains, and g  is the propagation path gain (=1/path loss), 

a l sg g g g= , where ag  is the average propagation path gain, 
and ,l sg g  are the contributions of large-scale (shadowing) 
and small-scale (multipath) fading, which can be modeled as 
independent log-normal and Rayleigh (Rice) random 
variables, respectively [7].  

The widely-accepted model for ag  is ag a R−ν
ν= , where 

ν  is the path loss exponent, and aν  is constant independent 
of R  [7]. In the traditional link-budget analysis of a point-to-
point link, it is a deterministic constant. However, in our 
network-level model ag  becomes a random variable since the 
Tx-Rx distance R  is random (due to random location of the 
nodes) and it is this random variable that represents a new 
type of fading, which we term “network-scale fading”, since it 
exhibits itself on the scale of the whole area occupied by the 
network. Since ag  does not depend on the local propagation 
environment around the Tx or Rx ends that affect ,l sg g  but 
only on the global configuration of the Tx-Rx propagation 
path (including the distance R , of which ,l sg g  are 
independent) [7], the network-scale fading in this model is 
independent of the large-scale and small-scale ones, which is 
ultimately due to different physical mechanisms generating 
them. The distribution functions of ag  in various scenarios 
have been given in [9][10].  

III. INTERFERENCE TO NOISE RATIO

We consider a fixed-position receiver (e.g. a base station of a 
given user) and a number of randomly located interfering 
transmitters (interferers, e.g. mobile units of other users) of 
the same power tP 1. Only the network-scale fading is taken 
into account in this section, assuming that 1l sg g= =  (this 

                                                          
1 following the framework in [8]-[10], this can also be generalized to the case 
of unequal Tx powers. 
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assumption is relaxed in section IV). For simplicity, we also 
assume that the Tx and Rx antennas are isotropic (this 
assumption is relaxed in section V), and consider the 
interfering signals at the receiver input. 

The statistics of transmitters’ location is given by (1). 
Transmitter i produces the average power ( )ai t a iP P g R=  at 
the receiver input, and we consider only the signals exceeding 
the Rx noise level 0P , 0aiP P≥ . We define the interference-
to-noise ratio (INR) ad  in the ensemble of the interfering 
signals via the most powerful (at the Rx input) signal2, 

1 0/a ad P P=  (3) 

where, without loss of generality, we index the transmitters in 
the order of decreasing Rx power, 1 2 ...a a aNP P P≥ ≥ ≥ . The 
most powerful signal is coming from the transmitter located at 
the minimum distance 1r , 1 1( )a t aP P g r= . The cumulative 
distribution function (CDF) of the minimum distance can be 
easily found [8]-[10], 

( )( )1( ) 1 expF r N V= − −  (4) 

where ( )
V

N V dV= ρ  is the average number of transmitters 
in the ball ( )V r  of radius r . The corresponding PDF can be 
found by differentiation, 

1 ( )
( ) N

V r
f r e dV−

′
= ρ  (5) 

where ( )V r′  is sphere of radius r  and the integral in (5) is 
over this sphere.  

The probability that the INR exceeds value D  is 
{ } { }1 1Pr Pr ( ) ( ( ))ad D r r D F r D> = < = , where ( )r D  is such 

that 0( ( ))aP r D P D= , so that the CDF of ad  is 

{ }( ) 1 Pr exp( ( ))d aF D d D N D= − > = −  (6) 

where 
( )( )

( )
V r D

N D dV= ρ  is the average number of 
transmitters in the ball ( )( )V r D  of the radius 

1/
0( ) ( / )tr D Pa P D ν

ν= . The corresponding PDF can be 
obtained by differentiation, 

( )

( ( ))

( )( )
N D

d V r D

r D e
f D dV

D

−

′
= ρ

ν
 (7) 

When the average spatial density of transmitters is constant, 
constρ = , (6), (7) simplify to [8]-[10], 

{ }
/

/
max

0
( ) exp exp

m
mt

d m
Pa

F D c N D
P D

ν
− νν= − ρ = − , 

{ }/ 1 /
max max( ) expm m

d
mf D N D N D− ν− − ν= −
ν

 (8) 

where 1 2c = , 2c = π  and 3 4 / 3c = π , max max
m

mN c R= ρ  is 
the average number of transmitters in the ball of radius maxR , 
which we term “potential interference zone”,  and maxR  is 
such that max 0( )aP R P= , i.e. a transmitter at the boundary of 
the potential interference zone produces signal at the receiver 
exactly at the noise level; transmitters located outside of this 
zone produce weaker signals, which are neglected in the 
                                                          
2 It can be shown that, in the small outage region, the total interference power 
(i.e. coming from all transmitters) is dominated by the contribution of the 
most powerful signal, i.e. the single events dominate the outage probability. 

analysis. Note that (8) gives the distribution of the INR as a 
simple explicit function of the system and geometrical 
parameters, and ultimately depends on max , ,N m ν  only. 

When ( 1)k −  most powerful signals, which are coming 
from ( 1)k −  closest transmitters, do not create any 
interference (i.e. due to frequency, time or code separation in 
the multiple access scheme, or due to any other form of 
separation or filtering), the CDF and PDF of the distance kr
to the most powerful interfering signal of order k  can be 
found in a similar way. The CDF of the INR ad  in this case is 
given by 

1( )
0( ) ( ) / !kN D i

dk iF D e N D i−−
==  (9) 

In the case of constant average density constρ = , the CDF 
and PDF of the INR simplify to [8]-[10], 

{ }
1

/ max
max /

0

1( ) exp
!

ik
m

dk m
i

N
F D N D

i D

−
− ν

ν
=

= − ,  

{ }1max /
max( ) exp

( 1)!

k km
m

dk
m Nf D D N D

k

− − − νν= −
ν −

 (10) 

which are also simple, explicit functions of max , ,N m ν . 

IV. OUTAGE PROBABILITY-NODE DENSITY TRADEOFF

Powerful interfering signals can result in significant 
performance degradation due to linear and nonlinear 
distortion effects in the receiver when they exceed certain 
limit, which we characterize here via the receiver distortion-
free dynamic range (i.e. the maximum acceptable 
interference-to-nose ratio) max 0/dfD P P= , where maxP  is the 
maximum interfering signal power at the receiver that does 
not cause significant performance degradation. If a dfd D> , 
there is significant performance degradation and the receiver 
is considered to be in outage, which corresponds to one or 
more transmitters falling into the active interference zone (i.e. 
the ball of radius ( )dfr D ; the signal power coming from 
transmitters at that zone exceeds maxP ), whose probability is 

{ }Pr 1 ( )out a df d dfd D F D= > = −  (11) 

For given out , one can find the required distortion-free 
dynamic range (“outage dynamic range”) dfD

1(1 )df d outD F −= −  (12) 

We note that, in general, dfD  is a decreasing function of 
out , i.e. low outage probability calls for high distortion-free 

dynamic range. For simplicity of notations, we further drop 
the subscript and denote the spurious-free dynamic range by 
D . 

All interfering signals are active (k=1): We consider first 
the case of 1k = , i.e. all interfering signals are active. The 
outage probability can be evaluated using (6) and (11). From 
practical perspective, we are interested in the range of small 
outage probabilities 1out << , i.e. high-reliability 
communications. When this is the case, ( ) 1dF D →  and using 
MacLaurean series expansion 1Ne N− ≈ − , (11) simplifies to 

( )( )out V r D
N dV≈ = ρ  (13) 
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which further simplifies, in the case of constρ = , to 
/

max
m

out N D− ν≈  (14) 

Note that, in this case, the outage probability out  scales 
linearly with the average number maxN  of nodes in the 
potential interference zone, and it effectively behaves as if the 
number of nodes were fixed (not random) and equal to maxN . 
Based on this, we conclude that the single-order events (i.e. 
when only one signal in the ensemble of interfering signals 
exceeds the threshold maxP ) are dominant contributor to the 
outage. This immediately suggests a way to reduce 
significantly the outage probability by eliminating (e.g. by 
filtering) the dominant interferer in the ensemble. Using (14), 
the required spurious-free dynamic range of the receiver can 
be found for given outage probability, /

max( / ) m
outD N ν≈ � . 

Note that higher values of ν  and lower values for m  call for 
higher dynamic range. Intuitively, this can be explained by 
the fact that when the transmitter moves from the boundary of 
the potential interference zone (i.e. maxR R= , 0( )aP R P= ) 
closer to the receiver ( maxR R<< ), the power grows much 
faster when ν  is larger, so that closely-located transmitters 
produce much more interference (compared to those located 
close to the boundary) when ν  is large, which, combined 
with the uniform spatial density of the transmitters, explains 
the observed behavior. The effect of m can be explained in a 
similar way. 

To validate the accuracy of approximation in (13), and 
also the expressions for the dynamic range PDF and CDF in 
the previous section, extensive Monte-Carlo (MC) 
simulations have been undertaken. Fig. 1 shows some of the 
representative results. Note good agreement between the 
analytical results (including the approximations) and the MC 
simulations. It can be also observed that the tails of the 
distributions decay much slower for the 4ν =  case, which 
indicates higher probability of high-power interference in that 
case and, consequently, requires higher spurious-free dynamic 
range of the receiver, in complete agreement with the 
predictions of the analysis. Note also that the outage 
probability evaluated via the total interference power 
coincides with that evaluated via the maximum interferer 
power, at the small outage region. 

Consider now a scenario where the actual outage 
probability has not to exceed a given value out  for the 
receiver with a given distortion-free dynamic range D . Using 
(8) and (11), the average number of transmitters in the active 
interference zone (ball of radius ( )r D ) can be upper bounded 
as ln(1 )outN ≤ − − . Using the expression for N , one 
obtains a basic tradeoff relationship between the network 
density and the outage probability, 

( )( )
ln(1 )outV r D

N dV= ρ ≤ − −  (15) 

i.e. for given outage probability, the network density is upper 
bounded or, equivalently, for given network density, the 
outage probability is lower bounded.  

In the case of uniform density constρ =  and small outage 
probability, 1out << , this gives an explicit tradeoff 
relationship between the maximum distortion-free 

interference power at the receiver maxP , the transmitter power 
tP  and the average node density for distortion-free receiver 

operation, 

( ) /1
max / m

m out tc P Pa ν−
νρ ≤  (16) 

or, equivalently,  an upper bound on the average density of 
nodes in the network. As intuitively expected, higher 

max, ,out P ν  and lower ,tP m  allow for higher network 
density. The effect of ν  is intuitively explained by the fact 
that higher ν  results in larger path loss or, equivalently, in 
smaller distance at the same path loss, so that the transmitters 
can be located more densely without increasing interference 
level. The effect of the other parameters can be explained in a 
similar way. 
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Fig. 1. The CCDF of 1 0/a ad P P=  and 0/tot totd P P=  (also the 
outage probability) evaluated from Monte-Carlo (MC) simulations 
for 2m = , 2 & 4ν = , 10 5

0 10 , 1, 10tP P− −= = ρ = ; analytic 
CCDF of ad  (derived from (8)) and its approximation in (14) are 
also shown. 

( )1k −  strongest interfering signals are inactive: We now 
assume that ( 1)k −  strongest interfering signals are 
eliminated via some means (e.g. by filtering or resource 
allocation). In this case, (9), (10) apply and (13) generalizes to 

( )/1 1
max! !

kk m
out k kN N D− ν≈ =  (17) 

which can be expressed as 1
,1 ,1!

k
out out outk= ≤ , where 

,1out  is the outage probability for 1k =  (see (13)). In the 
small outage region, ,1 1out <<  and ,1out out<< , i.e. there 
is a significant beneficial effect of removing ( 1)k −  strongest 
interferers, which scales exponentially with k. Further 
comparison to the corresponding result in [6] shows that the 
assumption there of cancelling all interferers, which exceed 
the required signal and are in the disk with the given average 
number of interferers, affects significantly the result (no 
exponential scaling). It should also be noted that, contrary to 
the 1k =  case, out  in (17) is super-linear in maxN : doubling 

maxN  increases out  by the factor 2 2k > , i.e. out  is more 
sensitive to maxN  in this case. 

In a similar way, the node density-outage probability 
tradeoff can be formulated. In the for small outage probability 
region 1out << , it can be expressed as 

( ) ( )1/

( )
! k

outV r D
N dV k= ρ ≤  (18) 
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Comparing (18) to (15), one can clearly see the beneficial 
effect of “removing” ( 1)k −  most powerful interferers on the 
outage probability-network density tradeoff, since 
( )1/! k

out outk >>  in the small outage regime, so that higher 
node density is allowed at the same outage probability. 

In the case of uniform density, (18) reduces to 

( ) ( )1/ /1
max! /k m

m out tc k P Pa ν−
νρ ≤  (19) 

which is a generalization of (16) to 1k ≥ . 
Impact of Rayleigh and log-normal fading: Following the 

same approach as in [4], it can be shown that the impact of 
Rayleigh and log-normal fading on the distributions above is 
a shift by a constant factor. In the case of Rayleigh fading, the 
constant is close to 1 and, thus, can be neglected so that the 
distributions are roughly not affected. In the case of log-
normal fading, the constant is not negligible. The intuition 
behind this result is that the distributions in (11), (14), (17) 
are much more heavily-tailed (slowly-decaying) than the 
Rayleigh distribution so that outage events in the combined 
distribution are mostly caused by nearby interferers without 
deep Rayleigh fades and the combined distribution is roughly 
the same as the original one (without fading). On the other 
hand, the log-normal distribution is also heavily-tailed, so it 
cannot be neglected. 

V. THE IMPACT OF LINEAR FILTERING

In the previous sections, we considered the interfering signals 
at the Rx input assuming that the Rx antenna was isotropic, 
i.e. no measures to eliminate some of the interfering signals 
e.g by linear filtering at the Rx antenna, its frequency filters 
etc. were considered. In this section, we explore the effect of 
linear filtering, which may include filtering by the Rx antenna 
based on the angle of arrival, polarization and frequency, and 
by linear frequency filters at the receiver (at RF, IF and 
possibly basedband). Since, as it follows from the previous 
section, the average number of interfering signals N  is a key 
parameter, which determines the dynamic range of interfering 
signals (see (6),(9)) and ultimately the network density-outage 
probability tradeoff (e.g. (15), (18)), we consider the impact 
of linear filtering on this parameter. 

Let 1 2[ , ... ]Tlz z z=z  be the set of filtering variables (i.e. 
frequency, polarization, angle of arrival etc.) and ( )zf z  be the 
PDF of incoming signals over these variables. The probability 
of a randomly-chosen input signal (arriving from a randomly-
selected node) falling in the interval dz  is ( )zf dz z , and the 
probability that the filter output power of this signal exceeds 
the threshold 0P  is 

{ }
0

/
, 0

/ ( )

Pr ( ) ( )m
a out a

P K

P P w P dP K
∞

ν> = =
z

z  (20) 

where 0 ( ) 1K≤ ≤z  is the normalized filter power gain (e.g. 
antenna pattern), and / 1 /

0( ) m mm
aw P P Pν − − ν

ν= , 0P P≥ , is the 
PDF of the signal’s power P . Note that /mK ν  represents the 
reduction in probability of signal power exceeding the 
threshold from the input (where it is equal to one) to the 
output of the filter and thus is a filter gain for given filtering 
variables. The average number of output signals exceeding 

the threshold in the interval dz  is 
/ ( ) ( )m

out z indN K f d dNν= z z z , where indN  is the average 
number of input signals exceeding the threshold in the same 
interval. Finally, the total average number of output signals 
exceeding the threshold 0P  is 

/out inN N Q= ,  
1

/ ( ) ( ) 1m
zQ K f d

−
ν

Δ

= ≥
z

z z z  (21) 

where inN  is the average number of input signals, Q is the 
average statistical filter gain, which represents its ability to 
reduce the average number of visible (i.e. exceeding the 
threshold) interfering signals, and Δz  is the range of filtering 
variables. This gain further transforms into reduction in the 
interfering signals’ dynamic range (see (6), (9)) or in the 
outage probability,  

1

0

11
! ! !

out

ki kk
N out out in

out
i

N N N
e

i k k Q

−
−

=
= − ≈ =  (22) 

and also improves the network density-outage probability 
tradeoff (i.e. (18), (19)), 

( ) ( )1/

( )
! k

in outV r D
N dV Q k= ρ ≤  (23) 

( ) ( )1/ /1
max! /k m

m out tQc k P Pa ν−
νρ ≤  (24) 

i.e. the network density ρ  can be increased by a factor of Q
at the same performance compared to the case of no filtering. 
Clearly, using directional antennas with highly-directive 
pattern, for example, results in large Q (similarly to the 
antenna’s gain) and thus the network density can be increased 
by a large factor Q, as expected intuitively. 
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