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Abstract— The compound capacity of uncertain MIMO channels 
is considered, when the channel is modeled by a class described 
by an induced norm constraint. Within this framework, two types 
of classes are investigated, namely, additive and multiplicative 
uncertainties subject to a spectral norm constraint, using partial 
channel state information at the transmitter side. The compound 
capacity is defined as a maxmin of the mutual information, 
corresponding to the capacity of the class, in which the 
minimization is done over the class of channels while the 
maximization is done over the transmit covariance. Closed form 
solutions for the compound capacity of the classes are obtained 
while several properties related to transmit and received 
eigenvectors are presented. It is also shown that  capacity of the 
class of channels is equal to the worst-case channel capacity, while 
establishing  a saddle-point property. Additionally, explicit 
closed-from solutions are given for the capacity-achieving Tx 
covariance matrix and the worst-case channel uncertainty. The 
effect of uncertainty is shown to be equivalent to an SNR loss 
which is proportional to the size of the uncertainty of the channel 
matrix measured by the spectral norm. 

I. INTRODUCTION

Since the pioneering work of Foschini [1] and Telatar [2], 
multiple-input multiple-output (MIMO) wireless systems have 
attracted a significant attention due to a promise of high 
spectral efficiency. A lot of research activities have been 
concentrated on both the information-theoretic limits (e.g. 
capacity) and practical transmission schemes to approach those 
limits [3]. Performance of such transmission schemes depends 
heavily on channel state information (CSI) available at the 
receiver (Rx)/transmitter (Tx) or both.  In addition, channel 
knowledge, either complete or partial, and its accuracy affect 
also the channel capacity [8]. In wireless systems, imperfect 
CSI may be due to time-varying nature of the channel as well 
as due to limitations of the estimation technique and feedback 
channel [9]. A number of models have been developed to take 
into account such effects [8][9], but most of them were not 
specifically tailored for MIMO systems. A concise review of 
recent results on the impact of imperfect CSI on MIMO system 
performance can be found in [12]. The models of channel with 
imperfect CSI can be classified into statistical (when the true 
channel is considered to be random with given mean and 
covariance) and deterministic (when the channel is 
deterministic (fixed), but only known to belong to a certain 
class, i.e. compound channel [8]) [12]. Deterministic channel 
uncertainty models have been used to evaluate the 
performance of zero-forcing precoding and detection 
techniques [10], of orthogonal space-time block codes [11] and 

to evaluate the compound capacity of uncertain rank-one 
(Ricean) MIMO channels [12]. 

In this paper, we introduce uncertainty models for the 
channel matrix based on an induced (spectral) norm constraint, 
since for practical purposes the spectral norm of the channel 
matrix has the interpretation of the maximum input/output 
transfer gain. Following this framework, we develop generic  
(e.g. any rank) multiplicative and additive channel uncertainty 
models with the spectral norm constraint specifically tailored 
for MIMO capacity analysis. In our approach, we follow the 
ideas pioneered in [4][5]; a comprehensive review of recent 
research activities can be found in [8]. We consider a MIMO 
channel matrix H  as consisting of two parts: the nominal 
channel 0H , which is known at both the Tx and Rx, and the 
uncertainty (perturbation) ΔH , which is not known, so that 

0 HS= + Δ ∈H H H , where HS  is a known (bounded) class of 
channels; both 0H  and ΔH  are assumed to be fixed during 
the transmission interval, while ΔH  is unknown at both the Tx 
and Rx ends. Unlike previous work, the size of ΔH  is 
measured by the spectral norm, which is an induced norm. 
This is fundamentally different from the trace norm considered 
in [12], which is equivalent to a Frobenius norm that is not an 
induced norm and thus does not posses a number of important 
properties of the latter (see Section II-A for details). 
Furthermore, while the analysis in [12] was limited to a rank-
one nominal channel, we consider arbitrary-rank nominal 
channels. Following [4][5][8], we consider two types of 
problems, 1) the capacity of the worst case-channel in the class 
and, 2) the capacity of the class of channels also known as the 
compound channel capacity [8] that is achievable by a single 
code for any channel in the class. The former is formulated as 
a minimax optimization problem while the later is formulated 
as a maxmin optimization. Via explicit evaluation of these two 
capacities, we demonstrate that, for both the multiplicative and 
additive uncertainty models under the spectral norm constraint, 
the saddle point property holds: the capacity of the class equals 
to the worst-case channel capacity. Additionally, we give 
explicit expressions for the optimum (capacity-achieving) 
covariance of the Tx signal and the worst-case uncertainty of 
the channel, both of which depend only on the nominal 
channel and the “size” of the uncertainty set. The effect of 
uncertainty with bounded spectral norm is shown to be 
equivalent to an SNR loss (in terms of the total SNR for the 
multiplicative uncertainty and the per-channel SNR for the 
additive uncertainty). Similar uncertainty model has been also 
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considered in [13], where, however, the uncertainty was 
limited to the singular values of the channel only (no 
uncertainty in singular vectors), which is very unlikely form 
the physical perspective. Our model is more general as it does 
not limit uncertainty to the singular values only (this 
formulation of the problem makes it more challenging and 
requires new tools to solve). 

II. UNCERTAIN CHANNEL MODEL

Let us consider the following baseband discrete-time MIMO 
channel model, 

= +y Hx  (1) 

where ,1
1 2[ , , ... ]T m

mx x x C= ∈x  and ,1
1 2[ , ,... ]T n

ny y y C= ∈y
are the vectors representing the Tx and Rx symbols 
respectively, “T” denotes transposition, 

,
1 2[ , ,... ] n m

m C= ∈H h h h  is the n m×  matrix of the complex 
channel gains between each Tx and each Rx antenna, where 

ih  denotes i-th column of H , n and m are the numbers of Rx 
and Tx antennas respectively, without loss of generality, we 
further assume n m≥ ,  is the vector of circularly-symmetric 
additive white Gaussian noise (AWGN), which is independent 
and identically distributed (i.i.d.) in each receiver1. The 
channel is assumed to be quasistatic (i.e. constant for a 
sufficiently long period of time so that the infinite horizon 
information theory assumption holds) and frequency-flat, with 
partial channel state information (CSI) at the Rx and Tx ends, 
as described below. 

A. Multiplicative Uncertainty 
We consider first the multiplicative channel uncertainty 

model, 

0( )= +H I E H  (2) 

where 0H  is the nominal channel (without uncertainty) known 
at the Rx and, possibly, at the Tx, and ,n nC∈E  is the 
multiplicative uncertainty. We assume E , and hence H , 
belong to a limited uncertainty set (i.e. limited measurement 
error2), 

{ }2:HS∈ = ≤ εH H E , 12 0
max ( ) 1

≠
= = σ ≤ ε <

x

Ex
E E

x
 (3) 

where HS  is the multiplicative uncertainty set, ( )iσ E  is i-th 
singular value of E , iu  is the i-th left singular vector, iv is the 
i-th right singular vector, the singular values are ordered as 

1 2 ... mσ ≥ σ ≥ ≥ σ , and 22
ii x+= =x x x  is the vector 

length squared, and +  denotes Hermitian conjugation. Using 
(2)(3), the norm of the channel uncertainty 0Δ = −H H H can 
be bounded as 02 2Δ ≤ εH H . 

The use of the spectral norm for uncertainty has a number of 
advantages: 

• As a vector induced norm, it lower bounds any matrix 
norm (including Frobenius) [6] and thus gives the largest 
uncertainty set HS . It is also an indicator of the strongest 
                                                          
1 the case of unequal noise power per Rx can also be considered 
within the present framework. 
2 If the limit 1ε <  is not set, the worst-case capacity becomes zero. 

eigenmode of the uncertainty. 
• From the input ( x ) - output ( Ex ) point of view, 1v is 

the highest gain input direction while 1u  is the highest gain 
observing direction.  

• It is the only unitary-invariant vector-induced norm [6]. 
Unitary invariance represents the fact that errors in 
measurements are statistically equal in all directions, i.e. no 
preferred direction or bias. 

• For a unit energy Rx signal coming from the nominal 
channel ( 2

0 1=H x ), the spectral norm of E  limits the energy 
in the uncertain part of the Rx signal ( 2 2

0 1 ( )≤ σEH x E ) so that 
the power ratio of uncertain and certain portions of the Rx 
signal is upper bounded by 2

1 ( )σ E .  
• If the uncertain part of the Rx signal is modeled as 

AWGN, then the corresponding degradation in SNR can be 
easily evaluated and the new degraded SNR is 

2
0 0 1/(1 ( ))γ + γ σ E , where 0γ  is the SNR in the nominal 

channel. In this model, the effect of uncertainty can be 
neglected if 1 0( ) 1/σ << γE , which immediately gives a 
rough idea as to how good the channel estimation should be: 
Under the model in (2), (3), 

1 0 11 ( ) ( ) / ( ) 1 ( )i i− σ ≤ σ σ ≤ + σE H H E , where ( )iσ H  is i-th 
singular value of H . Combining the last two inequalities, 

0 01 ( ) / ( ) 1/i i− σ σ << γH H , i.e. the normalized uncertainty 
in the channel singular values should be much less than 
1/ SNR  for its effect to be negligible. 

B. Additive Uncertainty 
In this model, the nominal channel 0H experiences an 

additive perturbation ΔH , 

0= + ΔH H H  (4) 

where we also assume that ΔH , and hence H , belong to a 
limited uncertainty set, 

{ }0 12: ( )S∈ = − = σ Δ ≤ εHH H H H H , (5) 

where SH  is the additive uncertainty set. Similarly to 
multiplicative uncertainty, the spectral norm bound in (5) can 
be interpreted in terms of the uncertain signal power, the 
corresponding degradation in SNR and the condition for its 
negligible effect can be evaluated. 

We note that the additive and multiplicative uncertainty 
models are related, albeit in a non-symmetric way: for any 
multiplicative uncertainty E , there exists an equivalent 
additive uncertainty 0Δ =H EH ; the converse is not always 
true: for given additive uncertainty ΔH  there exists an 
equivalent multiplicative uncertainty E  only if the system of 
linear equations 0Δ =H EH  has a solution. 

III. CAPACITY OF MIMO CHANNELS

For fixed H  and given covariance of the Tx vector signal 
+=R xx , where x  denotes expectation of x , the mutual 

information between x  and y  when x  is Gaussian (i.e. 
capacity-achieving) is given by the celebrated Foschini-Telatar 
formula, 
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2 1/ 2

1
log log 1 ( )

( , )

m

i
i

I
m m

I

+

=

γ γ= + = + σ

=

I HRH HR

H R
 (6) 

where γ  is the SNR, 1/ 2( )iσ HR  are singular values of 
1/ 2HR , and, due to the total Tx power constraint, ( )tr m≤R , 

where the equality provides the maximum mutual information. 
If no CSI is available at the Tx end, the popular choice is 

=R I . When CSI is available at the Tx end, the capacity can 
be found as, 

( )
( ) max ( , )

tr m
C I

≤
=

R
H H R  (7) 

The maximum in (7) has a well-known water-filling solution 
[1], 

2

( ) 1

2

1

2

( ) max  log 1 ( ) ( )

log 1 ( ) ( )

log ( )

ii

m

i i
m i

m

i i b
i

ii

C
m

m

m+

λ ≤ =

=

γ= + σ λ

γ= + σ λ

μγ= σ

R
H H R

H R

H

 (8) 

where 2( ) [ /( ( ))]i b im +λ = μ − γσR H  are the eigenvalues of the 
best (maximizing) covariance matrix bR , [ ]x x+ =  if 0x >
and 0 otherwise, { }: ( ) 0ii i+ = λ >R  is the index of active 
modes, and the constant μ  is found from the total power 
constraint, ( )i bi m

+
λ =R . 

IV. CAPACITY OF A CLASS OF MIMO CHANNELS WITH 
UNCERTAINTY

Below we consider the capacity of channels with uncertainty 
models in (2)-(5). Following the framework developed in 
[4][5], we distinguish between the capacity min maxC of the 
worst-case channel and the capacity max minC of the class of 
channels (compound capacity) in HS , 

min max ( )
min max  ( , )

HS tr m
C I

∈ ≤
=

H R
H R  (9) 

max min ( )
max  min ( , )

HStr m
C I

∈≤
=

HR
H R  (10) 

Note that the capacity of the class max minC  (compound 
capacity) is achievable using a single code for any channel in 
the class [4][5], meaning there exists a code so that the 
decoding error tends to zero uniformly over the class of 
channels, while the worst-case capacity requires a code 
specifically tailored to the worst-case channel (which may 
perform worse on other channels in the class). In general, the 
following inequality holds [4], 

min max max minC C≥  (11) 

i.e. the capacity of the class is never higher than the worst-case 
channel capacity. Below we obtain stronger results for the 
uncertainty models in (2), (4). 

A. Multiplicative uncertainty 
The capacities in (9) and (10) can be characterized in a simple 
way, using the following Lemma. 

Lemma 1: For given R , the worst-case mutual information 
in (6) for the class of channels in (2), (3) is 

min 0

2 2 1/ 2
0

1

( , ) min ( , )

log 1 (1 ) ( )

HS

m

i
i

I I

m

∈

=

=

γ= + − ε σ

H
H R H R

H R
 (12) 

i.e. the multiplicative uncertainty in (2), (3) results in relative 
SNR loss 2(1 )− ε  compared to the nominal channel case. 

Proof: using the following singular value inequalities [6], 

1

( ) ( ) ( ),  
( ) ( ) ( ),  1...min( , )

n i i

i i i m n
σ σ ≤ σ
σ − σ ≤ σ + =

A B AB
B C B C

 (13) 

where , ,,  ,n n n mC C∈ ∈A B C , together with (2), (3) results in 
the lower bound on the mutual information, 

2 2 1/ 2
0

1
( , ) log 1 (1 ) ( )

m

i
i

I
m=

γ≥ + − ε σH R H R  (14) 

from which (12) follows. Q.E.D. 
We note that the worst-case channel perturbation minE , 

which achieves  minI , is of the form, 

min 0 0
+

ε′ ′= −E U U  (15) 

where ( .... )diagε = ε ε , and the columns of 0′U  are the left 
singular vectors of 1/ 2

0 0′ =H H R , which can be found from 
its singular value decomposition (SVD), 0 0 0 0

+′′ ′ ′=H U V . 

Theorem 1: The capacity of the class of channels in (3) is 

2 2
max min 0

1

2 2
0

log 1 (1 ) ( ) ( )

log (1 ) ( )

m

i i b
i

ii

C
m

m+

=

γ= + − ε σ λ

μγ= − ε σ

H R

H
 (16) 

where 0( )b b=R R H  is the best (i.e. capacity-achieving) 
covariance matrix, 2

0( ) [ /( ( ))]i b im +λ = μ − γσR H  are the 
eigenvalues of bR  (i.e the optimum power allocation to the 
eigenmodes via water-filling), { }: ( ) 0ii i+ = λ >R  is the index 
of active modes, and the constant μ  is found from the total 
power constraint, ( )i bi m

+
λ =R . 

Proof: immediate by using (7), (8) and (12) in (10). Q.E.D. 

Similarly to (12), the effect of channel uncertainty in this 
max-min problem is the SNR loss of 2(1 )− ε . For example, a 3 
dB loss occurs when 1 1/ 2 0.3ε ≈ − ≈ , i.e. 30% inaccuracy 
in the channel knowledge, and the condition for a negligible 
effect of uncertainty is 0.3ε < . As a side remark, we note that 
the capacity-achieving covariance has the following 
eigenvalue decomposition, 

0 0b b
+=R V V  (17) 

where 1( ( )... ( ))b b m bdiag= λ λR R , the columns of 0V  are 
the right singular vectors of 0H , which can be found from its 
SVD, 0 0 0 0

+=H U V , i.e. the best Tx strategy is the 
transmission on the right singular vectors of the nominal 
channel, i.e. multiple beamforming, with the power 
distribution among the beams given by the water-filling 
algorithm applied to the nominal channel at the effective SNR 
= 2(1 )− ε γ . Under the best covariance in (17), the worst-case 
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channel perturbation in (15) takes the form, 

min 0 0
+

ε= −E U U  (18) 

i.e. the eigenvectors of the worst perturbation are anti-parallel 
to the left singular vectors of the nominal channel and are of 
the maximum allowed amplitude. The intuition behind this 
result is that the jammer (uncertainty) tries to reduce the 
channel singular values as much as possible (since the capacity 
is a monotonically-increasing function of the singular values) 
and (16) is the best it can achieve (using (18)), under the best 
Tx strategy. 

If the transmitter is not allowed to use non-uniform power 
allocation among the beams3, i.e. if 1( ) ... ( ) 1mλ = = λ =R R , 
then 0 0b

+= =R V V I  and 
max min min 0 min 0( )

( , ) max  ( , )
tr m

C I I I
≤

= ≤
R

H H R . 

Thus, the non-uniform power allocation is essential in 
achieving the capacity of the class of channels. 

Theorem 2: For the class of channels in (2), (3), the 
capacity of the class equals to the worst-case channel capacity 
(the minimax and maxmin solutions are the same),  i.e. there is 
a saddle point in ( , )I H R , 

min max max minC C=  (19) 

Proof: direct evaluation of min maxC , using the same 
approach as in Theorem 1. Q.E.D. 

It follows that there exists a single code that achieves the 
capacity of the worst-case channel on any channel in the 
uncertainty class. Theorem 2 says in fact that in the matrix 
game between the transmitter ( R ) and the jammer ( E ) there 
is an optimum strategy for both players and each get penalized 
if it deviates from this strategy, provided that the other follows 
it. It also follows that the knowledge of E  does not help the 
transmitter to increase the capacity provided the jammer 
follows the best (i.e. capacity-minimizing) strategy, i.e. the 
optimization of R  for the nominal ( 0H ) and true ( H ) 
channels give the same capacity under the best jamming 
strategy (see (14)). 

B. Additive uncertainty 
The results of the previous section need only minor 
modifications to be adapted to the additive uncertainty model, 
so we give the proofs only when they are different.

Theorem 3: The capacity of the worst-case channel in the 
class in (4), (5) is 

1
min max 0( ) ( )

2
0

min  max  I( , )

log 1 ( ( ) ) ( )

tr m

i i b
i

C

m
+

σ Δ ≤ε ≤
= + Δ

γ= + σ − ε λ

H R
H H R

H R
 (20) 

where the summation is over { }0: ( )ii i+ = σ > εH , and 
2

0( ) [ /( ( ( ) ) ]i b im +λ = μ − γ σ − εR H  are the eigenvalues of the 
capacity-achieving covariance matrix bR . 

Proof: applying the singular value inequalities in (13) to (8) 
                                                          
3 for example, due to the practical constrain of using the same fixed-
power amplifiers 

results in the lower bound on ( )C H  equal to the right hand 
side of (20). Q.E.D. 

We note that the worst-case channel perturbation wΔH  is 
given by 

0 0w
+

ε+Δ = −H U V  (21) 

where ε+  is the diagonal matrix, with { }0min ( ),iσ εH  on 
the main diagonal in position i , and the best covariance bR  is 
the same as in (17). Thus, the worst channel perturbation is 
“anti-parallel” to the nominal channel, so that its singular 
values are reduced most. 

Theorem 4: The capacity of the class of channels in (4), (5)
is equal the capacity of the worst-case channel (the minimax 
and maxmin solutions are the same), i.e. there is a saddle point 
in 0( , )I + ΔH H R  under the additive channel uncertainty, 

max min min maxC C=  (22) 

Proof: max minC  can be evaluated using (8), (13) as follows, 

( )

( )

max min ( )

( )

2

( ) 1

2
0( ) 1

2
0

min max

max  min ( , )

max  ( , )

max  log 1 ( ) ( )

max  log 1 ( ) ( )

log 1 ( ) ( )

H

ii

ii

Str m

w
tr m

m

i w i
m i

m

i i
m i

i i b
i

C I

I

m

m

m

C
+

∈≤

≤

λ ≤ =

+λ ≤ =

=

=

γ= + σ λ

γ≥ + σ − ε λ

γ= + σ − ε λ

=

HR

R

R

R

H R

H R

H R

H R

H R

(23) 

where 0( , ) arg min ( , )
H

w w S
I

∈
= =

H
H H H R H R  is the worst-case 

channel for given R , and the inequality follows from (13). 
Combining (23) with (11) results in (22). Q.E.D.

Thus, there exists a single code that achieves the worst-case 
channel capacity for any channel in the uncertainty class. 
Neither the transmitter ( R ) nor the jammer ( ΔH ) can deviate 
from the optimal strategy without incurring a loss. This result 
parallels one for the multiplicative uncertainty case. It can also 
be seen that the effect of uncertainty is to reduce each 
eigenmode gain from 2

0( )iσ H  to ( )2
0( )i +σ − εH , i.e. an SNR 

loss on each eigenmode individually. Unlike the case of 
multiplicative uncertainty model, this effect can not be 
expressed solely in terms of the aggregate SNR γ . A possible 
condition for the negligible effect of uncertainty is that 

min 0( )ε << σ H , but it may be too conservative as small 
singular values may contribute little to the capacity. Note also 
that, in order to achieve the optimum, the transmitter needs to 
know only 0H  (but not ΔH ), since 0( )b b=R R H  and the 
knowledge of ΔH  does not increase the capacity. 

It should be noted that the results presented above reduce to 
the corresponding results in [12] (with the weight matrix 

= αW I ) when 0 0 0r t
+=H h h  is of rank one, where 0rh  and 

0t
+h  are the Rx and Tx array response vectors. In this case, 

2
0 0 0b t t tm − +=R h h h , i.e. the best Tx strategy is the 

beamforming tailored to the nominal channel, and the worst-
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case channel uncertainty is opposite of the nominal channel, 
0w aΔ = −H H , where 1 1

0 0t ra − −= ε h h . Thus, the spectral 
and Frobenius-normed channel uncertainties give the same 
result in this case. 

Following the same approach as in [12], it can also be 
shown that the compound capacity above (and also the worst-
case capacity, since both are equal) serves as a lower bound to 
the outage capacity outC of a random non-ergodic channel with 
mean 0H  and ΔH  representing the random part, 

max min( )out outC P C≥  (24) 

where the outage probability { }Prout HP S= ∉H , i.e. the 
probability that channel realization is not in the uncertainty set. 
Furthermore, if the outage capacity is defined for the same Tx 
covariance as the compound capacity, then the equality is 
achieved in (24). Thus, the compound capacity can also serve 
as the outage capacity at appropriately defined outage 
probability. 

V. CONCLUSION

The capacity of a class of uncertain MIMO channels 
(compound capacity) subject to the spectral norm constraint 
has been considered for both multiplicative and additive 
uncertainty models. The compound capacity, achievable by a 
single code for all channels in the class, has been shown to be 
equal to the worst-case channel capacity, via explicit closed-
form evaluation of the two. Thus, the saddle-point property 
holds and, in terms of the game theory, neither player can 
deviate from the optimum strategy without incurring loss. The 
best transmission strategy and the worst-case channel 
uncertainties are given in a simple form: the former is the 
transmission on the eigenmodes of the nominal channel (i.e. 
multiple beamforming + water filling to distribute the Tx 
power among the beams), and the latter is opposite of the 
nominal channel. The effect of uncertainty is equivalent to an 
SNR loss commensurable with the size of the uncertainty set. 
In the case of rank-one channel, the best Tx strategy is 
beamforming on the nominal channel, which is in agreement 
with [12]. The compound channel capacity serves as a lower 
bound on the outage capacity. 
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