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On the Outage Capacity Distribution of Correlated
Keyhole MIMO Channels
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Abstract—Keyhole multiple-input–multiple-output (MIMO) channels
have recently received significant attention since they can model, to a
certain extend, some practically important propagation scenarios and
also relay channels in the amplify-and-forward mode. This paper inves-
tigates instantaneous signal-to-noise ratio (SNR) and outage capacity
distributions of spatially correlated keyhole MIMO channels with perfect
channel state information (CSI) at the receive end and with or without
CSI at the transmit end. For a small number of antennas, the impact
of correlation on the capacity distribution can be characterized by the
effective average SNR. This SNR, as well as the outage capacity, decreases
with correlation. For a large number of transmit (receive) antennas, the
keyhole channel is asymptotically equivalent (in terms of capacity) to the
Rayleigh diversity channel with a single transmit (receive) antenna and
multiple receive (transmit) antennas. The outage capacity of the keyhole
channel is upper-bounded by that of the equivalent Rayleigh diversity
channel. When the number of both transmit and receive antennas is large,
the outage capacity distribution of the keyhole channel is asymptotically
Gaussian. In some cases, the asymptotic Gaussian approximation is
accurate already for a reasonably small number of antennas. The perfect
transmit CSI is shown to bring a fixed SNR gain. A more general channel
model with multiple keyholes is proposed. For a large number of antennas,
the capacity of a multikeyhole channel is a normally distributed sum of
the capacities of single keyhole channels. The fact that, despite the strong
degenerate nature of the keyhole channel, its outage capacity distribution
is asymptotically normal indicates that Gaussian distribution has a high
degree of universality for the capacity analysis of MIMO channels.

Index Terms—Capacity distribution, correlation, keyhole channel, mul-
tiple-input–multiple-output (MIMO) system, relay channel, symbol error
rate.

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) systems have become an
attractive solution in wireless communications due to potentially high
spectral efficiency. One of the major statistical characteristics of MIMO
channels in a multipath environment is their outage capacity, which
gives the ultimate upper limit on the error-free information rate with
a given probability of outage [1], [35], [2]. The outage capacity dis-
tribution of various MIMO channels has been extensively studied, and
many analytical and empirical results have been obtained. The uncor-
related and correlated Rayleigh/Rice MIMO channels have been well
studied and closed-form expressions for their outage capacity distri-
butions have been found [3]. Many measurement-based works show
that a wide range of real channels follows closely those analytical re-
sults [4]. Closed-form expressions for the mean capacity and outage
capacity distribution of various MIMO channels deploying space–time
block coding (STBC) have been also obtained [5], [6].

On the contrary, the outage capacity distribution of keyhole MIMO
channels has not been studied in sufficient depth yet. The keyhole
channel was analytically predicted in [7] as a channel in multipath
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environment, where certain propagation mechanisms reduce the
channel rank. It can be represented as a concatenation of two fading
subchannels separated by a keyhole whose dimension is much smaller
than the wavelength. The presence of a keyhole degenerates the
channel, i.e., its rank is one regardless of the number of transmit (Tx)
and receive (Rx) antennas [7]. Thereby, the capacity of such a channel
deteriorates significantly compared to the Rayleigh channel with the
same number of Tx and Rx antennas. There is a significant interest
in keyhole channels in recent literature as they can describe some
practically important propagation scenarios. Chizhik et al. [8] suggest
a keyhole scenario where the only link between Tx and Rx ends is
due to the 1-D diffraction. The measurements of the channel capacity
along a hallway reported in [9] show a decrease in capacity with
distance, which is explained by the keyhole effect in long corridors.
The first convincing experimental evidence of a keyhole channel was
demonstrated in [10] and [11], where it was shown, in particular, that
the keyhole model describes well the wireless channels where the
wave propagates via narrow tunnels or waveguides. The importance
of a MIMO keyhole channel is also due to its unique position as a
channel with only one nonzero eigenmode, which describes the worst
case MIMO propagation scenario. It should also be mentioned that
relay channels in the amplify-and-forward mode can be represented
by the keyhole channel model considered here and, thus, our results
apply to such channels as well.

However, the literature dealing with the information theoretic anal-
ysis of such channels is rather limited. Closed-form expression for
the mean (ergodic) capacity of spatially uncorrelated keyhole channels
is presented in [12]. Performance analysis of space-time block codes
over uncorrelated keyhole channels is given in [13], where, in partic-
ular, the moment generating function of the instantaneous postdetection
signal-to-noise ratio (SNR) is derived, and the symbol error rates (SER)
for various codes are evaluated. A tight lower bound and an approxi-
mation of the mean capacity of spatially correlated keyhole channels
are proposed in [14] and [15], respectively.

These papers, however, do not consider the outage capacity, which is
a more relevant performance measure in a fading channel from a prac-
tical perspective (i.e., for a given quality of service) as compared to the
mean capacity. To fill the gap, the present paper derives the closed-form
expressions for the instantaneous SNR and the outage capacity distri-
butions of correlated keyhole MIMO channels. We consider a particular
but common case where the correlation matrices at the Tx and Rx ends
are nonsingular and have distinct eigenvalues. We show that the key-
hole channel distribution and so its outage capacity is different from
that of traditional diversity channels with single antenna at one end,
which also have rank one. However, in terms of capacity and when the
number of Tx (Rx) antennas is large, the keyhole channel is asymptoti-
cally equivalent to the Rayleigh diversity channel with a single Tx (Rx)
antenna. The capacity distribution of the keyhole channel is bounded
from below by that of the equivalent Rayleigh diversity channel.

Since the expression for the exact capacity distribution with arbi-
trary number of Tx and Rx antennas is rather complicated and does not
allow for significant insight, we consider two cases, where the number
of antennas is either small or asymptotically large. We show that for
a small number of antennas, the impact of correlation is characterized
by the effective average SNR, i.e., an increase in correlation results in
smaller effective SNR and consequently in smaller outage capacity. To
derive the outage capacity distribution of keyhole channels with a large
number of Tx and Rx antennas, we use the asymptotic analysis, which
has been already successfully exploited in [16] and [17] for correlated
and uncorrelated Rayleigh-fading MIMO channels, respectively. We
show that, under certain mild conditions on correlation and despite the
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degenerate nature of the keyhole channel, its outage capacity distri-
bution is asymptotically Gaussian; while the mean is affected by the
average SNR and is independent of correlation, the latter affects the
variance. The analogy in asymptotic capacity distribution between the
Rayleigh and keyhole MIMO channels indicates that Gaussian approx-
imation has a high degree of universality for MIMO capacity analysis in
general. In order to study the impact of the correlation on the outage ca-
pacity in explicit form, we propose a scalar measure of MIMO channel
correlation and consider as an example the exponential and quadratic
exponential correlation matrix models [18], [19], [20] to show analyti-
cally that the larger the correlation, the larger the variance of the asymp-
totic outage capacity. In turn, larger variance results in smaller capacity
at low outage probabilities. We demonstrate that in some cases the exact
capacity distribution follows closely the asymptotic one already for a
reasonably small number of Tx and Rx antennas; the discrepancy is in-
significant from the practical point of view. Hence, not only does the
simple asymptotic expression offer a significant insight, but can also
be applied to realistic problems.

We show that the upper [12] and lower [14] bounds on the mean ca-
pacity of keyhole channels can be easily obtained based on the derived
instantaneous SNR distribution. Moreover, the upper bound is tight for
small SNR and the lower bound is tight for large SNR.

Unlike high-rank MIMO channels with a perfect knowledge of
channel state information (CSI) at the Tx end, where finding the ca-
pacity is usually associated with significant mathematical complexity,
it is shown that in keyhole channels, the perfect Tx CSI brings a fixed
SNR gain. Moreover, we find an explicit expression for the optimal
input covariance matrix, which shows that the best transmission
strategy in this case is the Tx beamforming to the keyhole. Since the
fixed SNR gain does not change the channel statistics, we conclude
that the results obtained for the keyhole channel with no CSI at the Tx
end hold true for the channels with a perfect CSI at both ends as well.

When the channel state information is available at the Rx end only,
Alamouti space time code [22] is the optimal transmission technique
in keyhole channels with one or two Tx antennas and any number of
Rx antennas, since it achieves the capacity.

As an application of the outage capacity distribution, we demonstrate
that a simple yet reasonably accurate estimate of SER in a fading key-
hole channel for a variety of modulation formats can be obtained using
the outage probability derived from the outage capacity distribution,
which becomes especially simple when the number of antennas is large.

Since the ideal keyhole channel in not often encountered in real
propagation environment [10], [11], we propose a generalized model
of a channel with multiple keyholes, the “multikeyhole channel.” We
show that asymptotically the capacity of such a channel is a Gaussian-
distributed sum of capacities of single keyhole channels. Moreover,
while the mean capacity of the multikeyhole channel increases with
the number of keyholes, its outage capacity may decrease.

The rest of the paper is organized as follows: In Section II we give
basic expressions for the capacity of keyhole channels. The exact dis-
tributions of the instantaneous SNR and the outage capacity when CSI
is available at the Rx end only are derived in Section III. The asymp-
totic outage capacity distribution is obtained in Section IV. The mean
capacity is discussed in Section V. The capacity of keyhole channels
with prefect CSI at the Tx end and capacity achievability are consid-
ered in Sections VI and VII, respectively. A SER estimate is proposed
in Section VIII. The multikeyhole channel is introduced in Section IX.
Section X concludes the correspondence.

II. KEYHOLE MIMO CHANNEL CAPACITY

Consider a spatially correlated keyhole MIMO channel with nt Tx
and nr Rx antennas (see Fig. 1). Let elementHkm; k = 1 � � �nr;m =
1 � � �nt, of the channel matrix H be a complex gain from the mth

Fig. 1. Keyhole MIMO channel. Each subchannel undergoes Rayleigh fading.

transmit to the kth receive antenna. The keyhole channel matrix is given
by [7]

H = hrh
H

t (1)

where ()H denotes the Hermitian transpose; ht[nt � 1] and
hr[nr � 1] are the vectors representing the complex gains from
the transmit antennas to the keyhole and from the keyhole to the
receive antennas, respectively. Assume that ht and hr are mutually
independent complex circular symmetric correlated Gaussian random
vectors with zero means and correlation matrices Rt = Efhth

H

t g
and Rr = Efhrh

H

r g, respectively, where Efg denotes the ex-
pectation. Without loss of generality, H is normalized so that

EfkHk2g = ntnr , where kHk = trfHHHg is the L2 norm,

and n�1t Efkhtk
2g = n�1r Efkhrk

2g = 1, which also implies
n�1t trfRtg = n�1r trfRrg = 1.

When the CSI is available at the Rx end but not the Tx end, the
instantaneous capacity (i.e., the capacity of a given channel realization)
of a frequency-flat quasi-static MIMO channel in natural units [nat] is
given by [2]

C = lndet I+

0
ntnr

HH
H (2)

where det is the determinant, I is nr � nr identity matrix, and 
0 is
the total average SNR at the Rx end. Substituting (1) in (2) and using
the fact that for any matrices A and B with suitable dimensionality
det[I+AB] = det[I+BA] [1], [35], it is straightforward to show
that the instantaneous capacity of the keyhole channel is [21]

C = ln 1 +

0
ntnr

� (3)

where � = khtk
2khrk

2 is the power gain of the equivalent scalar
channel. Up to a constant factor, � determines the instantaneous
SNR(= � � 
0=(ntnr)) in the equivalent scalar channel. Since the
instantaneous capacity is a continuous, monotonically increasing
function of �, the cumulative distribution function (cdf) of C , which
is also the outage capacity distribution FC(x), is given by

FC(x) = F�
ntnr

0

(ex � 1) (4)

where F�(x) is the cdf of �. The exact expression for F�(x) is given
and analyzed in the next section.

III. SNR AND OUTAGE CAPACITY DISTRIBUTION

Theorem 1: Let � = �t � �r , where �t = khtk
2; �r = khrk

2 and
ht;hr are mutually independent complex circular symmetric corre-
lated Gaussian random vectors. When bothRt andRr are nonsingular
and have distinct eigenvalues �tk; k = 1 � � �nt, and �rm; m = 1 � � �nr ,
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respectively, the probability density function (pdf) f�(z) and the cdf
F�(z) of � are as follows:

f�(x) = 2

n

k=1

n

m=1

At

kA
r

m

�t
k
�rm

K0

4x

�t
k
�rm

; x � 0 (5)

F�(x) = 1�

n

k=1

n

m=1

A
t

k

� A
r

m

4x

�t
k
�rm

K1

4x

�t
k
�rm

; x � 0 (6)

where Kn(x) is the n-order modified Bessel function of the second
kind, At

k and Ar

m are the coefficients of a partial fraction decomposi-
tion given by

Ak =

n

1�
�m

�k

�1

(7)

and Ak is either At

k or Ar

k; �k is either �tk or �rk , and n is either nt or
nr .

Proof: See Appendix A.

Consider a number of cases where Theorem 1 does not apply or ap-
plies with some modifications.

i) The channel at the Tx, Rx, or both ends is uncorrelated, i.e.,
�k = 1 for k = 1 � � �n (the eigenvalues are not distinct). While
Theorem 1 does not apply in this case, f�(x) and F�(x) can be
evaluated based on the characteristic function (CF) ��(!) given
in [12] for uncorrelated keyhole channels.

ii) There is a number of fully correlated antennas, i.e., Rt;Rr or
both have some zero eigenvalues. In this case the pdf and so cdf
of � is also calculated by (5) and (6), respectively, but the sum-
mation is taken over nonzero eigenvalues only, i.e., zero eigen-
values and corresponding eigenvectors are excluded as they do
not contribute to the SNR. This follows directly from the proof
of Theorem 1. In particular, when the channel is fully correlated
at both the Tx and Rx ends, it is equivalent to a keyhole channel
with a single antenna at each end and the gains equal to nt and
nr , respectively. In this case, At

1 = Ar

1 = 1; �t1 = nt and
�r1 = nr , so that (5) and (6) reduce to

f�(x) =
2

ntnr
K0

4x

ntnr
; x � 0 (8)

F�(x) = 1�
4x

ntnr
K1

4x

ntnr
; x � 0: (9)

In all the cases, the exact expression for the outage capacity distri-
bution is obtained from (4) using the instantaneous SNR cdf.

The analytical expressions above have been validated by Monte-
Carlo simulations for various nt; nr; 
0;Rt andRr . In all considered
cases, no difference has been found between analytical and numerical
results.

To get some insight into (4), let us consider a 2 � 2 keyhole MIMO
channel with equal correlation matrices

Rt = Rr =
1 r

r� 1
; jrj < 1 (10)

where r� is a complex conjugate of r. Using the Maclaurin series of
x �K1(x) and exp(x), it is straightforward to show that for small x

FC(x) � c �
x


0(1� jrj2)

2

(11)

Fig. 2. Outage capacity distribution: correlated keyhole channel (bold line),
uncorrelated one with effective average SNR (dotted line).

where c = 5 � 4(
e � ln(2)) and 
e � 0:577 is the Euler constant
[24]. Using numerical simulations, we found that the lower bound in
(11) gives a good approximation for the capacity distribution at outage
probabilities FC(x) > 10�7. Moreover, from (11), an effective av-
erage SNR, i.e., the SNR of an uncorrelated keyhole channel with the
same probability of outage, can be defined as


e� = 
0(1� jrj2): (12)

Apparently, an increase in correlation decreases the effective average
SNR and results in lower capacity. For example, jrj = 0:7 corresponds
to a � 3 dB decrease in 
e� . Interestingly, (12) is identical to the ef-
fective SNR in the correlated Rayleigh channels with maximum ratio
combining (MRC) [23] and in full-rank MIMO channels [18]. From
numerical simulations, the impact of correlation on the outage capacity
is accurately characterized by the effective average SNR not only for
2 � 2 keyhole channels, but also for channels with up to four antennas
at each end. To demonstrate this, Fig. 2 compares the outage capacity
distribution of 2 � 2, 3 � 3, and 4 � 4 correlated keyhole channels
to that of the equivalent (with respect to effective average SNR) uncor-
related keyhole channels. For the correlated channels, Rt and Rr are
simulated using exponential correlation model [18] with the same cor-
relation parameter jrj = 0:7 at both Tx and Rx ends. The average SNR
at the uncorrelated channels is set to 
e� given by (12). The difference
between the capacity distributions of correlated and corresponding un-
correlated channels increases with the number of antennas. Similar ob-
servations can also be made for the channels where Rt and Rr are
modeled by quadratic exponential correlation matrices1 [19], [20].

For more than 4� 4 systems, the effective SNR alone is not enough
to represent the effect of correlation. In this case (4) has a complicated
form, which makes it difficult to obtain insight and to evaluate the ef-
fect of various parameters on the capacity. In particular, the effect of
correlation is difficult to see. Moreover, when nt or nr are large and the
correlation at the Tx or Rx ends is low, the partial fraction decomposi-
tion coefficients in (7) become too large, so that numerical evaluation of
(4) suffers from the loss of precision. To overcome these problems, we
derive below the asymptotic outage capacity distributions when nt; nr
or both are asymptotically large.

1The exponential and quadratic exponential correlation models are consid-
ered in detail in Section IV. The corresponding correlation matrices are given
by (21) and (25), respectively.
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Fig. 3. Outage capacity distributions: n �3 keyhole and 1 � 3 Rayleigh
correlated channels.

IV. ASYMPTOTIC OUTAGE CAPACITY DISTRIBUTIONS

Theorem 2: Consider an nt � nr keyhole channel, where ht and
hr are mutually independent complex circular symmetric correlated
Gaussian random vectors with zero mean and correlation matrices Rt

and Rr .
i) If limn !1 n�1t trfRtg < 1 and limn !1 n�1t kRtk = 0,

then there is an asymptotically equivalent 1�nr Rayleigh fading
channel, so that the instantaneous capacities of both the keyhole
and Rayleigh channels are identical in distribution as nt ! 1,
i.e.,

C
p
! ln 1 +


0
nr

�r as nt !1 (13)

where
p
! denotes convergence in probability.

ii) Due to the symmetry in (3) and under the same conditions, (13)
holds true as nr ! 1, if Tx and Rx ends are exchanged.

Proof: See Appendix B.

The asymptotic behavior of the keyhole channel indicated by The-
orem 2 is well explained by the fact that when nt(nr) ! 1, the
Rayleigh subchannel (see Fig. 1) at the Tx (Rx) end is asymptotically
a nonfading AWGN one with a single equivalent Tx (Rx) antenna,
and the whole keyhole channel is equivalent to the Rx (Tx) diversity
Rayleigh channel. This observation has already been made in [13] for
uncorrelated keyhole channels. Theorem 2 shows that the same is true
for the correlated keyhole channels under the aforementioned condi-
tions.2

Corollary 2.1: IfRr is nonsingular and has distinct eigenvalues, the
asymptotic outage capacity distribution of the keyhole channel is given
by

FC(x)! F�
nr

0

(ex � 1) as nt !1 (14)

where

F� (x) = 1�

n

k=1

Ar
k expf�x=�kg; x � 0 (15)

Due to the symmetry in (3) and under the same conditions, (14) holds
true as nr ! 1, if Tx and Rx ends are exchanged.

Proof: See Appendix B.

2A physical interpretation to the conditions of Theorem 2 can be found in
[27].

Consider the outage capacity distribution when the number of an-
tennas increases. Assume that new antennas do not change the elec-
tromagnetic environment and thereby the channel for already existing
ones. In such a case, an increase in the number of Tx antennas has
two opposite effects: 1) under a total Tx power constraint, it decreases
the average transmitted power per Tx antenna, and 2) increases the di-
versity order of the channel. At low outage probabilities the effect of
the increasing diversity order is dominant, which causes FC(x) to de-
crease. At high outage probabilities, the effect of decreasing Tx power
prevails over the increasing diversity order so that FC(x) increases.
Thus, the cdf curves of two keyhole channels with n and m(m > n)
Tx antennas and a fixed (same) number of Rx antennas should cross
each other, so that at low outage probabilities the channel with m an-
tennas has higher outage capacity and, correspondently, the channel
with n antennas has higher outage capacity at high outage probabili-
ties. Since the equivalent Rayleigh diversity channel is an asymptotic
case of the keyhole channel as nt !1 the following inequality holds
at low outage probabilities

FR
C (x) � FK

C (x) (16)

where FK
C (x) and FR

C (x) are the capacity distributions of the key-
hole and equivalent Rayleigh diversity channels, respectively, i.e., at
low outage probabilities, the outage capacity of the equivalent Rayleigh
channel upper-bounds that of the keyhole one. To validate (16), the ca-
pacity distributions of correlated nt� 3 keyhole and equivalent 1 � 3
Rayleigh diversity channels are plotted in Fig. 3. The exponential corre-
lation model [18] with the correlation parameter jrj = 0:7 was used to
simulate both Rt andRr . Clearly, the outage capacity of the Rayleigh
channel is higher than that of the keyhole one, the latter approached the
former as nt increases.

Even though Theorem 2 shows the relationship between the keyhole
channel and the equivalent Rayleigh diversity channels, the asymptotic
distribution in (14) is still complicated and does not contribute much to
the understanding of the impact of various parameters in general and
correlation in particular on the outage capacity. To gain such under-
standing, we proceed with the following theorem.

Theorem 3: Let C be the instantaneous capacity of the corre-
lated keyhole channel defined in (2). When both nt and nr tend
to infinity, the distribution of C is asymptotically Gaussian if
limn !1 n�1t trfRtg < 1; limn !1 n�1r trfRrg < 1 and
limn !1 n�2t kRtk

2 = limn !1 n�2r kRrk
2 = 0. Moreover,

if ht and hr are normalized so that limn !1 n�1t trfRtg =
1; limn !1 n�1r trfRrg = 1, the mean � and the variance �2 of C
are as follows:

� = ln(1 + 
0);

�2 =

0

1 + 
0

2
1

n2t
kRtk

2 +
1

n2r
kRrk

2 : (17)

Proof: See Appendix C.

Note that the conditions of Theorem 3 do not require distinct eigen-
values of the correlation matrices Rt and Rr . Hence, the outage ca-
pacity distribution of the uncorrelated keyhole MIMO channel with
Rt = Rr = I is asymptotically normal, with � = ln(1 + 
0) and
�2 = (
0=(1 + 
0))

�2(n�1t + n�1r ). From (17), it is not always true
that an increase in the number of antennas decreases the variance and
thereby the outage probability (as one would intuitively expect based
on the increasing diversity argument), but only if �2 is monotonically
decreasing with nt and nr , i.e., if kRtk and kRrk increase not faster
than n1�"t and n1�"r , respectively, for some "1; "2 > 0. Even though
the conditions of Theorem 3 do not require such monotonicity, we show
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below that the exponential [18] and quadratic exponential [19], [20]
correlation models possess this monotonicity property.

Since � is a function of 
0 only, the effect of correlation on the mean
capacity vanishes asymptotically. In contrast, the variance �2 is af-
fected by the correlation, but does not depend on the average SNR from
moderate to high 
0, since 
0=(1+
0) � 1 in (17). This explains why
for large nt and nr the effect of correlation is not adequately repre-
sented by the effective average SNR in (12). Note also that the asymp-
totic mean capacity in (17) is identical to the upper bound on the mean
capacity of the finite order uncorrelated keyhole channel given in [12],
i.e., Theorem 3 shows that the bound also holds for the correlated chan-
nels and it is asymptotically tight.

To analyze �2 in (17), let R 2 <, where < is a set of all n � n
correlation matrices such that tr(R) = n. Using Cauchy-Schwarz’s
inequality

1

n2
kRk2 =

1

n2

n

k=1

�2k � 1

n2
1p
n

n

k=1

�k

2

=
1

n
(18)

with the equality if �k = �m for all k;m = 1 . . .n, where �k are
eigenvalues of R, i.e., if R = I. Thus, n�2kRk2 achieves its min-
imum when the channel at the Tx(Rx) end is uncorrelated with the same
power at each Tx(Rx) antenna. Furthermore, since everyR 2 < is pos-
itive semi-definite (�k � 0; k = 1 . . .n)

1

n2
kRk2 =

1

n2

n

k=1

�2k � 1

n2

n

k=1

�k

2

= 1 (19)

with the equality if �k = n for some k, and �m = 08m 6= k. Thus,
n�2kRk2 achieves its maximum when the channel at the Tx (Rx) end
is fully correlated. From (18), (19) and following the properties of the
L2 norm [24], n�2kRk2 is a mapping of < onto a closed interval of
real numbers [1=n; 1] (note that [1=n; 1] converges to (0; 1] as n !
1, which has a certain degree of similarity with the scalar correlation
coefficient). This leads to the following definition.

Definition 1: A channel with correlation matrix R1 2 < is said to
be equally or more correlated than one with R2 2 < if

n�1kR1k � n�1kR2k (20)

Definition 1 introduces n�2kRk2 as a measure of correlation for chan-
nels with large n, alternative to that in [25]. Unlike [25], Definition 1
is not based on the majorization theory [26] and allows comparing cor-
relations between any pairR1;R2 2 <, with no exception.3 Equation
(17) shows that the variance of outage capacity is directly proportional
to the total measure of correlations (n�2t kRtk2 + n�2r kRrk2). As a
simple application of this definition and Theorem 3, we have the fol-
lowing result.

Corollary 3.1: Consider two keyhole channels with the same
nt; nr; 
0 and with different variances �21 > �22 of instantaneous
capacity (see (17)),.i.e., according to Definition 1, the channel with
�21 has higher correlation. Thus, F 1

C(x) > F 2
C(x) for x > �, and

F 1
C(x) < F 2

C(x) for x > �, i.e., the channel with higher correlation
has smaller outage capacity (higher outage probability) at outage
region FC(x) < 1=2, and larger outage capacity at outage region
FC(x) > 1=2; the latter region, however, has limited importance from
practical perspective).

Proof: Under the conditions of Theorem 3, the outage capacity of
both channels is asymptotically Gaussian with equal means�1 = �2 =
�. Compare two equal-mean Gaussian cdfs F 1

C(x) (with variance �21 )

3The majorization-theory-based definition does not allow full ordering of cor-
relation matrices with more than two nonzero eigenvalues [25], i.e., some cor-
relation matrices cannot be compared.

and F 2
C(x) (with variance �22 ). It follows that they cross each other at

the single point x = � such that F 1
C(�) = F 2

C(�) = 1=2, and that
F 1
C(x) > F 2

C(x) for x < �, and F 1
C(x) < F 2

C(x) for x > �.Q:E:D:

To validate the general discussion above and to show explicitly the
impact of correlation on asymptotic outage capacity distribution, con-
sider two single-parameter correlation matrix models forRt andRr .

A. Exponential Correlation Model

In this model the elements of correlation matrix R, either Rt or
Rr , are represented through a single complex correlation parameter
r, which is the correlation between adjacent antennas [18]

Rkm =
rm�k;m � k

(r�)k�m;m < k
; jrj < 1 (21)

This model allows for significant insight and has been successfully
used for many communications problems. Despite its simplicity, it is a
physically reasonable model in the sense that the correlation decreases
as the distance between antennas increases. It can be shown that R in
(21) satisfies the conditions of Theorem 3, i.e., n�1trfRg = 1 and as
n ! 1

n�2kRk2 ! 1

n
� 1 + jrj2
1� jrj2 ! 0; jrj < 1 (22)

(see Appendix D for a proof). Thus, when both Rt and Rr are given
by the exponential model, the outage capacity distribution of such a
keyhole channel is asymptotically Gaussian with the mean given in (17)
and the variance

�2 =

0

1 + 
0

2
1

nt
� 1 + jrtj2
1� jrtj2 +

1

nr
� 1 + jrrj2
1� jrrj2

(23)

where rt and rr are the correlation parameters in Rt and Rr , respec-
tively. Note that �2 is monotonically decreasing withnt andnr (mono-
tonicity property). To get some insight, assume that n = nt = nr and
r = rt = rr ; then, for the same 
0 in both channels, the capacity dis-
tributions of uncorrelated r = 0 and correlated r 6= 0 channels have
the same mean � = ln(1 + 
0), but different variances �2u and �2c , so
that

� =
�2c
�2u

=
1 + jrj2
1� jrj2 � 1; jrj < 1: (24)

From (24), �2c � �2u, and � is a monotonically increasing function of
jrj, i.e., the larger jrj results in larger �2c . This supports Definition 1.
Thus, following the general discussion above, the outage capacity of the
uncorrelated asymptotic channel is larger than that of the correlated one
at outage probabilities less than 0:5. Note that even for small jrj, the
capacity gap between correlated and uncorrelated channels can still be
significant at low outage probabilities. As an example, Fig. 4 shows the
asymptotic outage capacity distributions of the 3 � 3 keyhole channels
with exponential correlation at both ends for jrj = jrtj = jrrj. Clearly,
the outage capacity decreases at outage probabilities less than 0:5 as jrj
increases. For jrj � 0:2, correlation has no significant impact on the
asymptotic capacity except at extremely low outage probabilities.

B. Quadratic Exponential (QE) Model

This is a physically based single-parameter correlation matrix model
where the elements of the correlation matrixR are given by [19], [20]

Rkm =
r(m�k) ;m � k

(r�)(k�m) ;m < k
; jrj < 1: (25)

Here the correlation between different antennas decays much faster
with distance jm� kj than in the previous example. This is a physical
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Fig. 4. Asymptotic outage capacity distributions of 3 � 3 keyhole channels
with exponential correlation.

model as it represents the scenario with a Gaussian profile of multipath
angle-of-arrival [19], [20]. Similarly to the exponential model, the QE
one also satisfies the conditions of Theorem 3, i.e., n�1trfRg = 1 and
for a sufficiently large n and jrj < 1

1

n
� 1 +

p
�

�(r)
E [�(r)] � n�2kRk2 � 1

n
� 1 +

p
�

�(r)

(26)

where �(r) = �2 ln jrj; E(x) = erfc(x) is the complemen-
tary error function [24] (see Appendix D for a proof). Since both
the upper and lower bounds converge asymptotically to zero, then
limn!1 n�2kRk2 = 0. Therefore, from Theorem 3, the outage
capacity distribution of the keyhole channel with QE correlation at
both the Tx and Rx ends is asymptotically Gaussian with the mean
� = ln(1 + 
0) and the variance bounded for jrtj; jrrj < 1 by

�2 � 
0
1 + 
0

2
1

nt
1 +

p
�

�(rt)

+
1

nr
1 +

p
�

�(rr)

�2 � 
0
1 + 
0

2
1

nt
1 +

p
�

�(rt)
E [�(rt)]

+
1

nr
1 +

p
�

�(rr)
E [�(rr)] : (27)

From the numerical simulations, �2, as well as its upper and lower
bounds, decreases monotonically with nt and nr (monotonicity prop-
erty), and increases with jrtj and/or jrrj. As the result, similarly to the
exponential model, the outage capacity decreases with correlation at
outage probabilities less than 0:5.

To demonstrate the effect of correlation structure (the rate of correla-
tion decay with distance jm� kj) on the outage capacity, Fig. 5 shows
n�2kRk2 versus jrj for n = 100 whenR is given by the exponential
and QE models. n�2kRk2 is numerically evaluated for both models
and is shown together with the approximation in (22) (for the exponen-
tial model) and the bounds in (26) (for the QE model). For low corre-
lations, jrj < 0:4, the behavior of n�2kRk2 in both models is sim-
ilar. For jrj � 0:4; n�2kRk2 in the exponential model increases more
rapidly with jrj as compared to the QE model, i.e., the more rapidly the
correlation decays with distance, as in the QE model, the higher r can
be tolerated without significant loss in capacity. Thus, the effect of cor-
relation on outage capacity is characterized not just by the correlation

Fig. 5. n kRk in exponential and QE models versus correlation parameter.
The variance of outage capacity distribution follows the same tendency [see
(17)].

between adjacent antennas, but also by its rate of decay with distance
jm� kj, which is accounted for in Definition 1.

The uniform correlation model [28] can also be considered. How-
ever, unlike the exponential and QE, this model does not satisfies the
conditions of Theorem 3 (limn!1 n�2kRk2 6= 0), so it impossible
to say based on Theorem 3 whether the outage capacity of a key-
hole channel with uniform correlation is asymptotically Gaussian as
nt; nr ! 1.

C. Convergence Rate and Numerical Results

From the practical point of view, the asymptotic analysis above is
important as an approximation to real channels with a finite number of
antennas. From the proof of Theorem 3 (see Appendix C), the outage
capacity converges to the Gaussian distribution with the same rate as
n�1t kRtk and n�1r kRrk go to zero, which is 1=

p
n (n is either nt or

nr) for the exponential and QE correlation models [see (22) and (26)].
Extensive numerical simulations were used to assess the accuracy of
the asymptotic approximation. Some of the results are shown in Fig. 6,
where the exact capacity distributions of 2� 2, 3� 3, and 5� 5 key-
hole channels with exponential correlation at both Tx and Rx ends are
compared to the corresponding Gaussian approximations. Clearly, the
difference between the Gaussian approximation and the exact distri-
bution is negligible for most practical purposes. Usually, for finite nt
and nr , the asymptotic distribution overestimates the exact one. When
the approximation (22) and the upper bound in (26) are used in place
of the true �2, the exact distribution, in some cases, follows closely
the asymptotic one already for two antennas at each end. However, we
were not able to find a compact general rule indicating the accuracy of
the approximation for given parameters.

The asymptotic normality of outage capacity of keyhole channels
with Rayleigh-fading subchannels can be generalized for a wider class
of keyhole channels.

Theorem 4: Let C be the instantaneous capacity of the correlated
keyhole channel where ht / R

1=2
t gt and hr / R

1=2
r gr;/ denotes

identical distribution,gt andgr are zero mean complex random vectors
with independent entries (not necessarily complex Gaussian or identi-
cally distributed). When both nt and nr tend to infinity, the distribution
of C is asymptotically normal if:

i) m2+�(k) <1 and m2(k) > 0 for all k and some � > 0, where
m�(k) = Ef(jgkj2�Efjgkj2g�g is the central moment of jgkj2
of order �, and gk is the kth entry of either gt or gr .

ii) Both Rt and Rr satisfy a Lyapunov-type condition

lim
n !1

k���k2+�
k���k2 = 0 (28)



3238 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

Fig. 6. Keyhole channel exact outage capacity and its asymptotic approxima-
tion.

Fig. 7. Mean capacity of correlated keyhole channels versus SNR.

where k���km = ( n
i=1 (�i)

m)1=m is theLm norm of the eigen-
values.

Proof: See Appendix E.

Lyapunov-type condition (28) is also important for asymptotic anal-
ysis of Rayleigh-fading channels [17]. Its detailed theoretical analysis
and some practical implications are presented in [27]. Even though the
condition (28) is in a closed form, its usefulness for practical com-
putations is rather limited due to two reasons: 1) The eigenvalues are
known in a closed form only for some simple matrices. Consequently,
the above condition can be evaluated analytically only in such cases. 2)
Numerical evaluation of this condition is also difficult, since the numer-
ical complexity (number of operations, inaccuracy, etc.) of the eigen-
value problem increases rapidly with n, so that n!1 is problematic
if possible at all. The following Corollary gives a condition that is easier
to evaluate.

Corollary 4.1: If both Rt and Rr have Toeplitz structure, i.e., the
k �mth element ofR (eitherRt orRr) is Rkm = Rk�m, then (28)
is equivalent to

lim
n!1

n
�1kRk2 <1 (29)

for both Rt and Rr .

Proof: See Appendix E.

If limn!1 n�1kRk2 < 1, then limn!1 n�2kRk2 = 0, and
there is an analogy between the conditions of Theorem 3 and Corol-
lary 4.1, as both require the measure of correlation n�1kRk to vanish
asymptotically. Theorem 3, however, does not require Toeplitz struc-
ture of Rt and Rr but is restricted to complex Gaussian ht and hr .
Since Corollary 4.1 applies to a wider class of ht and hr , it indicates
that the measure of correlation proposed in Definition 1 has a higher
degree of universality than just for MIMO channels defined through
complex Gaussian random vectors.

V. BOUNDS ON THE MEAN CAPACITY

Even though the outage capacity is the relevant performance mea-
sure for nonergodic fading channels, the mean capacity is also im-
portant as it gives an upper limit on error-free information rate sup-
ported by ergodic channels. The exact expression for the mean capacity
�C of a correlated keyhole channel is rather complicated and involves
MeijerG-functions [12]. However, using (3) and Jensen inequality it is
straightforward to show that the upper bound on �C of correlated key-
hole channels is

�C � ln(1 + 
0): (30)

This bound does not depend on correlation and is identical to that
proposed by Shin and Lee [12] for the uncorrelated channels. Cui and
Feng [14] have proposed a tight lower bound

�C � ln 1 +

0

ntnr
exp[�(Rt) + �(Rr)] (31)

where, based on (15) in [14], ifR, eitherRt orRr , is nonsingular and
has distinct eigenvalues,

�(R) = �
e +

n

k=1

Ak ln(�k) (32)

(for a proof see Appendix F). From Theorem 3, the upper bound (30) is
asymptotically tight with respect to the number of antennas at both the
Tx and Rx ends, in addition, in Appendix F, we show the following.

i) The lower bound (31) is easily obtained using the instantaneous
SNR distribution given by Theorem 1 (this indirectly validates
(5), (6)).

ii) While the upper bound (30) is tight as 
0 ! 0, the lower bound
(31) is tight as 
0 ! 1 (the last statement has been proven in
[14] for noncorrelated channels; we extend this results for cor-
related channels). To illustrate i) and ii), Fig. 7 shows the mean
capacity and its bounds of 2 � 2 and 12 � 12 keyhole chan-
nels versus 
0. �C was numerically evaluated using the instanta-
neous SNR pdf in (5). The exponential correlation model with
the same correlation parameter was used at both the Tx and Rx
ends. Clearly, the lower bound is tight (for 12 � 12 channel, it
is practically indistinguishable from the true mean capacity), the
upper bound becomes tight for both 2 � 2 and 12 � 12 at low
SNR.

A. Impact of Correlation

Unlike the outage capacity, which reduces significantly with corre-
lation, the mean capacity of keyhole channels is almost independent
of correlation (even very high one), as Fig. 8 demonstrates. An intu-
itive explanation of this is that high correlation reduces the effective
rank of a full-rank channel; for instance, the rank of a fully correlated
(jrj = 1) Rayleigh-fading channel is one regardless of the number of
antennas. As the result, the mean capacity, in this case, reduces dramat-
ically with correlation [18], primarily due to loss in the effective rank
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Fig. 8. Mean capacity of 2 � 2 keyhole channel with exponential correlation
versus correlation parameter jrj = jr j = jr j.

at high correlation. Unlike full-rank channels, the rank of a keyhole
channel is already one, regardless of correlation, and hence nor further
loss in rank is possible, so that the mean capacity is not affected much.

It also follows from the comparison between the mean capacity of
various keyhole channels and the upper bound in (30) that the discrep-
ancy between the two does not exceed 30% in the worst case. Thus,
the upper bound can be used as a simple rough approximation for the
mean capacity regardless of correlation.

VI. ACHIEVABILITY OF THE KEYHOLE CHANNEL CAPACITY

It is always intriguing and important to find a system architecture
that achieves the capacity. While Alamouti scheme [22] (with appro-
priate temporal coding) is known to achieve the capacity of channels
of nt = 1 or nr = 1, it is strictly suboptimal for nt = 2 rank-2 chan-
nels. However, in keyhole channels, Alamouti scheme achieves the full
capacity with either nt = 1 or nt = 2 and any nr . Theorem 5 below
formalizes this result.

Theorem 5: Let C be the instantaneous capacity (2) of a MIMO
channel (not necessarily keyhole) with nt = 1 or nt = 2 and any nr ,
and CA is the capacity when Alamouti scheme is deployed.

i) In arbitrary channel, C = CA if rank = 1 (which includes
nt = 1 case), and C > CA if rank = 2.

ii) In a keyhole channel, C = CA.
Proof: From (2),

C = ln det I+

0
ntnr

HH
H

� ln 1 +

0
ntnr

kHk2 = CA (33)

where the equality is achieved for rank-1 channels only. Q:E:D:
Note that Theorem 5 holds for all MIMO channels irrespectively of

the underlying fading distribution.

VII. THE IMPACT OF PERFECT TX CSI

In general, finding the channel capacity when the perfect CSI is avail-
able at both Tx and Rx ends is associated with significant mathemat-
ical complexity. However, as indicated by the following theorem, in the
keyhole channels the effect of Tx CSI is a fixed SNR gain, and there-
fore does not induce additional complexity into the analysis.

Theorem 6: Consider a keyhole channel with the channel matrix
H given by (1). Under the transmitted power constrain PT � nt, the
perfect Tx CSI at Tx is equivalent to nt-fold SNR gain, i.e., the instan-
taneous channel capacity CCSI in this case is

CCSI(
0) = C(nt
0) (34)

where C is given by (3). The optimal input covariance matrix that
achieves the capacity in (34) is

Q =
hth

H

t

khtk2
nt (35)

i.e., the optimal transmission strategy is the beamforming to the key-
hole.

Proof: From [1], [35], the instantaneous capacity of the keyhole
channel with full CSI at both Tx and Rx ends is given by

C = max
trfQg�n

ln det I+

0
ntnr

HQH
H

= max
trfQg�n

ln det I+

0
ntnr

hrh
H

t Qhth
H

r (36)

where the second equality is due to (1). Note that
maxtrfQg�n hHt Qht = ntkhtk

2. The maximum is achieved when
Q has a single nonzero eigenvalue �max = nt, with the corresponding
eigenvector ht=khtk, i.e., Q is as in (35). Substituting (35) in (36),
one obtains (34).

Since the fixed SNR gain does not change the channel statistics, due
Theorem 5, the results obtained above for the keyhole channel with no
Tx CSI, including mean and outage capacities, hold true for the chan-
nels with the perfect CSI at both ends as well, with the correspondingly
adjusted SNR.

VIII. OUTAGE CAPACITY AND SYMBOL ERROR RATE

Consider an application of the outage capacity distribution to esti-
mating symbol error rate (SER). If an M -ary modulation is used to
transmit digital data over a pass-band channel, the maximum rate in
natural units per unit bandwidth, which satisfies the zero ISI Nyquist
criterion, is R = ln(M). If C < R, the channel is in outage and all
the received blocks of symbols are in error with high probability. As-
suming that the outage events are the dominant contributor to the block
error rate (BLER), it can be estimated via the outage probability

Pe(M) � PrfC < Rg = FC(ln(M)) (37)

where FC(x) is given by (4). In general, the BLER upper bounds the
SER [33]. When the coherence time of the channel significantly ex-
ceeds the symbol duration (i.e., long bursts of errors during outage
events), the two are close and (37) can serve as an estimate of the SER
as well. Table I compares Pe(M) in (37) using the exact F�(x) in (6)
and the SER of 8-PSK and 16-QAM with Alamouti scheme in the 2� 2
uncorrelated keyhole channel given in [13]. As expected, (37) indeed
upper-bounds the SER and is of the same order of magnitude. Thus,
the outage probability provides a simple estimation of the SER, which
captures the effect of modulation level M , without detailed and com-
plicated analysis usually encountered in such problems. Furthermore,
for large systems the asymptotic capacity distribution can be used in
(37) for this purpose, simplifying the estimation even further.

IX. MULTIKEYHOLE CHANNEL

The ideal keyhole channel is not often encountered in practice [10],
[11], since the assumption of a single nonzero eigenmode is only a
rough approximation for most propagation scenarios. More often, the
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TABLE I
COMPARISON OF BLER AND SER. FOR CONSISTENCY WITH [13], 
 DENOTES

THE AVERAGE SNR PER RX ANTENNA

Fig. 9. Multikeyhole MIMO channel.

channels may be comprised of multiple keyholes (see Fig. 9), the “mul-
tikeyhole channels.” Following (1) and assuming that contribution of
the Tx-Rx paths propagating via more than one keyhole is negligible,
the transfer matrix of the multikeyhole channel can be represented as:

H =

M

k=1

akhrkh
H
tk = HrAH

H
t (38)

where M is a number of keyholes, ak is the complex gain of the
kth keyhole, htk[nt � 1] and hrk[nr � 1] are random vectors rep-
resenting the complex gains from the transmit antennas to the kth
keyhole and from the kth keyhole to the receive antennas, respec-
tively. Ht = [ht1 � � �htM ];Hr = [hr1 � � �hrM ] are [nt �M ]
and [nr �M ] matrices, respectively, and A is a [M �M ] diagonal
matrix with elements Akk = ak; k = 1 � � �M . Assume that for
every k;htk and hrk are mutually independent complex circular
symmetric Gaussian vectors with zero means and corresponding
correlation matrices Rtk = Efhtkh

H
tkg and Rrk = Efhrkh

H
rkg.

Assume also, that the keyholes are independent of each other, i.e.,
Efhtkh

H
tMg = Efhrkh

H
rMg = 0 for any k 6= m. For comparison

purposes, H is normalized so that EfkHk2g = ntnr and for every
k; n�1t Efkhtkk

2g = n�1r Efkhrkk
2g = 1, which implies

M

k=1

jakj
2 = 1 (39)

i.e., we compare between the channels when the average SNR is con-
stant regardless the number of keyholes.

By substituting (38) in (2), it is straightforward to show that the
instantaneous capacity of a frequency-flat quasi-static multikeyhole
MIMO channel in natural units with CSI available at Rx end only is
given by

C = lndet(I+ 
0BrABtA
H) (40)

whereBt = H
H
t Ht=nt andBr = H

H
r Hr=nr . From (40), the distri-

bution of a full-rank multikeyhole channel with M � minfnt; nrg is
different from the full-rank Rayleigh channel.

Theorem 7: Let C be the instantaneous capacity of a mul-
tikeyhole channel defined above. If limn !1 n�1t khtkk

2 <
1; limn !1 n�1r khrkk

2 < 1 and limn !1 n�2t tr[RH
tkRtM ] =

0; limn!1 n�2r tr[RH
rkRrM ] = 0 for every k;m = 1 � � �M , then as

both nt; nr ! 1,

C
p
!

M

k=1

ln 1 +
jakj

2
0
ntnr

khtkk
2khrkk

2 : (41)

Proof: See Appendix F.

From Theorem 7, the asymptotic instantaneous capacity of a multi-
keyhole channel is the sum of the capacities ofM single keyhole chan-
nels, i.e., the subchannels supported by different keyholes are essen-
tially decoupled of each other.

Corollary 6.1: Under the conditions of Theorem 7, the instanta-
neous capacity of the multikeyhole channel is asymptotically Gaussian
with the mean �and variance �2 as follows:

� =

M

k=1

ln(1 + jakj
2
0);

�2 =

0

1 + 
0

2
1

n2t

M

k=1

kRtkk
2

+
1

n2r

M

k=1

kRrkk
2 : (42)

Proof: Under the conditions of Theorem 7, C in (41) is a sum of
independent random variables, which, from Theorem 3, 4 are asymp-
totically Gaussian. Therefore, C is also asymptotically Gaussian with
the mean and variance given by (42).

Using Jensen inequality and the normalization in (39), it is straight-
forward to show that

� �M ln(1 + 
0=M) (43)

with equality if jakj = 1=M; k = 1 � � �M , i.e., if the gains of all
the keyholes are same. SinceM ln(1+
0=M) increases monotonically
with M , the channel with more equal-gain keyholes has higher mean
capacity. However, this is not necessarily true for the outage capacity,
since an increase inM increases not only �but also �2 (see (42)). Thus,
the outage capacity for some outage probabilities may increase, while
for others it may decrease. To demonstrate this, consider a marginal
case where the channel has M equal-gain keyholes and M is large.
From (43), limM!1 � = 
0, i.e., asymptotically does not depend
on the number of keyholes. In contrast, �2 increases with M . Thus,
from the analysis given in Section IV for two Gaussian cdfs with the
same mean and different variances, we conclude that an increase in M
decreases the outage capacity of such a multikeyhole channel at outage
probabilities less than 0.5 and increases it at outage probabilities greater
than 0:5 (we stress that this conclusion holds true under normalization
(39) and may change if a different normalization is adopted).

Similarly to (17), �2 in (42) is a sum of correlation measures over
all keyholes at the Tx and Rx ends. Based on Definition 1 and the anal-
ysis presented above, a decrease in correlation and/or an increase in,
decrease �2 (assuming that for every k; n�1kRkk decreases monoton-
ically with n, whereRk is either Rtk or Rrk). Therefore, the asymp-
totic outage capacity increases at outage probabilities less than 0:5 and
decreases at outage probabilities greater than 0:5.

4Note that if the conditions of Theorem 5 are fulfilled, then the conditions of
Theorem 3 are also satisfied.
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X. CONCLUSION

A profound reason to study keyhole channels is not only in prac-
tical applications (i.e., as a model of physical propagation channels, in-
cluding relay amplify-and-forward channels), but also due to the unique
position of these channels as a model of the worst case MIMO propaga-
tion scenario (i.e., rank-one MIMO channels). The investigation of the
keyhole channels can reveal how well a system performs in channels
other than the Rayleigh ones (which were extensively studied and are
well understood by now), and how much the results established for the
Rayleigh channels apply elsewhere (i.e., robustness). The present study
shows that, despite the degenerate nature of keyhole channels, their
outage capacity is, similarly to full-rank Rayleigh channels, asymptot-
ically Gaussian, when the number of antennas is large, regardless of
whether or not the channel state information is available at the Tx end.
This conclusion, together with other results on the asymptotic outage
capacity of uncorrelated and correlated Rayleigh channels [16], [17]
indicates that the Gaussian distribution has a high degree of univer-
sality (robustness) in the outage capacity analysis of MIMO channels
in general.

APPENDIX A
PROOF OF THEOREM 1

Let � be either �t = khtk2; �r = khrk2. Under the adopted as-
sumptions, the distribution of � is generalized �2 with the character-
istic function ��(!) = det�1[I� j!R], whereR is eitherRt orRr ,
and j =

p�1 [29]. When R is nonsingular and has n distinct eigen-
values �k; k = 1 � � �n. The characteristic function (CF) of � can be
represented as

��(!) =

n

k=1

(1� j!�k)
�1 =

n

k=1

Ak(1� j!�k)
�1 (A1)

where Ak are the coefficients of the partial fraction decomposition of
��(!), such that n

k=1
Ak = 1 [24]. From (A1)

n

k=1

Ak

n

(1� j!�m) = 1: (A2)

Since the equality in (A2) holds for every !, at ! = �j��1k ; k =
1 � � �n (A2) is

Ak

n

(1� �m=�k) = 1 (A3)

which proves (7).
Based on (A1), the pdf and the cdf of � are given for x � 0 by

f�(x) =
1

2�

1

�1

��(!)e
�j!xd!

=

n

k=1

Ak

�k
exp � x

�k
(A4)

F�(x) =

x

0

f�(t)dt = 1�
n

k=1

Ak exp � x

�k
: (A5)

Since � is a product of �t; �r , and �t; �r are assumed to be indepen-
dent, the pdf f�(z) and the cdf F�(z) of � are

f�(z) =
1

0

f� (z=x)f� (x)d ln(x) (A6)

F�(z) =
1

0

F� (z=x)f� (x)dx (A7)

where F� (x); f� (x) and F� (x); f� (x) are the cdf and the pdf of
�t and �r , respectively. Thus, by substituting (A4) and (A5) in (A6)
and (A7) one obtains (5) and (6). Q:E:D:

APPENDIX B
PROOF OF THEOREM 2 AND COROLLARY 2.1

Lemma B: Let � be a generalized �2 random variable with the CF
��(!) = det�1[I� j!R] [29]. If limn!1 n�1trfRg < 1 and
limn!1 n�2kRk2 = 0, then, as n ! 1, the distribution of n�1�
is Gaussian with the mean � = n�1trfRg and the variance �2 =
n�2kRk2.

Proof: Since � is a generalized �2 random variable with CF
��(!) = det�1[I� j!R], the characteristic function of n�1� is
�(!) = n

k=1
(1� j!�k=n)

�1, where �k are the eigenvalues of R.
Or equivalently ln(�(!)) = � n

k=1
ln(1� j!�k=n). Assume that

n is large enough such that for every �k; j!�k=nj < 1, then the ex-
pansion of ln(�(!)) in Maclaurin series gives

ln(�(!)) =

n

k=1

1

m=1

(j!�k)
m

nmm
: (B1)

Define Lm = n�m n

k=1
�mk ;m = 1; 2; . . . By changing the order

of summation, (B1) can be rewritten as

ln(�(!)) = ln(�g(!)) +

1

m=3

(j!)mLm=m (B2)

where�g(!) = exp(j!L1�!2L2=2) is the CF of a Gaussian random
variable with the mean � = L1 and the variance �2 = L2. Note
that L1 = n�1tr(R) and L2 = n�2kRk2. Therefore, the necessary
conditions for limn!1 �(!) = �g(!) are

lim
n!1

L1 <1; lim
n!1

L2 <1 lim
n!1

Lm=L2 = 0 for m � 3 (B3)

Below we show in two steps that the sufficient condition to ensure
limn!1 Lm=L2 = 0 for m � 3 is limn!1 L2 = 0. Note that
j!�k=nj < 1 follows from limn!1 L2 = 0, and hence it holds true
under the conditions of Lemma B.

1) If limn!1 L2 = 0 then limn!1 L2m=L2 = 0 form = 2; 3; . . .

lim
n!1

L2m=L2 = lim
n!1

L�12 n�2m
n

k=1

�2mk

� lim
n!1

L�12 n�2
n

k=1

�2k

m

= lim
n!1

Lm�12 = 0: (B4)
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The inequality is because all �k are nonnegative. Thereby, since
limn!1 Lm=L2 � 0

lim
n!1

L2m=L2 = 0; m � 2: (B5)

2) Based on (B5) and Cauchy–Schwarz’s inequality, for m � 2

lim
n!1

Lm+1=L2

= lim
n!1

L�12 n�(m+1)
n

k=1

�m+1
k �

� lim
n!1

L�12 n�2m
n

k=1

�2mk � n�2
n

k=1

�2k

= lim
n!1

L�12
p
L2m � pL2

= lim
n!1

L2m=L2 = 0: (B6)

Using the same argument as for (B5)

lim
n!1

Lm+1=L2 = 0; m � 2: (B7)

Therefore, if limn!1 n�1tr(R) < 1 and
limn!1 n�2kRk2 = 0; limn!1 �(!) = �g(!), i.e.,
n�1� is asymptotically Gaussian in distribution. Q:E:D:

Corollary B: Under the conditions of Lemma B

n�1�
p! 1 as n!1: (B8)

Proof: From Chebyshev inequality [29], for any " > 0:

Prfjn�1� � Efn�1�gj � "g � V arfn�1�g="2 (B9)

where Var denotes variance. Since under the adopted normalization
Efn�1�g = 1 and following Lemma B Varfn�1�g = n�2kRk2 !
0 as n!1, using the continuity property of probability measure, one
obtains

Pr lim
n!1

�

n
� 1 � " � lim

n!1

Var(�=n)

"2
= 0: (B10)

Q:E:D:

Proof of Theorem 2:
i) nt !1; nr <1: From Lemma B and Corollary B, n�1t �t

p!
1 as nt !1. Thus, from Slutsky Theorem [[30, Th. 6’a]],C

p!
ln(1 + 
0�r=nr) as nt ! 1. Note that under the adopted as-
sumptions ln(1 + 
0�r=nr) is the instantaneous capacity of an
1 � nr Rayleigh fading channel.

ii) nt <1; nr !1 : Due to the symmetry, the proof follows the
same arguments when the Tx and Rx ends exchanged. Q:E:D:

Proof of Corollary 2.1:
i) nt ! 1; nr < 1 : Let J = ln(1 + 
0�r=nr). Since J

is a continuous monotonically increing function of �r , its cdf
is FJ (x) = F� (nr(e

x � 1)=
0). Thus, from Theorem 2 and
using the fact that convergence in probability implies conver-
gence in distribution, as nt ! 1

FC(x)! FJ (x) = F� (nr(e
x � 1)=
0): (B11)

If Rr is nonsingular and has distinct eigenvalues �rt ; k =
1 � � �nt; F� (x) is given by (A5).

ii) nt <1; nr !1 : Due to the symmetry, the proof follows the
same arguments when the Tx and Rx ends exchanged. Q:E:D:

APPENDIX C
PROOF OF THEOREM 3

Define a function f(x; y) = ln(1 + 
0x � y). From (3),
C = f(n�1t �t; n

�1
r �r). From Lemma B, as nt ! 1 and

nr ! 1; n�1t �t and n�1r �r are asymptotically Gaussian in
distribution with the means E(n�1t �t) = E(n�1r �r) = 1 and the
variances n�2t kRtk2 and n�2r kRrk2. Since the derivative of f(x; y)
is continuous in the neighborhood of x = 1 and y = 1, using Cramer
Theorem [31], [30, Th. 7],C is asymptotically Gaussian with the mean

� = f(1; 1) = ln(1 + 
0) (C1)

and the variance

x�2 =
@f(x; y)

@x

2 kRtk2
n2t

+
@f(x; y)

@y

2 kRrk2
n2r

=

0

1 + 
0

2
1

n2t
kRtk2 + 1

n2r
kRrk2 : (C2)

Q:E:D:

APPENDIX D
APPROXIMATIONS OF CORRELATION MODELS

A. Exponential Model

Consider ann� n exponential correlation matrixRwhose elements
are defined in (21). Then

n�1trfRg = 1 <1: (D1)

For a finite n and jrj 6= 1; kRk2 is

kRk2 = trfRRg = 2

n�1

k=0

n�k�1

m=0

jrj2m � n =

= 2

n�1

k=0

1� jrj2(n�k)
1� jrj2 � n

=
2

1� jrj2 n�
n

m=1

jrj2m � n

=
n(1 + jrj2)
1� jrj2 +

2(jrj2(n+1) � jrj2)
(1� jrj2)2 : (D2)

Therefore as n ! 1

n�2kRk2 ! 1

n
� 1 + jrj2
1� jrj2 ! 0jrj < 1: (D3)

Q:E:D:

B. Quadratic Exponential Model

Consider an n�n quadratic exponential correlation matrixRwhose
elements are defined in (25). Then

n�1trfRg = 1 <1: (D4)
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For a finite n; kRk2 is

kRk2 = trfRRg = 2

n�1

k=0

n�k�1

m=0

jrj2m � n (D5)

kRk2 can be bounded using Cauchy convergence test [24] which is
based on the following: Let ak be a decreasing sequence of k 2 Z (a set
of integer numbers) and a(x) be a monotonically decreasing function
such that a(x) = ak at x = k, then

n+1

0

a(x)dx �
n

k=0

ak �
n

�1

a(x)dx: (D6)

Let bk be an increasing sequence of k 2 Z and b(x) be a monoton-
ically increasing function such that b(x) = bk at x = k, then:

n

�1

b(x)dx �
n

k=0

bk �
n+1

0

b(x)dx: (D7)

1) Upper bound on n�2kRk2 for n ! 1 : Let ak =
n�k�1
m=0 jrj2m . Since for jrj < 1ak is a sum of the de-

creasing sequence jrj2m , we use (D6) to obtain

ak = 1 +

n�k�1

m=1

jrj2m � 1 +

n�k�1

0

jrj2x dx

= 1 +

p
�

2
� E1[(n� k � 1)�(r)]

�(r)
(D8)

where �(r) = �2 ln jrj; E1(x) = erf(x) is the error function
[24]. From (D5)

kRk2 = 2

n�1

k=0

ak � n � n

+

p
�

�(r)

n�1

k=0

E1[(n� k � 1)�(r)]

= n+

p
�

�(r)

n�1

m=0

E1[m � �(r)] � n

+

p
�

�(r)

n

0

E1[x � �(r)]dx

= n+
n
p
�

�(r)
E1[n � �(r)]

+
1� exp[�(n � �(r))2]

��2(r) : (D9)

The second inequality is due to (D7), since E1[m � �(r)] is an
increasing sequence of m. Thereby, as n ! 1

n�2kRk2 � 1

n
� 1 +

p
�

�(r)
! 0: (D10)

2) Lower bound on n�2kRk2 for n!1: From (D6) for jrj < 1

ak = 1 +

n�k�1

m=1

jrj2m � 1 +

n�k

1

jrj2x dx

= 1 +

p
�

2�(r)
(E1[(n� k)�(r)]� E1[�(r)]) (D11)

Then following (D5)

kRk2 = 2

n�1

k=0

ak � n � n

+

p
�

�(r)

n�1

k=0

E1[(n� k)�(r)]

�n
p
�

�(r)
E1[�(r)] = n+

p
�

�(r)

n

m=1

E1[m � �(r)]

�n
p
�

�(r)
E1[�(r)] � n+

p
�

�(r)

n

0

E1[x � �(r)]dx

�n
p
�

�(r)
E1[�(r)] = n+

n
p
�

�(r)
(E1[n � �(r)]� E1[�(r)])

+
1� exp[�(n � �(r))2]

��2(r) (D12)

i.e., as n ! 1

1

n2
kRk2 � 1

n
1 +

p
�

�(r)
E [�(r)] ! 0 (D13)

where E(x) = erfc(x) is the complementary error function
[24] Q:E:D:

APPENDIX E
PROOF OF THEOREM 4, COROLLARY 4.1

Lemma E: Let h / R1=2g, where g is an n�1 zero mean complex
random vector with independent entries, andR is an n�n correlation
matrix. As n!1; n�1khk2 is asymptotically normal in distribution
if: m2+�(k) < 1 and m2(k) > 0 for all k and some � > 0, where
m�(k) = Ef(jgkj2 � Efjgkj2g�g is the central moment of jgkj2 of
order �, and gk is the kth entry of g, and 2)

Z(�) = lim
n!1

k���k2+�=k���k2 = 0 (E1)

where k���km = ( n
i=1 (�i)

m)1=m is the norm of the eigenvalues of
R.

Proof: Under the adopted assumptions

n�1khk2 / n�1
n

k=1

�kjgkj2: (E2)

From Lyapunov Theorem [[32, p. 310]] n�1khk2 is asymptotically
normal in distribution as n ! 1, if for some � > 0

lim
n!1

n
k=1 �

2+�
k m2+�(k)

1=(2+�)

n
k=1 �

2
k �m2(k)

1=2
= 0 (E3)

Let M = maxkfm2+�(k)g < 1, and m = minkfm2(k)g > 0,
then

lim
n!1

n
k=1 �

2+�
k m2+�(k)

1=(2+�)

n
k=1 �

2
k �m2(k)

1=2

� lim
n!1

M1=(2+�)

m1=2

n
k=1 �

2+�
k

1=(2+�)

n
k=1 �

2
k

1=2

=
M1=(2+�)

m1=2
Z(�): (E4)
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Under the conditions of Lemma E, M1=(2+�)=m1=2 < 1. Thereby,
from (E4), ifZ(�) = 0, the limit in (E3) holds, i.e.,n�1khk2 is asymp-
totically normal in distribution. Q:E:D:

Proof of Theorem 4: Define a function f(x; y) = ln(1 + 
0x � y).
From (3), C = f(n�1t �t; n

�1
r �r). From Lemma E and under the

adopted normalization, as nt ! 1 and nr ! 1; n�1t �t and
n�1r �r are asymptotically Gaussian in distribution with the means
E(n�1t �t) = E(n�1r �r) = 1. Since C is a smooth function
(first-order derivative is continuous) in the neighborhood ofE(n�1t �t)
and E(n�1r �r), using Cramer Theorem [31], [[30, Th. 7]], C is
asymptotically Gaussian Q:E:D:

Proof of Corollary 4.1: LetR (eitherRt orRr) be a Toeplitz corre-
lation matrix with vector eigenvalues ���. Let tk�m be the k;m element
ofR. From [27, Th. 1], Z(�) = limn !1 k���k2+�=k���k2 = 0 for any
� > 0 if

lim
n!1

n�1

k=�n+1

jtkj
2 <1 (E5)

i.e., R is square-summable. From Szego Theorem [34]

lim
n!1

n�1

k=�n+1

jtkj
2

= lim
n!1

n�1
n�1

k=0

�2k

= lim
n!1

n�1kRk2 (E6)

where �k are the eigenvlues ofR. Thus, if limn!1 n�1kRk2 <1,
then Z(�) = 0 for any � > 0. Q:E:D:

APPENDIX F
BOUNDS ON MEAN CAPACITY

From (3) and following the approach proposed in [14]

�C = E ln 1 +

0
ntnr

� �

� ln 1 +

0
ntnr

� exp [E fln�g] : (F1)

The inequality is due to the convexity of ln(1 + exp[x]). The gen-
eralized moments of � are

Ef�ug =
1

0

xudF�(x)

= �2[u+ 1] �

n

k=1

At
k(�

t
k)
u �

n

m=1

Ar
m(�rm)

u (F2)

where F�(x) is given by (6), �(x) is the Gamma function [24], �tk; �
r
m

are the eigenvalues of the correlation matrices Rt and Rr , and both
At
k; A

r
m are given by (7) when �tk; �

r
m are distinct and nonzero. Sub-

stituting (F2) in Efln�g = (d=du)Ef�ugju=0 one obtains

Efln�g = �(Rt) + �(Rr) (F3)

where �(Rt) = �
e + n
k=1 A

t
k ln(�

t
k) and �(Rt) = �
e +

n
m=1 A

r
m ln(�rm). Substituting (F3) in (F1) gives the lower bound

in (31). Q:E:D:

Denote the upper and lower bounds in (30) and (F1) by Cu and Cl,
respectively. From (F1), as 
0 !1; �C ! ln(
0=(ntnr))+Efln�g,
and so Cl ! ln(
0=(ntnr)) + Efln�g, thus, Cl ! �C as 
0 !
1. Q:E:D:

From the expansion of the right hand side of (F1) and (30) in
Maclaurin series, as 
0 ! 0; �C ! (
0=(ntnr))Ef�g = 
0, and so
Cu ! 
0, where Ef�g = ntnr due to the adopted normalization.
Therefore Cu ! �C as 
0 ! 0 Q:E:D:

APPENDIX G
PROOF OF THEOREM 7

Lemma G: Let H be an n � M random matrix with M mutu-
ally independent columns h1 � � �hM , and ��� is an M � M diagonal
matrix with elements �kk = n�1khkk

2, where hk; k = 1 � � �M ,
is a Gaussian circularly symmetric vector with the correlation matrix
Rk = Efhkh

H
k g. HHH=n and ��� are asymptotically equivalent in

probability, i.e., HHH=n
p
! ��� as n ! 1, if n�1trfRkg < 1 and

n�2tr[RkRm] ! 0; k;m = 1 � � �M , as n ! 1.
Proof: Without loss of generality, assume that hk; k = 1 � � �M

are normalized, so that n�1trfRkg = 1. Thus EfHHH=ng =
Ef���g = I, where I is the M �M identity matrix, since h1 � � �hM
are mutually independent. From Chebyshev inequality [24], for any
" > 0

PrfkHH
H=n� ���k � "g � "�2 � EfkHH

H=n� ���k2g (G1)

where

EfkHH
H=n� ���k2g

= n�2tr[EfHH
HH

H
Hg]

� 2tr[EfHH
H=n � ���g] + tr[Ef��g]

= n�2tr[EfHHH
HH

Hg]� tr[Ef��g]

= n�2
M

m=1

M

k=1

tr[Efhmh
H
mhkh

H
k g]

� n�2
M

m=1

tr[Efhmh
H
mhmh

H
mg]

= n�2
M

m=1

M

tr[Efhmh
H
mhkh

H
k g]

= n�2
M

m=1

M

tr[RmRk] (G2)

where the second equality is since tr[EfHHH=n����g] = tr[Ef��g].
By substituting (G2) in (G1)

PrfkHH
H=n� ���k � "g �

1

(" � n)2

M

m=1

M

tr[RmRk] (G3)

Therefore, if n�2tr[RkRm] ! 0; k;m = 1 � � �M , as n ! 1, then
from (G3) using the continuity property of the probability measure, for
any " > 0

PrfkHH
H=n� ���k � "g ! 0; as n!1 (G4)

Q:E:D:

Proof of Theorem 7: From Lemma G, Bt
p
! ���t and Br

p
! ���r ,

where ���t and ���r are diagonal matrices with elements n�1t khtkk
2 and
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n�1r khrMk
2; k;m = 1 � � �M , respectively. Thus, from Slutsky The-

orem [30, Th. 6’a], as both nt; nr ! 1

C
p
! ln det(I+ 
0���rA�tA

H)

=

M

k=1

ln 1 +
jakj

2
0

ntnr
khtkk

2khrkk
2 (G5)

Q:E:D:
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