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Abstract— Diversity—multiplexing tradeoff (DMT) pre sents a
compact framework to compare various MIMO systems ad
channels in terms of the two main advantages theyrgvide (i.e.
high data rate and/or low error rate). This tradeof was
characterized asymptotically (SNR-> infinity) for i.i.d. Rayleigh
fading channel by Zheng and Tse [1]. The asymptoti®MT

overestimates the finite-SNR one [2]. In this paperusing the
recent results on the asymptotic (in the number ofantennas)
outage capacity distribution, we derive and analyzdhe finite-
SNR DMT for a broad class of channels (not necesslyr Rayleigh
fading). Based on this, we give the convergence ditions for the
asymptotic DMT to be approached by the finite-SNR pe. The
multiplexing gain definition is shown to affect criically the

convergence point: when the multiplexing gain is daed via the
mean (ergodic) capacity, the convergence takes p&at realistic
SNR values. Furthermore, in this case the diversitgain can also
be used to estimate the outage probability with resonable
accuracy. The multiplexing gain definition via the high-SNR
asymptote of the mean capacity (as in [1]) results very slow
convergence for moderate to large systems (as 18¥R)"2) and,
hence, the asymptotic DMT cannot be used at realist SNR
values. For this definition, the high-SNR thresholdincreases
exponentially in the number of antennas and in thenultiplexing

gain. For correlated keyhole channel, the diversitygain is shown
to decrease with correlation and power imbalance ahe channel.
While the SNR-asymptotic DMT of Zheng and Tse doesot

capture this effect, the size-asymptotic DMT does.

Multi-antenna (MIMO) systems are able to providthei
high spectral efficiency (spatial multiplexing) low error rate
(high diversity) via exploiting multiple degrees &fedom
available in the channel, but not both simultangoas there is
a fundamental tradeoff between the two. This tréfd@&MT)
is best characterized using the concepts of makipy and
diversity gains [1]. Fundamentally, this is a trafieoetween
the outage probability?,; , i.e. the probability that the fading
channel is not able to support the transmission Rat and the

INTRODUCTION

rate R, which can be expressed via the outage capacity

distribution,

Pu(R) =PI[C<R]=Fc R) )
whereC is the instantaneous channel capacity (i.e. capati
a given channel realization), anB.(R) is its cumulative
distribution function (CDF), also known as the @#aapacity

distribution. Defining the multiplexing gain as
r=lim,_,R/Iny

(@)

where y is the average SNR at the receiver, and the diyers
gain as

! while the original definition in [1] employed tteerage error rate,
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In Py
Iny
the asymptotic ¢ — ) tradeoff for the independent
identically distributed (i.i.d.) Rayleigh fading ahnel with the

coherence time in symbolé=m+n-1 can be compactly
expressed as [1],

d(r)=(n-r)(m-r), r=0,1,...mnM n ) (4)

where m,n are the number of Tx, Rx antennas, for integer
values ofr , and using the linear interpolation in-betweene Th
motivation for the definition ofr in (2) is that the mean
(ergodic) capacityC scales asnin(m,n)Iny at high SNR,

—lim

Y-

®3)

C =min(m,n)Iny, asy - o

®)

and the motivation for the definition af in (3) is that R,
scales ag/™? at high SNR,

P

[o]

wherec is a constant independent of the SNR.

While this approach provides a significant insighto
MIMO channels and also into performance of varisystems
that exploit such channels, it has a number of tétidns.
Specifically, it does not say anything about operet
significance ofr and d at realistic (i.e. low to moderate)
SNR. In other words, how high SNR is required tprapch
the asymptotes in (2),(3) with reasonable accursayhat, for
example,d can be used to accurately estim&g using (6)
and (4)? It was observed in [2], based on a lowend to P,
for Rayleigh and Rician channels, that the finitdRSDMT
lies well below the curve in (4), so that properdifications to
the asymptotic results and definitions are requiced-ealistic
SNR values. Using the asymptotig { o) DMT to compare
two systems may give incorrect results at low toderate

a =Cly?, asy -

(6)

To evaluate the DMT for arbitrary SNR, one woulecaéo

khown the outage capacity distributidf, (R). While some

results of this kind are available in the literaturtheir

complexity prevents any analytical development.uinber of

compact analytical results have recently appearedthe

outage capacity distribution of asymptotically kargystems,
i.e. when eithernn — o« or m - o, or both [6]. For a broad
class of channels (under mild technical conditipitgurns out

to be Gaussian with the mean and the variancerdited by

specifics of the channel [3]-[6].

since it is dominated by the outage probabilitg, definition in (3) is
equivalent to it. This definition has also beengidd in [2].
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In this paper, we exploit these asymptotic restdtslerive For largem,n, the distribution ofC takes on a remarkably
the diversity-multiplexing tradeoff for arbitraryNR and also simple form in a number of cades

for arbitrary-fading (i.e. not pecessarlly Rayle)lgll}l.d. Theorem 1 [[6], Theorem 2.76]: LetH be an nxm
channels. The advantage of this approach is tkatesults . . .
; L channel matrix whose entries are i.i.d. zero meamdom
apply at any SNR and, thus, have operational saamte at . . . . =
I variables with unit variance such th&f|H, | ] =2. As both
realistic SNR values. Our approach demonstrates fitra _ ) I .
moderately-large systems the convergence to theptsyic mn e and B=m/n is a constant, the instantaneous
y-large sy 9 capacity in (8) is asymptotically (im,n) Gaussian, with the

(in SNR) results in [1] is very slow (asl/(Iny)?). tollowing mesnC ard varianca? -
Furthermore, the asymptotic diversity gain in (B)jn@ cannot g ¢

be used to estimat®,,in (6) at any SNR (even very large) C _ y 1_(vy 1_y
since the constant c()HtSNR offset”) can be very large (e.g. F_Bln(“E_ZF(E’BJ}'In(l"'y_ZF(E’B)j
10) for moderate to large systems. Thus, proper 9)
modifications of (2) and (3) are required to spegd the _iF(l’Bj
convergence in SNR, which are also presented ipadper. 4y, \B
Since it was demonstrated that the actual capacity )
distribution approaches the asymptotic (in systére)sone o2 =—In 1—B{LF(X BH (10)
already for a moderate number of antennas [3]€6t,results ¢ 4 B’

also apply to the systems of realistic size.
The rest of the paper is organized as follows.detisn Il where F(x,z) = (\/x(1+ Jz)? +1—\/x(1—\/E)2 +1Y.
we introduce the basic system model, various assongand +
: ) . L Theorem 2 [[5], Theorem 1]: LetH =h h; be annxm
fl h distti M
briefly review the asymptotic outage capacity ons keyhole channel matrix, where, [mx 1] and h, [nx 1] are

(Theorem 1 and 2), which is further used in seciibrto wally ind dent | ireul i .
derive the finite-SNR DMT for arbitrary-fading di. and non- mutually Independent complex circular symmetric .
ndom vectors representing the gains from thesitnin

independent (correlated keyhole) channels. We alsd :
demonstrate, via Monte-Carlo simulations, that asymptotic an:ennas to the tl_(eylhOIZ agd ﬂf]rom the I:ﬁyh(;)_let _tt())ref_kxewef
(in system size) results apply to moderate-sizeesys as well. antennas respectively. As bothn - e, he astrioution o

The main results are summarized in Theorem 3, Goieé 3.1 IC s a%m%totically Gfggtssian C;“'T.nmm m'l_tzr(gt)z _agd
and 3.2 and eq. (33). im,_,n tr(R,) are finite and lim,_,m™[R"=0,

lim, ., n?|R,["=0, where R, =E(hh{), R, =E(h;h;)

are the Tx and Rx end correlation matrices, #rjddenotes
the Frobenius norm. If the channel is normalized tisat
The standard baseband discrete-time system modeloisted m™tr(R,) =1, n"tr{R} =1 , the mean and the variance are
here, asymptotically as follows:

r=Hs+& (7) C =In(L+ny) (11)

wheres andr are the Tx and Rx vectors correspondingfy, _ 2 - 2
is the nxm channel matrix, i.e. the matrix of the complex oé =m 2"Rt" *n 2||R,|| (12)
channel gains between each Tx and each Rx antendd, is ~ Using the asymptotic distributions above, the oetag
the additive white Gaussian noise (AWGN), whiclassumed probability can be expressed as
to be CN(O,O(Z)l), i.e. independent and identically distributed . . )
(i.i.d.) in each branch. The assumptions on the&ibigion of _JC-R}_1 1{C-R
H follow those of the asymptotic capacity distriloums Fout (R) —Q{ o ]SEGXF{‘E[ o J J (13)
(discussed in the next section): the entriedHofare assumed
to be either (i) i.i.d. but otherwise arbitrary ifiagl (this where Q(x):%jmexp(—t2 /2yt . The upper bound in (13)
includes Rayleigh fading as a special case) [6]clwban also becomes tightzna)t( moderate SNR, so we use it as an
be extended to correlated identically distributechd a approximation toR,, to simplify calculations.
independent non-identically distributed (the lasb tare not
discussed in this paper due to the page limit)ien{®], or (i) lll. FINITE-SNRDMT VIA ASYMPTOTIC CAPACITY
follow the statistics of the correlated keyhole roheal [5]. DISTRIBUTIONS

When full channel state information (CSI) is avhitaat the
Rx end but no CSI at the Tx end, the instantanetasinel
capacity (i.e. the capacity of a given channelizatibn H ) in

Il. SYSTEM MODEL AND OUTAGE CAPACITY DISTRIBUTION

Finite-SNR DMT analysis requires using finite-SNRabbgs
of the definitions in (2),(3),

nats/s/Hz is given by the celebrated log-det foenji], r= R d =- In Ry (14)
Ve ny' Iny
C=Indet| | +—HH (8)
m The convergence of the finite-SNR DMT to the asystiptone

where y is the average SNR per Rx antenna (contributed by

all Tx antennas), *” denotes conjugate transpose. 2" Other asymptotic results are also available in tierature.
However, we will rely only on these two theoremshis paper.
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in (4) is significantly improved ifr is defined viaC , or via
In(y/e), which is motivated by (18) and takes into accdhat
high-SNR offset1/e,

_ min(m,n)R
_ R
“In(y/e) (16)

where (15) defines the rate as thémin(m,n) fraction of the
mean capacity.

Another possible definition ofl , which was introduced in
[2], captures the differential effect of diversiiyg. how much
increase in SNR is required to decreaBg, by certain
amount,

dq = _0InFy

T V% (7)

Y

Note that the differential diversity gaid|, is insensitive to the

constantc in (6) so that the convergence to the asymptotic

value is faster. For high SNR, both definitionstted diversity
gain (in (17) and (14)) give the same result.

While the diversity gain provides some indicatioh tioe
performance, its usefulness lies in its relatiothwhe outage
probability (or the average error rate) as theetais the
ultimate performance indicator, not the diversitirgitself.
Using the three multiplexing gain definitions imM§i(16), Fig.
1 and 2 compare the outage probability vs. SNR fitbm
asymptotic result in (13) to Monte-Carlo (MC) sirmtibns for
i.i.d. Rayleigh channel, which shows good agreerbetiveen
the two (even for small system size)=2). Note the
anomalous behavior of the outage probability (iasheg with
the SNR) for the multiplexing gain definitions_it4), (16),
which is due to the fact that the ratR<C on the
corresponding interval but it increases faster tawith the

SNR so thaiC - R/ 0. decreases; after the anomalous regioj;

this tendency is reversed. This never happenseifritie is
defined as a fraction of the mean capacity (i.B))(1
Also note a high SNR offsetc=10*, see (6)) ink,,, for

R=rlIny and n=10. This makes it impossible to estimate

P from the diversity gain alone, i.e. usirg, =1/y*, no
matter how high the SNR s

Pout =1/y® works only if ¢ is on the order of unity. When

this is not the case¢ has to be accounted for as well. This

indicates the limitation of the DMT, which ignorebe

constantc. Specifically, when two systems (or channels) ar

compared with the same, and d; >d,, it does not mean that
system 1 performs better than system 2 in term®gf (or
average error rate) since it may be tleat-c, and the latter
effect is dominant. Hence, using the DMT curvesnaldo
compare two systems may produce incorrect reseisn at
very high SNR. This suggests that the constaitigh-SNR
offset) should also be included in the DMT if theoe rate
performance is of importance. This problem is sohsw
eliminated by using the multiplexing gain definitiln (16), as

3 [8] gives a detailed discussion of the importaothigh-SNR offset
in the capacity analysis of MIMO systems. Note tthas offset is
missing in (5).

The rough estimation 102

¢ becomes a moderate constant, but the anomalowasibeh
of the outage probability is not eliminated so titmestimation
from the diversity gain alone ay<30dB is not possible.
Using the definition in (15) eliminates most of theoblem,
leaving only the moderate offset=1/5. For smaller systems
(Fig. 2), this problem is not that severe (the SHfset
disappears aty=15dB), but the anomalous behavior of the
outage probability at low to moderate SNR for afiditions
of the multiplexing gain but in (15) is still prege

We analyze below the finite SNR DMT analyticallyings
the multiplexing gain definitions in (14)-(16) tdadfy their
advantages and disadvantages when applied to tiealis
systems (low to moderate SNR, moderate or smalesys
size).
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Fig. 1. Outage probability vs. SNR for various defiitions of the
multiplexing gain; n=m=210,r = 9; solid line — asymptotic from

) (10) (13), circles — Monte-Carlo simulations (X trials); dash
P =1/y. Note high SNR offset ¢ =10%).
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Fig. 2. Outage probability vs. SNR for various defiitions of the
multiplexing gain; n=m=2,r =1; solid line — asymptotic from
(9),(10),(13), circles — Monte-Carlo simulations (@ trials); dash
line - P,; =1/y. The SNR offset is small in this caseq(=1) and
the convergence is achieved at realistic SNR.
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A. Independent Identically Distributed Channels

We begin with Theorem 1 and consider square channel
B=1% At moderate to high SNR, the mean and the vagianc

can be approximatedas

C_,(¥),2 2_1f v
—=In|+|+—, 0 In=-+—
HE s G )
Numerical evaluation of (9), (10) indicates tha8)becomes
accurate already foy = 5dB .

To simplify the analysis and to get some insighg use
below high but finite SNR approximations, i.>>1 but not

(18)

Yy - «. This approximations, as it is demonstrated below,

hold true already at low or moderate SNR levels @lav one
to quantify the effect of SNR on the DMT and, intfmaular, to
establish the SNR levels at which the asymptoticilte in [1]
hold.

Substituting (18) into the upper bound in (13),ngsthe
multiplexing gain definition in (15), after some nipulations
keeping only the lower-order (dominating) termsg obtains

_ify =d(r)A(y)
Fout “Sle

where d(r) = (n-r)?
effect of finite SNR,

A®y) =1+ 2/(Jy In(y /e))

(19)

(as in (4)), andA(y) quantifies the

(20)

Interpreting thel/e term in (19) as a high-SNR offset

(similarly to [8]), the diversity gain in (14) beoms

d, =d(r)A(y) . Using (19), the differential diversity gain (17)

can be expressed as

dy =d(r)(A(y) +yIn(y/€)0A(y)/ dy) (21)
which, after some manipulations, can be simplified
dy = (n—r)2{1—ij (22)
2Jy

The first factor in (22) is identical to (4) (ret#hat m=n),
and the second term represents the effect of tiite fSNR. As
Fig. 3,4 demonstrate, (22) is reasonably accuratey £ 0dB .
The convergence to the asymptotig ¢ o) result in (4) is
achieved when the second term in (22) can be negleahich
we set, somewhat arbitrary, aﬂ(z\/é)s 0.1 (i.e. within 10%
accuracy),

y=25=141B (23)

v g n+r 1 (r 2 1

dy = (n-r) [1 gy (—_r] |n(y/e)2] (24)
Vo g _n+r 1
dy =(n-r) (1 _—r_f] (25)

These equations hold fer<n. If r =n, thend, =0 and also
dy, =0, as it should be. Note that, gs- o, d; converges to
the asymptote (4) for all multiplexing gain defiaits. The
convergence in (24) and (25) respectively is achieor

y2 max{(—lorfnjrr)j ;{}iﬂ (eq. 24) (26)

vz (10(n

n

)j (eq. 25) (27)
Fig. 3 and 4 compare the differential diversityrgeivaluated
via the asymptotic distribution with the momentg9), (10) to
the approximations in (22), (24) and (25). Clearthe
approximations in (22), (24) and (25) are of reatbm
accuracy.

The slowest convergence (i.e. logarithmic, 15($Iny) ) is
for the multiplexing gain definition in (14), whickas used in
[1], and the fastest convergence is for the muakplg gain
definition in (15), which is also independent ofyasystem
parameters.

Example 1: convergence conditions for=10,r = 9,

y=50dB (the multiplexing gain in (16)) (28)

(29)

Few observations are in order, based on (23),28),(i) the
original multiplexing gain definition in (14) redsl in
extremely slow convergence, making the results ghiegble
at realistic SNR values; (ii) the high-SNR offset {16)
improves the convergence significantly, but yet eobugh to
achieve realistic SNRs; (iii) the multiplexing galefinition in
(15) is the best, with the convergence at realBNR values.

To observe the effect of system parameters, conside
another example.

Example 2: convergence conditions for=2, r =1,

y = 22dB (the multiplexing gain in (14) and (16)) (30)

y=120dB (the multiplexing gain in (14))

Comparing to Example 1, one concludes that the eg®ance
for the multiplexing gains in (14) and (16) is gigrantly
affected by the system size: for small systems, ttaee

To indicate the impact of the rate definition one th definitions give roughly the same (fast) convergerazhieved
convergence speed, the results above should beastatt to gt realistic SNRs; for larger systems, only thdrdgdn in (15)
those obtained using the other two definitions ®f t results in convergence at realistic SNRs, whichalso
multiplexing gain in (14) and (16) respectively, independent of the system size and rate. For thigititen in
(14) (which was used in [1]) the high-SNR threshiolcteases
exponentially in system size and in the multiplgxgain (see
(26)). Based on these observations, the multiptexgain
definition in (15) relying on the mean capacityresego be the
best one.

The main results of this section are summarizedhim
following Theorem and Corollaries.

“ The results can also be generalized to arbitBaryvhich is omitted
here due to the page limit.

® similar approximations, W|thout2/f term, can be found
elsewhere in the literature. They, however, becameurate for
significantly larger SNRy = 20...3@B .
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Theorem 3 Consider a fading channel satisfying thde expressed as

conditions of Theorem 1 withn=m. The finite-SNR
diversity-multiplexing tradeoff using the diversitygain
definition in (17) and the multiplexing gain defions in (14),
(15), (16), are given by (24), (22), (25), and tbavergence to

the asymptotey — o) in (4) is achieved under the conditions

in (26), (23), (27) respectively.

1, \-dna
Po =5 (ny) (31)

wherer <1 and
d() = (1-r)?, AY)= Intyn) (32)

2 [Re[f +n7?[R. )

Corolla_ry 3.1 Convergence of the finite-SNR DMT to thengte a different SNR offset in (31) compared to)(Ibhe
asymptotic § — ) one is the fastest foR=rC/n and the (ifferential diversity gain can be expressed as

slowest forR=rIny. For moderate to large system size, only

the former results in convergence at realistic SidRes.

Corollary 3.2: Only for R=rC/n the outage probability
can be estimated from (6) using the diversity gai(), when
I is not too small. The other definitions in (14Qg16) result
in large SNR offset and anomalous behavior R, (y) at
realistic SNR values, for moderate to large sysiera.

Diversity Gain

Asymptotic ||
o Monte-Carlo
Approx.

1

60

70 80
Fig. 3. Differential diversity gain vs. SNR for vaious definitions
of the multiplexing gain; n=m=10,r = 9; solid line -
asymptotic from (9),(10),(13), dashed — approximatins in (22),
(24), (25).

Diversity Gain

Asymptotic

m ! ©  Monte-Carlo
I Approx.
| T
1 1
30 40 50
SNR [dB]

Fig. 4. Differential diversity gain vs. SNR for vaious definitions
of the multiplexing gain; n=m=2,r =1.

B. Correlated Keyhole Channel

Using Theorem 2, similar results can also be obthifor
correlated keyhole channels. Specifically,
multiplexing gain definition in (15), the outageopability can

usinge th

1-r)%In
g, =0 nom_ 33)
MR +n7* R |

Eqg. (33) demonstrates the effect of SNR and ottireelation
on the finite-SNR DMT. The denominator in (33) fisfact the
measure of correlation and power imbalance in a MIM
channel introduced in [10]. Thus, any correlation power
imbalance, at either Tx or Rx end, reduce the wiffgal
diversity gain.

Due to the asymptotic nature of the capacity distion in
Theorem 2, this result cannot be extended te « for finite
n,m because of slow convergence (withm) of the
distribution tail. However, it does provide a good
approximation at moderate SNR values.
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