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Abstract: The peak factor of a continuous digitally-
modulated signal is often analyzed from its samples 
taken at the Nyquist rate. This, however, may involve 
a significant error. It has been claimed, based on an 
illustrative example, that the peak factor of a 
continuous signal may be arbitrary large while the 
peak factor of the corresponding sampled signal is 
limited [10]. A validity of this example has been 
questioned in [11,13] based on a flaw in [10]. In this 
paper, we demonstrate that the original illustrative 
example requires a small modification only to remove 
the flaw. It is also demonstrated that the continuous 
peak factor, in its traditional definition, may be 
arbitrary large while the sampled peak factor and the 
signal energy are bounded. An upper bound on the 
continuous peak factor of a BPSK sequence is 
derived. 
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1. Introduction 

Various types of OFDM systems became recently 
very popular for high-speed wireless 
communications, especially when the channel is 
frequency-selective [1,2]. While OFDM does offer 
significant advantages, it has a major drawback – the 
peak factor of an OFDM signal, sometimes refereed 
to as the peak-to-average power ratio, can be large [3-
5], which is an obvious disadvantage from the RF 
amplifier view point. Thus, careful analysis of the 
peak factor is required. This problem has recently 
attracted significant attention and various peak factor 
reduction techniques have been proposed [5-9]. 

The peak factor of a continuous digitally-
modulated signal is quite often analyzed using its 
samples at the Nyquist rate, i.e. no oversampling, due 
to convenience of such an approach. However, a 
certain difference exists between the peak factor of a 
continuous signal and its discrete counterpart. It has 
been recently demonstrated by Wulich, using an 
illustrative example, that the peak factors of sampled 
and continuous signal may be vastly different if no 
oversampling is used [10]. In particular, it was 
claimed that the continuous peak factor may be 

arbitrarily large while the sampled peak factor is 
bounded. The validity of this example has been 
questioned in [11]. Specifically, it is claimed in [11] that 
the Wulich example is wrong because it has infinite 
derivative and a band-limited signal must have a finite 
derivative. However, this argument holds true provided 
that the band-limited signal itself is finite [12, p. 214-
215]. If the band-limited signal is infinite at some points, 
which is the case in the Wulich example, its derivative 
does not need to be finite. Thus, the claim in [11] is not 
justified. 

A more detailed analysis of the Wulich’s example and 
of some related issues has been given in [13]. In 
particular, it has been demonstrated that the continuous 
signal in the Wulich’s example is infinite everywhere 
except for the sample points. Obviously, a signal with 
such a strange behavior, which is also impossible in 
practice, cannot be considered as a legitimate example. 
Also, it is not clear whether the Fourier transform and, 
consequently, the sampling theorem can be applied to 
such a signal because it does not satisfy the absolute 
integrability, or finite energy or finite power (over a finite 
time interval) conditions.  

In this paper, we demonstrate that the original Wulich 
example requires a very small modification to meet the 
finite energy condition and, thus, the Fourier transform 
and the sampling theorem can be safely applied to the 
modified example. Also, the signal in the modified 
example is finite everywhere when the number of non-
zero samples is finite. We also investigate the continuous 
peak factor of the modified signal as a function of the 
number of samples and provide a simple approximate 
expression for it and emphasize that this is the largest 
peak factor among any binary (BPSK) sequences of a 
given length, i.e. it provides an upper bound on the peak 
factors of any BPSK sequence. This bound is tight when 
the number of samples is large and it fits nicely into the 
bounds derived in [8] in a different context. Finally, we 
demonstrate that the continuous peak factor, as defined in 
[10] and many other papers, may be made arbitrary large 
while the sampled peak factor (without oversampling) 
and the signal energy are bounded. This example 
indicates that a certain amount of oversampling is 
essential for accurate estimation of the peak factor. 
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2. Modified Wulich Example 

The main idea of the modification of the original 
Wulich’s example is to set the signal’s samples equal 
to zero outside the observation interval [ , ]obs obsT T−  
for which the peak factors are defined. We describe 
here this modification following [10]. The 
continuous-time signal in the Wulich example is 
given in terms of its samples: 
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where MT = π ω  is the sampling interval, Mω  is the 
maximum (radial) frequency in the signal’s spectrum, 
and fn are the signal’s samples. Note that this signal is 
strictly band-limited (since each term in (1) is band-
limited). The continuous peak factor is defined over 
the observation interval as 
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and the sampled peak factor is defined as 
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where /obs obsN T T= , so that the discrete observation 
interval is [ , ]obs obsN N− . It should be emphasized 
that these definitions are not specifically tailored for 
our example but are widely used in the literature (e.g. 
[6-9]). The signal’s samples are set as (the reason for 
this particular setting will be seen below – these are 
the “worst” possible samples in terms of the 
difference between the continuous and sampled peak 
factors): 
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With this modification and contrary to the original 
example [10], the continuous-time signal ( )f t  meets 
the finite energy condition for any finite obsN  (its 
energey is given below by eq. 10). Thus, the Fourier 
transform and the sampling theorem can be safely 
applied (which was not the case with the original 
Wulich example [10], and which generated some 

debates on the issue [11,13]). It is straightforward to see 
that 

( ) 1s obsPF N =                                       (5) 

It can be shown that , for fn given by (4), the maximum 
value of f(t) is achieved at / 2t T= , 

( )
( )

1

sin / 2
( / 2)

/ 2

2 1 1
1 2 0.5

n Nobs
M

n
n Nobs M

Nobs

obs n

T nT
f T f

T nT

N n

=

=−

=

ω −  =
ω −  

 
= + π + − 

∑

∑
   (6) 

(note that there was a mistake in [10, eq. 7], which is 
corrected above). Using (6), the continuous peak factor 
can be bounded from below as: 
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The second inequality in (7) is due to the fact that 
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Finally, using (7), we observe that, 

lim ( )
obs

c obsT
PF T

→∞
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(because of the 2nd term in the last expression in (7) is 
divergent), i.e. the continuous peak factor can be made 
arbitrary large by increasing Nobs to a sufficiently large 
value (for fixed T and, consequently, the fixed 
bandwidth), while the sampled peak factor is equal to 
unity (see (5)). This constitutes the modified Wulich 
example. 

However, a few notes should be made regarding 
practical implications of this illustrative example. First, 
we note that in all practical systems Nobs is limited. 
Obviously, this limits the peak factor in (7) (PFc is 
actually very close to the lower bound, as eq. (13) latter 



 

emphasizes). As it has been pointed out in [13], the 
level of a non-periodic signal and its variations are 
limited by the signal’s energy [13, eq. (13)-(15)]. The 
energy of our modified signal is: 

( )2 1obsE N T= +                             (10) 

Thus, when only finite-energy signals are considered, 
Nobs is limited as 
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which obviously limits the continuous peak factor of 
the signal in (1). 

However, we note that the continuous and 
sampled peak factors, as defined by eqs. (2) and (3) 
above, are invariant when a signal is multiplied by a 
constant, i.e. ( )f t and * ( ) ( )f t c f t= ⋅  have the same 
continuous and sampled peak factors. Hence, we 
define the constant c as 
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With this definition, * ( )f t  has unit energy for any 
Nobs (this is seen directly from (10)) and the same 
peak factors (continuous and sampled) as ( )f t , i.e. 
given by (5) and (7). Thus, it demonstrates that the 
continuous peak factor, as defined by eq. (2), which 
seems to be a widely-accepted definition, may be 
arbitrary large (by increasing obsN to a sufficiently 
large value) while the sampled peak factor and the 
signal energy are bounded. It should be noted that, in 
this case, increase in PFc is accompanied by decrease 
in the average signal power. Hence, when thermal 
noise is considered, it may limit the usefulness of 
such an example for large obsN . While the practical 
implication of this modified example may be limited, 
it nevertheless demonstrates an interesting theoretical 
property of the widely-used peak factor definition. 

The second practical implication of this example 
follows from the fact that for large Nobs  the peak 
factor in (7) is very close to the lower bound, i.e. it 
can be approximated as: 
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where the 2nd equality follows from the 
approximation of the sum by an integral [15]. Thus, 
the continuous peak factor is only logarithmic in Nobs 

, i.e. it increases very slowly with Nobs and, hence, 
assumes only moderately large values for any practical 
system. Fig. 1 compares PFc computed numerically with 
its approximation in (13), which appears to be reasonably 
accurate. The difference between PFc and the right-hand 
side of (7) is due to the limits of integration in (2), which 
are set to [ ],obs obsT T−  rather than [ ],−∞ ∞ . If these limits 

are changed to [ ],−∞ ∞ , then the inequality in (7) 
becomes an equality. 

It is straightforward to show (using conventional 
optimization techniques) that the sample sequence in (2) 
is the worst-case one in the sense that it results in the 
largest continuous peak factor among any binary 
sequence (BPSK) of a given length and amplitude. Thus, 
one may expect that any practical continuous peak factor 
of a binary sequence will not grow faster, i.e. (13) 
provides an upper bound. It is interesting to note that, 
despite of the fact that (13) has been derived for a BPSK 
signal, it is similar to the peak factor of coded OFDM 
signals in [6] and to the bounds of the peak factor of 
power-limited OFDM-modulated signals in [8], which 
also exhibit a square-logarithmic behavior. 
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Fig. 1. Comparison of the numerically-computed peak 
factor with the approximate expressions. 
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