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Abstract – Keyhole MIMO channels were predicted 

theoretically and also observed experimentally. However, they 

are not often encountered in practice since the assumption of a 

single propagation eigenmode is only a rough approximation of 

real propagation environments. To overcome this problem, the 

paper extends the single-keyhole channel model by introducing a 

“multi-keyhole channel”, which includes a number of 

statistically independent keyholes. Correlated full-rank and 

rank-deficient multi-keyhole channels are considered in detail. It 

is shown that under some general conditions the full-rank multi-

keyhole channel is asymptotically Rayleigh fading, if the number 

of keyholes is large. When the number of both Tx and Rx 

antennas is large, the asymptotic capacity of a rank-deficient 

multi-keyhole channel is a sum of the capacities of the equivalent 

single-keyhole channels. The outage capacity distribution of 

both full-rank and rank-deficient multi-keyhole channels is 

asymptotically Gaussian. Based on the asymptotic capacity 

analysis, full ordering scalar measure of MIMO channel 

correlation and power imbalance is introduced. 

Index Terms - MIMO system, keyhole channel, outage capacity, 

correlation. 

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) channels have 

gained significant interest in the last decade due to high 

spectral efficiency. One of the major statistical characteristics 

of MIMO fading channels is their outage capacity, which 

gives an ultimate upper limit on the error-free information 

rate with a given probability of outage [1]. The outage 

capacity distribution of various channels has been extensively 

studied, and many analytical and empirical results have been 

obtained. For example, closed-form expressions for the 

outage capacity distribution of non-correlated and semi-

correlated Rayleigh MIMO channels have been found [2]. 

Chizhik et al [3] analytically predicted a keyhole channel, 

which can be modeled as a cascade of two Rayleigh fading 

channels separated by a single keyhole whose dimensions are 

much smaller than the wavelength. The presence of the 

keyhole degenerates the channel, i.e. its rank is one regardless 

the number of Tx and Rx antennas [3]. Consequently, the 

capacity of such channels deteriorates significantly 

comparing to the Rayeigh channel with the same number of 

Tx and Rx antennas, even though the channel matrix entries 

are uncorrelated. Outage capacity distribution of single-

keyhole channels is studied in [4]. Closed-form expressions 

for the mean (ergodic) capacity of a spatially uncorrelated 

single-keyhole channel are obtained in [5]. Even though the 

single-keyhole channels may appear in some propagation 

scenarios, they are not often encountered in practice as the 

assumption of a single propagation eigenmode is only a rough 

approximation of real propagation scenarios [6]. Motivated 

by recent studies of the single-keyhole channel [4], we 

introduce a multi-keyhole channel to generalize and expand 

the range of applicability of the keyhole channel model. 

While the statistics of the keyhole channel is significantly 

different from the Rayleigh one, we show that under some 

general conditions the Rayleigh channel is a limiting case of a 

full-rank multi-keyhole channel when the number of keyholes 

is large. This establishes a link between keyhole and Rayleigh 

channels. The outage capacity of the Rayleigh channel upper-

bounds that of the multi-keyhole one. Moreover, the full rank 

multi-keyhole model provides a motivation for the Kronecker 

correlation model [7]. When the number of antennas is large, 

the capacity of the rank-deficient multi-keyhole channel is a 

sum of the capacities of the equivalent single-keyhole 

channels. While the mean capacity of such a channel 

increases with the number of keyholes, its outage capacity 

may decrease. Moreover, the outage capacity distribution of 

both full-rank and rank-deficient multi-keyhole channels is 

asymptotically Gaussian. This fact may indicate that 

Gaussian distribution has a certain degree of universality for 

outage capacity analysis of MIMO channels in general. 

Motivated by the results above, we introduce a generic 

scalar measure of channel correlation and power imbalance in 

terms of their impact on the channel capacity. The significant 

advantage of this measure, as compared to that based on the 

majorization theory [8], is that any two channel can be 

compared without exceptions. Using this measure, we show 

analytically that both the correlation and the power imbalance 

have a negative impact on the asymptotic outage capacity. 

II. SINGLE-KEYHOLE MIMO CHANNEL CAPACITY

Consider a spatially correlated single-keyhole MIMO 

channel with tn  Tx and rn  Rx antennas (see Fig. 1). Let the 

element kmH , 1.. ;  1...r tk n m n , of the channel transfer 

matrix H  be a complex channel gain from the m-th transmit 

to the k-th receive antenna. The gain matrix of the keyhole 

channel is given by [3] 
H
trhhH                                  (1) 
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where ( )H denotes the Hermitian transpose, th [ 1]tn  and 

rh [ 1]rn  are mutually independent random vectors 

representing the complex gains from the transmit antennas to 

the keyhole and from the keyhole to the receive antennas 

respectively. Assuming that the keyhole channel is a cascade 

of two correlated Rayleigh fading channels, th  and rh  are 

complex circular symmetric correlated Gaussian vectors with 

correlation matrices }{ H
ttt E hhR  and }{ H

rrr E hhR

respectively, where {}E  denotes expectation. H  is 

normalized so that rtnnE }{
2

H , where  is the 2L

norm, and 1}{}{
2121

rrtt EnEn hh , which also implies 

1}{}{ 11
rrtt tracentracen RR .

From [1], when the channel state information (CSI) is 

available at the Rx but not the Tx end, the instantaneous 

capacity (i.e. the capacity for a given channel realization) of a 

quasi-static frequency flat MIMO channel in natural units 

[ ]nat  is given by: 

0ln(det[ / ])H
tC nI HH                      (2) 

where det  is the determinant, I  is [ ]r rn n  identity matrix 

and 0  is the average SNR per Rx antenna. The exact 

expression for the cumulative distribution functions (CDF) of 

C  (the outage capacity distribution) when tR  or rR  are 

non-singular and have distinct eigenvalues has been obtained 

in [4]. However, this expression is not explicit in parameters 

and does not allow for significant insight. To obtain such 

insight, we resort to an asymptotic analysis, when both tn

and rn  are large. 

III. ASYMPTOTIC OUTAGE CAPACITY DISTRIBUTION OF A 

SINGLE-KEYHOLE MIMO CHANNEL

Here, we briefly summarize the main results in [4] 

starting with the following theorem: 

Theorem 1: Let C  be an instantaneous capacity of the 

correlated single-keyhole channel. When both tn  and rn  tend 

to infinity, the distribution of C  is Gaussian in probability if 
1 { }t tn trace R ,

22 0t tn R  as tn , and 
1 { }r rn trace R ,

22 0r rn R  as rn . Moreover, if 

the channel is normalized so that 1 { } 1t tn trace R  and 
1 { } 1r rn trace R , the mean  and the variance 2  of C  are 

as follows: 
2 22 2 2

0ln(1 );    r t t r rn n nR R     (3) 

A proof is given in [4]. The conditions of Theorem 1 apply 

for both uncorrelated and correlated single-keyhole channels. 

Hence, the outage capacity distribution of an uncorrelated 

single-keyhole MIMO channel is asymptotically Gaussian 

with the mean as in (3) and the variance 2 1 1
t rn n . The 

following corollary follows immediately from Theorem 1. 

Corollary 1: Asymptotically, the channel correlation 

enters into the outage capacity distribution through the norm 

only, i.e. even though two correlation matrices 1R  and 2R

(at either end) are different, they affect the capacity in the 

same way if 1 2R R .

Following (3), it is not always true that an increase in the 

number of antennas decreases the variance and hence the 

outage probability, but only if 2  is monotonically 

decreasing with tn  and rn , i.e. tR  and rR  increase not 

faster than 11
tn  and 21

rn  respectively for some 

1 2,  0 .

Since  in (3) is a function of rn  and 0  but not R

(either tR  or rR ), the immediate conclusion is that the 

correlation has no effect on the asymptotic mean capacity, but 

only on the variance. In contrast, increase in the average SNR 

increases the mean capacity while the variance remains 

unchanged. Note that the asymptotic mean capacity in (3) and 

the upper bound on the mean capacity of the finite order 

single-keyhole channel proposed in [5] are identical, i.e. (3) 

shows that the bound is asymptotically tight. 

To analyze the effect of 2  in (3), consider two single-

keyhole channels with the same 0 , tn  and rn , but different 

R , either tR  or rR . Under the conditions of Theorem 1, the 

outage capacity distribution of both channels is 

asymptotically Gaussian with equal means 1 2  and 

variances 2
1 , 2

2 . Without loss of generality, assume that 
2 2
1 2 . Compare two equal-mean Gaussian CDFs 1( )CF x

(with variance 2
1 ) and 2 ( )CF x  (with variance 2

2 ).

Apparently, they have a cross point at 0x  such that 

1 0 2 0( ) ( ) 0.5C CF x F x . For 0x x , 1 2( ) ( )C CF x F x  and 

for 0x x , 1 2( ) ( )C CF x F x , i.e. at outage probabilities less 

than 0.5, the keyhole channel with higher 2  has smaller 

outage capacity. The opposite is true at outage probabilities 

higher than 0.5, however this range of outage probabilities 

has little importance from the practical point of view. 

IV. SCALAR MEASURES OF CORRELATION AND POWER 

IMBALANCE

Let R  (either tR  or rR ) belongs to , where  is a 

set of all n n  correlation matrices such that ( )trace nR . It 

is straightforward to show using the Cauchy-Schwarz 

inequality that 

22 1n nR ,                              (4) 

with the equality if all 1k , 1...k n , where k  are 

eigenvalues of R  (i.e. if R I ). Thus, 
22n R  achieves 

the minimum when the channel at the Tx(Rx) end is 

uncorrelated with the same power at each Tx(Rx) antenna. 

Furthermore, since every R  is positive semi-definite 

( 0k ), it is easy to show that 

TxTx

EndEnd

RxRx

EndEnd

keyholekeyhole

Fig. 1. A keyhole MIMO channel. Each end has rich multipath 

so that the sub-channels are correlated Rayleigh fading. 
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22 1n R ,                                (5) 

with the equality if k n  for some k , and 0m

m k . Thus, 
22n R  achieves the maximum when the 

channel at Tx(Rx) end is fully correlated. Based on (4) and 

(5), there are two major effects that can increase 
22n R : (i) 

non-uniform power distribution across the antennas (also 

termed power imbalance) and (ii) non-zero correlation. To 

analyze those effects separately, let us split R  into a sum 

of two matrices as follows: 

R K P                                     (6) 

where { }diagP R I  and K R P ; { }diag R  is the 

diagonal matrix whose main diagonal is that of R . Clearly, 

P  and K  account for the power imbalance and the 

correlation respectively. As for any R , ( )trace nK

and ( ) 0trace P , it is straightforward to show that the 

decomposition (6) is norm-orthogonal, i.e. 

2 2 22 2 2n n nR K P                  (7) 

Moreover, it can be shown that 

22 10 1n nP                         (8) 

where the lower bound is achieved when all antennas have 

the same power (no power imbalance), i.e. { }diag R I , and 

the upper bound is achieved when there is only one effective 

Tx or Rx antenna, i.e. kkR n  for some k , and 0mmR

m k . Furthermore, since 
2 22 2n nK R  (see (7)), 

and the equality in (4) is achieved only for 
2 22 2n nK R , it follows that 

21 2 1n n K                            (9) 

where the lower bound is achieved when K I (the channel 

at Tx(Rx) end is uncorrelated), and the upper bound is 

achieved when the channel at the Tx(Rx) end is fully 

correlated. Motivated by Corollary 1 and the discussion 

above, we introduce two following definitions. 

Definition 1: A channel with correlation matrix 1R  is 

said to be equally or more correlated than that with 2R

if

2 22 2
1 2n nK K                         (10) 

where 1K  and 2K  correspond to 1R  and 2R  respectively 

through (6). This scalar measure of the channel correlation is 

alternative to the measure given in [8], for channels with 

large n . Unlike [8], (10) is not based on the majorization 

theory and provides a complete (full-ordering) correlation 

characterization with no exception (i.e. any two 

1 2,R R can be compared, see also the remark to the 

Definition 1 in [8]). 

Definition 2: A channel with correlation matrix 1R

has the same or more non-uniform power distribution (power 

imbalance) than that with 2R  if

2 22 2
1 2n nP P                          (11) 

where 1P  and 2P  correspond to 1R  and 2R  respectively 

through (6). Note that for any R ,
22 (0;1]n K  and 

22 [0;1)n P  as n .

To get some insight, consider a simple geometrical 

interpretation of Definitions 1 and 2 shown in Fig. 2. It 

follows that 
22n R  is a mapping of  onto a circle sector 

(see Fig. 2). The channel correlation matrix R  is represented 

by the vector R  such that  

1 1;   { } tan { / }R n angle RR P K      (12) 

Following Corollary 1, the asymptotic outage capacity is 

affected by the length of R  but not by its angle. Consider 

two channels with correlation matrices represented by the 

vectors 1R  and 2R  such that 1 2R R R  (see Fig. 2). 

Following Definitions 1 and 2, the channel with 1R  is more 

correlated that one with 2R . In contrast, the channel with 2R

has more power imbalance across antennas. Nonetheless, the 

outage capacity of both channels is same. Therefore, the 

power imbalance and correlation between antennas have the 

same impact on the asymptotic capacity distribution of a 

single-keyhole channel if 1 2R R .

To strengthen the general discussion above and to show 

explicitly the impact of correlation on the asymptotic outage 

capacity distribution, we consider, as an example, the 

exponential correlation matrix models for R  [9]. In this 

model, the elements of correlation matrix R  (either tR  or 

rR ) are represented through a single complex correlation 

parameter r  as following 

;
 , 1 

;

m k

km k m

r m k
R r

r m k
                (13) 

where r  is the complex conjugate of r . From (6), 
1 1n nK R  and 1 0n P , i.e. this model does not 

capture the effect of power imbalance but the correlation 

only. Using the properties of geometrical series, it is 

straightforward to show that as n ,
2

22

2

11
; 1

1

r
n r

n r
K               (14) 

Thus, following Theorem 1, when both tR  and rR  are 

described by the exponential model, the asymptotic capacity 

distribution of the corresponding single-keyhole channel is 

Gaussian, since 1 { } 1n trace R  and 
22 0n R  as 

n . From (14), the measure of correlation increases 

1n K

1n P

1

1

0

1R

2R

R

R

Fig. 2. Geometrical interpretation of the power imbalance 

and correlation effects. 
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monotonically with r . This fact supports Definition 1. 

Moreover, 
22n K  monotonically decreases with n , i.e. in 

the exponential correlation model, an increase in the number 

of antennas decreases 2  monotonically. Hence, the 

asymptotic capacity of a single-keyhole channel with 

exponential correlation increases with n  and decreases with 

r  at outage probabilities lower that 0.5. The opposite is true 

for the capacity at outage probabilities higher than 0.5. 

V. MULTI-KEYHOLE CHANNEL

Following [6], the ideal single-keyhole channel is not 

often encountered in practice since the assumption of a single 

non-zero eigenmode is only a rough approximation for real 

propagation scenarios. More often, the channel may have a 

number of keyholes. By extending (1), the channel transfer 

matrix of such a multi-keyhole channel can be represented as: 

1

M H H
k rk tk r tk

aH h h H AH               (15) 

where M  is a number of keyholes, ka  is the complex gain of 

the k-th keyhole, tkh [ 1]tn  and rkh [ 1]rn  are random 

vectors representing the complex gains from the transmit 

antennas to the k-th keyhole and from the k-th keyhole to the 

receive antennas respectively; 1[ .. ]t t tMH h h ,

1[ .. ]r r rMH h h  are [ ]tn M  and [ ]rn M  matrices 

respectively, and A  is a [ ]M M  diagonal matrix with 

elements kk kaA , 1..k M .

Similarly to the single-keyhole channel, assume that for 

every k , tkh  and rkh  are mutually independent complex 

circular symmetric Gaussian vectors with corresponding 

correlation matrices { }H
tk tk tkER h h  and { }H

rk rk rkER h h .

Suppose also, that the keyholes are independent of each other, 

i.e { } { }H H
tk tm rk rmE Eh h h h 0  for any k m . For 

comparison purposes, H  is normalized so that 

rtnnE }{
2

H  and for every k ,
21 { } 1t tkn E h ,

21 { } 1r rkn E h , which implies  

2

1
1

M

kk
a                            (16) 

i.e. the average SNR per Rx antenna is constant regardless of 

the number of keyholes. Substituting (15) in (2), the 

instantaneous capacity of a frequency flat quasi-static multi-

keyhole MIMO channel with the CSI available at the Rx end 

only may be expressed in natural units [ ]nat  as 

0ln det[ ]H
r r tC nI B AB A               (17) 

where /H
t t t tnB H H  and /H

r r r rnB H H . Below, we 

consider two types of the multi-keyhole MIMO channels: 

Full-Rank Multi-Keyhole Channel ( min{ , }t rM n n ):

Theorem 2: A full-rank multi-keyhole channel is 

asymptotically Rayleigh fading as M  if

2
lim max{ } 0k

M k
a ,                        (18) 

i.e. the power contribution of each single keyhole approaches 

zero as M  goes to infinity. For example, a multi-keyhole 

channel with equal 1/ka M , 1..k M
,
 satisfies (18) 

simultaneously keeping the adopted normalization (16). A 

proof of Theorem 2 follows directly from the Lindeberg-

Feller Theorem [10], since under the assumption of keyhole 

independence, each element of H  is a sum of M

independent random variables. Fig 3 compares the outage 

capacity distributions of a 2x2 multi-keyhole channel with 

1/ka M  and of the equivalent Rayleigh channel. The 

correlation at both Tx and Rx ends and for all M  keyholes is 

represented by the exponential model [9] with 0.5r . The 

Kronecker model [7] was used to simulate the correlation at 

Tx and Rx ends in the Rayleigh channel. Clearly, the outage 

probability of the multi-keyhole channel decreases with M

and becomes close to that of the equivalent Rayleigh channel 

already for 10M .

Moreover, it can be shown that under the conditions of 

Theorem 2, if  

;   ,t t k tm r rk rm k mR R R R R R ,       (19) 

the multi-keyhole channel matrix obeys the Kronecker 

correlation model [7]. This model significantly simplifies 

analytical analysis and simulation of correlated MIMO 

channels by allowing independent modeling of correlation at 

the Tx and Rx ends. The first experimental validation of the 

Kronecker model was given in [7]. Considering a Rayleigh 

channel as a limiting case of the full-rank multi-keyhole 

channel with M  not only stresses out the relationship 

between the two channels but also provides a motivation for 

the Kronecker model. 

Rank-Deficient Multi-Keyhole Channel ( min{ , }t rM n n ):

Theorem 3: Let C  be an instantaneous capacity of the 

multi-keyhole channel (17). If for every , 1..k m M ,
1 { }t tkn trace R , 2 [ ] 0H

t tk tmn trace R R  as tn , and  
1 { }r rkn trace R , 2 [ ] 0H

r rk rmn trace R R  as rn , the 

following holds true as both tn  and rn  go to infinity: 

2 2 2

01
ln 1 /

p M

k tk rk tk
C a nh h       (20) 

where 
p

 means convergence in probability. Hence, the 

asymptotic instantaneous capacity of a rank-deficient multi-

keyhole channel is the sum of the capacities of the equivalent 

single-keyhole channels. A proof is omitted due to the page 

limit. Note that the conditions of Theorem 1 for the single 

keyhole follow from those of Theorem 3; therefore the terms 

5 10 15
1 10

3
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1
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O
u
ta

g
e 

P
ro

b
ab

il
it

y

Fig. 3. Outage capacity distribution of 2x2 full-rank multi-

keyhole channel vs. the number of keyholes M.
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of the sum (20) are Gaussian. Moreover, they are 

independent as the keyholes are assumed to be independent. 

Therefore, similarly to the single-keyhole channel, the 

asymptotic instantaneous capacity of the multi-keyhole 

channel is also Gaussian with the mean  and the variance 
2  given as follows: 

2

01

2 22 2 2

1 1

ln 1
M

k rk

M M

t tk r rkk k

a n

n nR R

    (21) 

Let
2 22

1

M

kk
R n R , where the vector R

represents the total effect of correlation and power imbalance 

at either Tx or Rx end. From (7), 

2 2 22 2

1 1

M M

k kk k
R n nK P     (22) 

where kK  and kP  are the correlation and the power 

imbalance respectively created by the k-th keyhole. Thus, the 

length of R  (which affects the outage capacity) is a simple 

summation of correlation and power imbalance measures of 

all M keyholes. Due to this relationship, the impact of 

correlation and power imbalance on the asymptotic outage 

capacity distribution of the single-keyhole channel and of the 

rank-deficient multi-keyhole channel is similar; the capacity 

at outage probabilities less than 0.5 decreases with correlation 

or/and power imbalance across the antennas, where the scalar 

measures for correlation and power imbalance are given by 

Definitions 1 and 2 for each kR  respectively. 

Using the Jensen inequality and the normalization in (16), 

it is straightforward to show that 

0ln 1 /rM n M                      (23) 

with the equality if 1/ka M , 1..k M . Moreover, since 

0ln 1 /rM n M  increases monotonically with M , the 

channel with more equal-gain keyholes has higher mean 

capacity. However, this is not necessarily true for the outage 

capacity. Since an increase in M  increases not only  but 

also 2  (see (21)), the outage capacity for some outage 

probabilities may increase, while for others it may decrease. 

To demonstrate this, consider a marginal case where the 

channel has M  equal-gain keyholes and M  is large. From 

(23) 0 rn  as M , i.e. asymptotically does not 

depend on the number of keyholes. In contrast, 2  increases 

with M . Following the previous analysis for two Gaussian 

CDFs with the same mean and different variances, one may 

conclude that an increase in M  decreases the outage capacity 

of such multi-keyhole channel at outage probabilities less 

than 0.5 and increases it at outage probabilities higher than 

0.5. We stress that this conclusion holds true under the 

normalization (16) and may change if other normalization is 

adopted. 

VI. CONCLUSION

The multi-keyhole channel model establishes a link and 

emphasizes a relationship between the keyhole and Rayleigh 

MIMO channels. The asymptotic outage capacity of the 

keyhole channels (with either single or multiple keyholes) 

decreases with correlation or/and power imbalance at low 

outage probabilities. The fact that the outage capacity 

distribution of all considered channels is asymptotically 

Gaussian may indicate that the Gaussian distribution has a 

certain degree of universality in the outage capacity analysis 

of MIMO channels. 

A profound reason to study the keyhole channels is not 

that much in practical applications; but rather because this 

channel is so much different from the Rayleigh one (which 

was extensively studied and is well understood by now). The 

investigation of the keyhole channels can reveal how well a 

system performs in channels other than the Rayleigh ones, 

how much the results established for the Rayleigh channels 

apply elsewhere (i.e. robustness), and whether new 

techniques need to be developed. As a byproduct of this 

study, a new (scalar) measure of correlation and power 

imbalance is introduced. This measure allows complete rather 

than partial ordering of the channels (contrary to the ordering 

based on the majorization theory, which allows only a partial 

ordering), and can be applied to other channels, whose 

capacity depends on the norm of correlation matrices, for 

example, to correlated Rayleigh channels [11]. 
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