
 

Abstract— Analytical approach to outage and BER analysis of 
the V-BLAST and D-BLAST algorithms in i.i.d. Rayleigh 
channel is presented in this paper. Based on the previous results, 
which allow an exact analytical BER and outage analysis of a 
2xn system in a closed-form, generic case of mxn system is 
analytically analyzed. While closed-form exact analysis is not 
feasible, a tight bound for the outage probability is derived and 
validated using Monte-Carlo simulations. It is shown that the 
optimal ordering procedure results at a SNR gain of m at the 1st 
step for 4m ≤ . We conjecture that this is true for larger m as 
well. The results above are also extended to the case of a D-
BLAST system. 

I. INTRODUCTION 
High capacity promise of the MIMO architecture over 
multipath channels can be achieved using appropriate signal 
processing algorithm. Few of them have been proposed so 
far. They differ in complexity and percentage of the full 
capacity achieved. While the D-BLAST achieves the full 
MIMO capacity (it was believed for a while that it achieves 
“significant part” of the full capacity [2], but the recent work 
of Foschini et al [1] has elegantly demonstrated that, in fact, 
it achieves the full capacity), its implementation complexity 
is high. The V-BLAST algorithm, on the contrary, achieves 
only a part of the full capacity but its implementation 
capacity is low [3]. Hence, we analyze it in details in this 
paper. In particular, we develop an analytical framework for 
the outage and BER analysis of the V-BLAST operating over 
independent identically-distributed (iid) Rayleigh channel. 
This framework results in closed-form exact analytical 
expressions for the outage and BER of the 2xn systems (i.e., 
with 2 Tx and n Rx antennas), which are fully validated using 
extensive Monte-Carlo simulations. At the moment, we are 
not able to derive exact closed-form expressions for the 
generic case of mxn system. However, we present some tight 
bounds, obtain closed-form expressions based on these 
bounds and demonstrate, through Monte-Carlo simulations, 
that the bounds/approximate expressions capture many 
essential features of the system performance. Finally, based 
on the results obtained for the V-BLAST, we demonstrate 
that similar results follow for the D-BLAST. 

The major original contribution of the present paper is the 
extention of the analytical techniques developed for 2xn V-
BLAST systems in [4-6] to the generic case of mxn system 
(m is the number of Tx antennas) and to the D-BLAST 
system. For completeness, we begin with a brief description 
of the V-BLAST algorithm and summarize major analytical 
results for the case of 2xn systems. 
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II. V-BLAST ALGORITHM ANALYSIS: 2XN SYSTEM 

The V-BLAST algorithm has been discussed in details 
elsewhere [3]. The main idea of the BLAST architecture is to 
split the information bit stream into several sub-streams and 
transmit them in parallel using a set of Tx antennas (the 
number of Tx antennas equals the number of sub-streams) at 
the same time and frequency. At the Rx side, each Rx 
antennas “sees” all the transmitted signals, which are mixed 
due to the nature of the wireless propagation channel. Using 
appropriate signal processing at the Rx side, these signals can 
be unmixed so that the matrix wireless channel is transformed 
into a set of virtual parallel independent channels (provided 
that mutltipath is rich enough). 

The following basic assumptions are employed in the 
present paper: 

(1) The channel is random, quasistatic (i.e. fixed for every 
frame of information bits but varying from frame to frame), 
frequency independent (i.e., negligible delay spread) and with 
complex AWGN. (2) The Tx signal vector is comprised of 
individual symbol sub-streams. No space-time coding is 
employed (however, individual sub-stream coding can be 
used). (3) The noise vector is comprised of independent 
AWGN components with equal variance. (4) The Tx signals, 
noise and channel gains are independent of each other. (5) 
Perfect channel knowledge is assumed to be available at the 
receiver. (6) There is no performance degradation due to 
synchronization and timing errors. 

The V-BLAST processing begins with the 1st Tx symbol 
and proceeds in sequence to the m-th symbol. When the 
optimal ordering procedure is employed, the Tx indexing is 
changed prior to the processing. The main steps of the V-
BLAST processing (detection) algorithm are as follows [3]: 
1. The interference cancellation step: at the i-th processing 
step (i.e., when the signal from the i-th transmitter is 
detected) the interference from the first i-1 transmitters can 
be subtracted based on the estimations of the Tx symbols 
(which are actually assumed to be error-free) and the 
knowledge of the channel matrix H. 
2. The interference nulling step: based on the knowledge of 
the channel matrix, the interference from yet-to-be-detected 
symbols can be nulled out using the Gramm-Schmidt 
orthogonalization process (applied to the column vectors of 
H). 
3. The optimal ordering procedure: the order of symbol 
processing is organized according to their after-processing 
SNRs in the decreasing order (i.e., the symbol with highest 
SNR is detected first). 

Geometrical framework for the closed-form analysis of 
the algorithm operation has been discussed in details in [4-6]. 
Based on those results, the signal fading in the V-BLAST 
system can be analyzed. In particular, we consider the outage 
probabilities (i.e., the probability that the after-detection 
signal power is less than the specified value) and diversity 
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order (i.e., the asymptotic slope of the outage probability 
curve). Ignoring the optimal ordering procedure, it can be 
proved that the diversity order at the i-th step is (n-m+i). 
Hence, the maximum ratio combining (MRC) outage 
probability of appropriate order can be used. Consequently, 
all the results for BER of MRC hold true in the case of V-
BLAST as well. 

However, the optimal ordering procedure “mixes” things 
up and makes the analysis more challenging. Fortunately, the 
approach above can be extended to account for the optimal 
ordering [5,6]. We note that in the case of 2xn system the 
optimal ordering (after the interference nulling) reduces to 
the following: 

( )2 2 2
1 1 2sin max ,s  = ϕ   

h h                      (1) 

where s1 is the signal power after the optimal ordering, 1⊥h  
( 2⊥h ) is the part of 1h  ( 2h ) orthogonal to 2h ( 1h ), and ϕ  is 
the angle between 1h  and 2h . In fact, (1) tells us that the 
optimal ordering for 2xn system is to detect first the sub-
stream with the largest before-detection power. While 2

1⊥h  

and 2
2⊥h  are 2

2 2n−χ  (i.e., (n-1)-th diversity order), taking the 
maximum does not result in doubling the diversity order 
because they are not independent, as sin ϕ at the right-hand 
side of (1) indicates.  
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s1 can be presented in the following form: 
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where ( )fϕ ϕ  is the p.d.f. of ϕ , which can be shown to be 
2 3( ) 2( 1)(sin ) cosnf n −

ϕ ϕ = − ϕ ϕ              (3) 

This p.d.f. is illustrated in Fig. 1 for n=2, 3, 4. The most 
probable direction shifts to the right (900) when n increases, 
starting from 450 for n=2. This is what should be intuitively 
expected because 2

21 ~ χh  and 2 2
1 2 2~ n⊥ −χh , and, hence, the 

most probable value of the ordinate ( 1⊥h ) is greater than the 

most probable value of the abscissa ( 1h ) (for n>2), and the 

former increases with n while the later is fixed. 
Using (2) and (3), the outage probability 1( )P x can be 

expressed in a closed form as 
2

1 1 2( ) 1 ( ) ( )x xP x p x e p x e− −= − + , where 1( )p x  and 2 ( )p x  
are polynomials of degree at most (n-2) and (2n-3) 
correspondingly (see [5,6] for the details). The asymptotic 
behavior of the outage probability can be shown to be 

( ) 1
1( ) / 2 /( 1)!, 0nP x x n x−≈ − →         (4) 

Comparing it with (n-1)-order MRC asymptotic behavior, 
1( ) /( 1)!n

MRCF x x n−≈ − , we conclude that the effect of the 
optimal ordering at the 1st detection step is to increase SNR  
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Figure 1. p.d.f. of ϕ  for various numbers of receive antennas (n). 

by 3 dB rather than to increase the diversity order. This is the 
consequence of correlation between 1⊥h  and 2⊥h . 

The conditional outage probability at the 2nd detection 
step (conditioned on no detection error at the 1st step) is given 
by  

[ ] [ ]2 2( ) Pr ( ) 2 ( )n nP x s x F x F x= < = −    (5) 
The effect of optimal ordering at the 2nd detection step is to 
increase the outage probability twice. This is the “price” to 
pay for the increased SNR at the 1st step. Note that these are 
exact expressions for the outage probabilities. 

Using the outage probabilities above, average BER can be 
found at each detection step for various modulation formats 
in a straightforward way (note that only conditional outage 
probability at the 2nd step is required to find the total average 
BER). Detailed results, including exact closed-form 
expressions for the average BER, are presented in [5,6] and 
omitted here due to the lack of space. It can be shown that for 
moderate to high SNR, 1st step BER is dominant and the 
effect of error propagation is negligible (i.e., second-order 
one). 

III. V-BLAST ALGORITHM ANALYSIS: MXN SYSTEM 
We now generalized the previous results to the case of mxn 
system. The generalization is highly non-trivial and presents 
serious difficulties, which we resolve at the moment using 
various bounds and approximations. 

1st step outage probability can be found in this case using 
a generalized from of (2) and (3): 
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where 1( ,... )mfϕ ϕ ϕ  is the joint pdf of { }1,... mϕ ϕ , iϕ  being 

the angle between ih  and the sub-space spanned all the other 

column vectors, ( )fϕ ϕ  is the marginal pdf, and m
nC  is the 

binomial coefficient. Note that 1( ,... )mfϕ ϕ ϕ  is symmetric 

with respect to { }1,... mϕ ϕ (i.e. , any two angles can be 
exchanged without affecting the pdf). The angles are neither 
independent nor fully correlated, which makes it very 
difficult to find the joint pdf required in (6). To this end, we 
use the Holder inequality and derive the following bounds: 
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While the 2nd bound is loose, the 1st one is, as we show later 
on, quite tight. Additionally, since { }1,... mϕ ϕ  are 
exchangeable random variables which are known to have 
non-negative correlation, it can be shown that 
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After some manipulations, the 1st bound in (8) can be 
presented as: 
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While the expression for , ,pl p pa b d  may appear complicated, 
they can be evaluated in advanced (i.e., a table of coefficients 
is built for a given order of the system) and do not need to be 
changed during simulations. Note that the bound is presented 
as a product of exponents and polynomials of finite order 
(which depends on the system order) and, hence, the 
procedure is very efficient numerically. Note also that (10) 
reduces to the known case of 2m = , as it should be. 

To get some insight and to evaluate the bound accuracy, 
we further consider 3x3 system. 

A. Outage of 3x3 V-BLAST 
The 1st step outage is bounded as 
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The asymptotic behavior of the bound is 
1( ) 335 / 648 / 2,  0B x x x x≈ ≈ →                (12) 

which is the same as the asymptotic outage probability of the 
2x2 system [5,6]. 1st order diversity and 3 dB gain due to 
optimal ordering are apparent (this 3 dB gain transforms 
asymptotically into 3 dB gain in terms of the average BER). 

The 2nd step outage cannot be easily evaluated since the 
ordering procedure at the 1st step affects the channel statistics 
at the 2nd step. We evaluate the conditional outage probability 
at the 2nd step (i.e., conditioned on no detection error at the 1st 
step – this is what we need to evaluate the total outage 

probability and BER [6]). As an approximation, we assume 
that the channel statistics at the 2nd step is not affected by the 
optimal ordering at the 1st step (i.e., the channel coefficients 
are still i.i.d. complex Gaussian). Under this assumption, the 
2nd step outage probability is the same as that of a 2x3 system  
at the 1st step (since the first bit stream has been detected and 
eliminated at the 1st step), whose outage is [5,6], 

( ) ( )2 2 3
2 ( ) 1 2 1 1 2 9 /8 / 4x xP x e x e x x x− −= − + + + + +  (13) 

Its asymptotic behavior is 
2

2 ( ) /8,   0P x x x≈ →                        (14) 

Second-order diversity is obvious. 
The 3rd step conditional outage probability can be 

evaluated in a similar way. Assuming no change in the 
channel statistics due to the ordering in the first two steps, it 
is the same as that of a 2x3 system at the second step, 

[ ]3 3 3( ) ( ) 2 ( )P x F x F x= −                       (15) 

Its asymptotic behavior is 3
3 3( ) 2 ( ) / 3P x F x x≈ ≈ , which 

indicates the 3rd order diversity. 
Extensive Monte-Carlo simulations have been carried out 

to evaluate the accuracy of the bound and approximations 
involved. The results are shown in Fig. 2. Clearly, the 1st step 
bound is quite accurate (given its simple nature) and it 
underestimates the performance by 2 dB. The actual 
asymptotic behavior of the outage probability is 

1( ) / 3,   0P x x x≈ →                        (16) 

We conjecture that in general, the asymptotic outage 
probability is 

1( ) / ,   0P x x m x≈ →                        (17) 

Note that it is true for 2xn system [5,6], our simulations here 
confirm it for 3x3, 3x4 and 4x4 systems. 

The 2nd step performance is overestimated by 3 dB. 
However, as fig. 2 demonstrates, it is predicted extremely 
well by the 2nd order MRC outage curve. We attribute this to 
the joint effect of two opposite factors: 1) performance loss at 
the 2nd step due to optimal ordering at the 1st (the same as for 
2xn system), and 2) performance improvement due to the 2nd 
step optimal ordering. Apparently, this two effects 
compensate each other and the resulting outage is the same as 
that of 2nd order MRC. 

The 3rd step performance is estimated quite accurately by 
the approximate expression (15) (within 1 dB). MRC outage 
curve would provide worse approximation in that case. 

B. Outage of 4x4 V-BLAST 
The validity of the approximations above is not limited to 

a 3x3 system. As an example, we use the same 
approximations to analyze 4x4 system. Fig. 3 shows the 
outage probability at first 3 steps. The 1st step bound and its 
asymptotic behavior are obtained using (10). The asymptotic 
behavior of the 1st step outage is given by (17) for m=4. 

The 2nd step outage has been analytically estimated using 
the 1st step outage of a 3x4 system, which is within 1.5 dB of 
the actual performance. Note that it is not the same as MRC 
anymore. However, the 3rd order performance is virtually the 
same as that of 3rd order MRC. The analytic estimation of the 
performance (using 1st step outage of a 2x4 system) 
overestimates it by approximately 3 dB. We attribute this to 
the effect of the optimal ordering at the 1st and 2nd steps. 



 

It should be noted that using the analytical 
approximations for the outage probabilities, the average BER 
can be evaluated in a straightforward way. Closed-form BER 
expressions can also be derived for various modulation 
formats (in the same way as in [5,6]). 

IV. OUTAGE PROBABILITIES AND BER OF THE D-BLAST 
ALGORITHM 

The D-BLAST algorithm is an attractive MIMO solution 
(despite of its complexity) since it achieves the full MIMO 
capacity. Outage probabilities at various steps of the D-
BLAST algorithm can be obtained using the results above. In 
particular, we observe that all the Tx antennas are 
periodically “rotated” with respect to the transmitters with 
which they are connected [2]. Hence, in terms of the present 
performance analysis, it means that the signals sent by, say, 
1st Tx are detected at various steps of the detection process 
(form step 1 to the last one), and not at some particular step 
determined by the optimal ordering procedure, as it was the 
case for the V-BLAST, when the connection of a Tx to an 
antenna was fixed and channel-independent. Hence, the 
average outage probability (averaged out for many symbols)  
of the D-BLAST is the average of step outage probabilities 
and it is the same for all the Txs (due to the problem 
symmetry): 

1

1
( )

m

i
i

P x P
m =

= ∑                           (18) 

where iP  are the i-th step outage of the V-BLAST. Using the 
exact closed-from expressions given above, the average 
outage probability of the D-BLAST can be immediately 
obtained in a closed-form (ignoring the effect of error 
propagation). It should be noted that, using the Bayes 
formula, the error propagation can be accounted for as well 
and the total outage probability can be derived using the 
conditional outage probabilities above. Using the analytical 
approximations above, similar closed-form expressions can 
be derived for mxn D-BLAST. Furthermore, using these 
outage probabilities, closed-from expressions can be derived 
for the average BER of the D-BLAST. Note that this analysis 
also gives a time-domain structure of the outage probabilities 
(i.e., its variation from symbol to symbol). 

It is instructive to consider the asymptotic behavior of 
(18), i.e. when the average SNR is high and the 1st step 
outage probability is dominant (recall that the diversity order 
increases with the step number), 

1 2... mP P P>> >>  

In this case, 
1 /P P m≈                                (19) 

Clearly, the effect of antenna “rotation” is to decrease 
asymptotically the 1st step outage m times. Recall that for the 
V-BLAST system in a high-SNR mode the total outage 
probability is dominated by the 1st step one, 1V BLASTP P− ≈  
[6]. Clearly, D-BLAST outperforms V-BLAST m times. 
Note, however, that the 2nd and higher step outage 
probabilities will be increased. This, however, does not 
present a significant problem because the total outage 
probability is dominated by the 1st step one (asymptotically) 
and, hence, it is crucial to improve the latter. 
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Figure 2. Outage probabilities of 3x3 V-BLAST. 5*106 trials have 

been used for Monte-Carlo simulations. 
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Figure 3. Outage probabilities of 4x4 V-BLAST. 5*106 trials have 

been used for Monte-Carlo simulations. 
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