
 

Abstract— Analytical approach to outage and BER analysis of 
the V-BLAST and D-BLAST algorithms in i.i.d. Rayleigh 
channel is presented in this paper. Based on the previous results, 
which allow an exact analytical BER and outage analysis of a 
2xn system in a closed-form, generic case of mxn system is 
analytically analyzed. While closed-form exact analysis is not 
feasible, a tight bound for the outage probability is derived and 
validated using Monte-Carlo simulations. It is shown that the 
optimal ordering procedure results at a SNR gain of m at the 1st 
step for 4m ≤ . We conjecture that this is true for larger m as 
well. The results above are also extended to the case of a D-
BLAST system. 

I. INTRODUCTION 
High capacity promise of the MIMO architecture over 
multipath channels can be achieved using appropriate signal 
processing algorithm. The BLAST algorithm is a promising 
solution due to its low implementation complexity [1]. Some 
analysis of its performance has been done, mainly using 
numerical techniques (Monte-Carlo). The analytical analysis 
is a challenging problem. Very limited progress has been 
done so far. 

The purpose of this paper is to present an analytical 
approach to bit error rate (BER) and outage probability 
analysis of the BLAST in a Rayleigh fading channel. The 
proposed approach results in closed-form exact analytical 
expressions for the outage and BER of the 2xn systems (i.e., 
with 2 Tx and n Rx antennas), which are fully validated using 
extensive Monte-Carlo simulations. At the moment, we are 
not able to derive exact closed-form expressions for the 
generic case of mxn system. However, we present some tight 
bounds, obtain closed-form expressions based on these 
bounds and demonstrate, through Monte-Carlo simulations, 
that the bounds/approximate expressions capture many 
essential features of the system performance. Finally, based 
on the results obtained for the V-BLAST, we demonstrate 
that similar results follow for the D-BLAST. 

II. V-BLAST ALGORITHM ANALYSIS: 2XN SYSTEM 

The V-BLAST algorithm has been discussed in details 
elsewhere [1]. The main idea of the BLAST is to split the 
information bit stream into several sub-streams and transmit 
them in parallel using a set of Tx antennas (the number of Tx 
antennas equals the number of sub-streams) at the same time 
and frequency. At the Rx side, each Rx antennas “sees” all 
the transmitted signals, which are mixed due to the nature of 
the wireless propagation channel. Using appropriate signal 
processing at the Rx side, these signals can be unmixed so 
that the matrix wireless channel is transformed into a set of 
virtual parallel independent channels (provided that 
mutltipath is rich enough). 
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The V-BLAST processing begins with the 1st Tx symbol 
and proceeds in sequence to the m-th symbol. When the 
optimal ordering procedure is employed, the Tx indexing is 
changed prior to the processing. The main steps of the V-
BLAST processing (detection) algorithm are as follows [1]: 
1. The interference cancellation step: at the i-th processing 
step (i.e., when the signal from the i-th transmitter is 
detected) the interference from the first i-1 transmitters can 
be subtracted based on the estimations of the Tx symbols 
(which are actually assumed to be error-free) and the 
knowledge of the channel matrix H. 
2. The interference nulling step: based on the knowledge of 
the channel matrix, the interference from yet-to-be-detected 
symbols can be nulled out using the Gramm-Schmidt 
orthogonalization process (applied to the column vectors of 
H). 
3. The optimal ordering procedure: the order of symbol 
processing is organized according to their after-processing 
SNRs in the decreasing order (i.e., the symbol with highest 
SNR is detected first). 

Geometrical framework for the closed-form analysis of 
the algorithm operation has been discussed in details in [2,3]. 
Based on those results, the signal fading in the V-BLAST 
system can be analyzed. In particular, we consider the outage 
probabilities (i.e., the probability that the after-detection 
signal power is less than the specified value) and diversity 
order (i.e., the asymptotic slope of the outage probability 
curve). Assuming uncorrelated quasi-static frequency-flat 
Rayleigh fading channel and ignoring the optimal ordering 
procedure, it can be proved that the diversity order at the i-th 
step is (n-m+i). Hence, the maximum ratio combining (MRC) 
outage probability of appropriate order can be used. 
Consequently, all the results for BER of MRC hold true in 
the case of V-BLAST as well. 

However, the optimal ordering procedure “mixes” things 
up and makes the analysis more challenging. Fortunately, the 
approach above can be extended to account for the optimal 
ordering [2,3]. For the 2xn system, it can be shown that the 
“after-processing” channel power gain 1s at 1st detection step 
is distributed as follows, 
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angle between two column vectors of the channel matrix. (1) 
can be further reduced to the following closed-form 
expression: 2
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and 2 ( )p x  are polynomials of degree at most (n-2) and (2n-
3) correspondingly (see [2,3] for the details). The asymptotic 
behavior of the outage probability can be shown to be 
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Comparing it with (n-1)-order MRC asymptotic behavior, 
1( ) /( 1)!n

MRCF x x n−≈ − , we conclude that the effect of the 
optimal ordering at the 1st detection step is to increase SNR 
by 3 dB rather than to increase the diversity order. 
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The conditional outage probability at the 2nd detection 
step (conditioned on no detection error at the 1st step) is given 
by [ ] [ ]2 2( ) Pr ( ) 2 ( )n nP x s x F x F x= < = − . The effect of 
optimal ordering at the 2nd detection step is to increase the 
outage probability twice. This is the “price” to pay for the 
increased SNR at the 1st step. Note that these are exact 
expressions for the outage probabilities. 

Using the outage probabilities above, average BER can be 
found at each detection step for various modulation formats 
in a straightforward way (note that only conditional outage 
probability at the 2nd step is required to find the total average 
BER). Detailed results, including exact closed-form 
expressions for the average BER, are presented in [2,3] and 
omitted here due to the lack of space. It can be shown that for 
moderate to high SNR, 1st step BER is dominant and the 
effect of error propagation is negligible (i.e., second-order 
one). 

III. V-BLAST ALGORITHM ANALYSIS: MXN SYSTEM 
We now generalized the previous results to the case of mxn 
system. The generalization is highly non-trivial and presents 
serious difficulties, which we resolve at the moment using 
various bounds and approximations. 

1st step outage probability can be found in this case using 
a generalized from of (1): 
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where 1( ,... )mfϕ ϕ ϕ  is the joint pdf of { }1,... mϕ ϕ , iϕ  being 
the angle between ih  (i-th column vector of H) and the sub-
space spanned all the other column vectors of H, ( )fϕ ϕ  is 
the marginal pdf, and m

nC  is the binomial coefficient. Note 
that 1( ,... )mfϕ ϕ ϕ  is symmetric with respect to 
{ }1,... mϕ ϕ (any two angles can be exchanged without 
affecting the pdf). The angles are neither independent nor 
fully correlated, which makes it very difficult to find the joint 
pdf required in (3). To this end, we use the Holder inequality 
and derive the following bounds: 
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While the 2nd bound is loose, the 1st one is, as we show later 
on, quite tight. Additionally, since { }1,... mϕ ϕ  are 
exchangeable random variables which are known to have 
non-negative correlation, it can be shown that 
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After some manipulations, the 1st bound in (5) can be 
presented as: 
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While the expression for , ,pl p pa b d  may appear complicated, 
they can be evaluated in advanced (i.e., a table of coefficients 
is built for a given order of the system) and do not need to be 
changed during simulations. Note that the bound is presented 
as a product of exponents and polynomials of finite order 
(which depends on the system order) and, hence, the 
procedure is very efficient numerically. Note also that (7) 
reduces to the known case of 2m = , as it should be. To get 
some insight and to evaluate the bound accuracy, we further 
consider 3x3 system. 

Outage of 3x3 V-BLAST: The 1st step outage is bounded 
as 
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The asymptotic behavior of the bound is 
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which is the same as the asymptotic outage probability of the 
2x2 system [2,3]. 1st order diversity and 3 dB gain due to 
optimal ordering are apparent (this 3 dB gain transforms 
asymptotically into 3 dB gain in terms of the average BER). 

The 2nd step outage cannot be easily evaluated since the 
ordering procedure at the 1st step affects the channel statistics 
at the 2nd step. We evaluate the conditional outage probability 
at the 2nd step (i.e., conditioned on no detection error at the 1st 
step – this is what we need to evaluate the total outage 
probability and BER [3]). As an approximation, we assume 
that the channel statistics at the 2nd step is not affected by the 
optimal ordering at the 1st step (i.e., the channel coefficients 
are still i.i.d. complex Gaussian). Under this assumption, the 
2nd step outage probability is the same as that of a 2x3 system  
at the 1st step (since the first bit stream has been detected and 
eliminated at the 1st step), whose outage is [2,3], 
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Its asymptotic behavior is 
2
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Second-order diversity is obvious. 
The 3rd step conditional outage probability can be 

evaluated in a similar way. Assuming no change in the 
channel statistics due to the ordering in the first two steps, it 
is the same as that of a 2x3 system at the second step, 
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Its asymptotic behavior is 3
3 3( ) 2 ( ) / 3P x F x x≈ ≈ , which 

indicates the 3rd order diversity. 
Extensive Monte-Carlo simulations have been carried out 

to evaluate the accuracy of the bound and approximations 
involved. The results are shown in Fig. 1. Clearly, the 1st step 
bound is quite accurate (given its simple nature) and it 
underestimates the performance by 2 dB. The actual 
asymptotic behavior of the outage probability is 

1( ) / 3,   0P x x x≈ →                        (13) 

We conjecture that in general, the asymptotic outage 
probability is 

1( ) / ,   0P x x m x≈ →                        (14) 

Note that it is true for 2xn system [2,3], our simulations here 
confirm it for 3x3, 3x4 and 4x4 systems. 

The 2nd step performance is overestimated by 3 dB. 
However, as fig. 2 demonstrates, it is predicted extremely 
well by the 2nd order MRC outage curve. We attribute this to 
the joint effect of two opposite factors: 1) performance loss at 
the 2nd step due to optimal ordering at the 1st (the same as for 
2xn system), and 2) performance improvement due to the 2nd 
step optimal ordering. Apparently, this two effects 
compensate each other and the resulting outage is the same as 
that of 2nd order MRC. 

The 3rd step performance is estimated quite accurately by 
the approximate expression (12) (within 1 dB). MRC outage 
curve would provide worse approximation in that case. 

Outage of 4x4 V-BLAST: The validity of the 
approximations above is not limited to a 3x3 system. As an 
example, we use the same approximations to analyze 4x4 
system. Fig. 2 shows the outage probability at first 3 steps. 
The 1st step bound and its asymptotic behavior are obtained 
using (7). The asymptotic behavior of the 1st step outage is 
given by (14) for m=4. 

The 2nd step outage has been analytically estimated using 
the 1st step outage of a 3x4 system, which is within 1.5 dB of 
the actual performance. Note that it is not the same as MRC 
anymore. However, the 3rd order performance is virtually the 
same as that of 3rd order MRC. The analytic estimation of the 
performance (using 1st step outage of a 2x4 system) 
overestimates it by approximately 3 dB. We attribute this to 
the effect of the optimal ordering at the 1st and 2nd steps. 

It should be noted that using the analytical 
approximations for the outage probabilities, the average BER 
can be evaluated in a straightforward way. Closed-form BER 
expressions can also be derived for various modulation 
formats (in the same way as in [2,3]). 

IV. BER OF THE D-BLAST 

Using the Bayes formula, the instantaneous unconditional 
BER at i-th step (i.e. including the error propagation from 
first (i-1) steps) is 
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where jP  is the conditional BER at j-th step. The product 
gives the probability of no error at first (j-1) steps, and the 
entire expression gives the probability of at least one error at 
first i steps (due to the error propagation, an error at any step 
form 1 to (i-1) will result at error at step i). Using this, the 
total unconditional BER of the D-BLAST is the same for all 
the Txs (due to the problem symmetry) and can be expressed 
as: 
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It is instructive to consider the asymptotic behavior of (16), 
i.e. when the average SNR is high and the 1st step BER is 
dominant (recall that the diversity order increases with the 
step number), 1 2... mP P P>> >> . In this case, 1DP P≈ . 
Clearly, the effect of antenna “rotation” is asymptotically 
negligible. However, at small SNR mode the D-BLAST does 
provide advantage over the V-BLAST, 
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Fig. 1. Outage probabilities of 3x3 V-BLAST. 5*106 trials have 

been used for Monte-Carlo simulations. 
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Fig. 2. Outage probabilities of 4x4 V-BLAST. 5*106 trials have 
been used for Monte-Carlo simulations. 
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