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Abstract— V-BLAST algorithm is an attractive simple 
solution for the Rx processing of a MIMO system. This 
paper presents an analytical analysis of some aspects of the 
algorithm performance over a flat-fading Rayleigh channel. 
Closed-form rigorous analytical expression for the joint 
outage probability and its PDF at the 1st detection step are 
derived for the case of 2xn system. Corresponding 
distribution moments are also evaluated, and asymptotic 
expressions are given. The analytical results are validated 
through extensive Monte-Carlo simulations. 
 
Index Terms—MIMO, V-BLAST, multi-antenna system, 
fading, BER, outage 

I. INTRODUCTION 

Multi-antenna (MIMO) systems attract significant 
attention during the last few years due to an extraordinary 
high spectral efficiency they promise. A key part of the 
system is the receiver (Rx) signal processing algorithm. 
The first proposed algorithms were the D- and V-BLAST 
[1-3]. While the D-BLAST achieves the full MIMO 
capacity, it is more complex as compared to the V-
BLAST, which, despite its simplicity, achieves a 
significant portion of the full MIMO capacity. Despite 
their popularity, their performance is not understood well 
yet (especially when compared to traditional digital 
communication systems, whose performance is 
understood quite well by now). Mostly, the algorithms 
were analyzed using numerical techniques (i.e., Monte-
Carlo simulations). While this approach is able to predict 
the performance (i.e., BER, outage probability, etc.) quite 
accurately for any specific scenario, it lacks a deep 
insight usually provided by analytical techniques. Due to 
their complexity, the V and D-BLAST algorithms present 
a serious difficulty for an analytical analysis. 

In this paper, we follow the traditional approach to the 
performance analysis of wireless communication systems 
over fading channels [4, 5]. The two key parameters are 
the outage probability (i.e., the probability that the 
instantaneous SNR exceeds given threshold level) and the 
average BER (averaged over the channel statistics). The 
latter is expressed as: 
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where eP  is the average BER, ( )eP γ  is the instantaneous 

BER (i.e. for given instantaneous SNR γ ), and ( )ρ γ  is 

the probability density function (PDF) of γ . The outage 
probability can be expressed as 
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i.e. it is given by the cumulative distribution function 
(CDF) of γ . 

In the context of multi-antenna (MIMO) systems, the 
approach has to be extended to account for multiple bit 
streams, which are lunched by the Tx antennas 
simultaneously. This results in multivariate PDF and 
CDF. The key parameters are still the average BER and 
the outage probability, which are, however, different at 
different detection steps (i.e., for different bit streams). 
We employ the method developed in [6, 7] and analyze 
analytically a 2xn V-BLAST (i.e., 2 Tx and n Rx antenna 
system). In particular, we derive the joint (multivariate) 
PDF and CDF of the after-processing signal powers at the 
1st detection step. The latter is, in fact, the outage 
probability, and the former is critical for the average BER 
analysis, as (1) indicates. Note that the SNR is 
proportional to the signal power and, hence, has the same 
density (distribution) function when normalized properly. 
While the analysis in this paper is limited to the 1st step 
only, we note that (i) it can also be extended to the 2nd 
step, and (ii) at the high SNR mode the total BER is 
dominated by the 1st step BER and, hence, it is crucial to 
understand well the latter. 

The analysis given in the paper results in closed-form 
rigorous analytical expressions, which are quite simple 
for low-order systems, i.e. for 2x2 and 2x3 ones. 
Asymptotic behavior of the outage probability is 
discussed as well. It is shown that these functions 
facilitate the analysis of the optimal ordering procedure 
and provide a significant insight in its performance. 
Finally, the analytical results are verified by extensive 
Monte-Carlo simulations. 

II. V-BLAST ALGORITHM 

For completeness, we outline here the major steps of the 
V-BLAST algorithm (for details, see for example [3]). 
The main idea of the BLAST architecture is to split the 
information bit stream into several sub-streams and 
transmit them in parallel using a set of Tx antennas (the 
number of Tx antennas equals the number of sub-
streams) at the same time and frequency. At the Rx side, 
each Rx antennas “sees” all the transmitted signals, which 
are mixed due to the nature of the wireless propagation 



 

channel. Using appropriate signal processing at the Rx 
side, these signals can be unmixed so that the matrix 
wireless channel is transformed into a set of virtual 
parallel independent channels (provided that the 
multipath is rich enough). 

The standard baseband system model is used, 
= +y Hs ξ                                     (3) 

where s  and y  are the Tx and Rx vectors 
correspondingly, H  is the 2xn channel matrix (i.e. the 
matrix of the complex channel gains between each Tx 
and each Rx antenna), n is the number of Rx antennas, 
and ξ  is the additive white Gaussian noise (AWGN), 

which is assumed to be 2
0(0, )σ ICN , i.e. independent and 

identically distributed (i.i.d.) in each branch. 
The job of the V-BLAST algorithm is to find s  given 

y  and H  in a computationally-efficient way. The V-
BLAST processing begins with the 1st Tx symbol and 
proceeds in sequence to the m-th symbol (m is the 
number of Tx antennas; m=2 in our case). When the 
optimal ordering procedure is employed, the Tx indexing 
is changed prior to the processing. The main steps of the 
algorithm are as follows [1,3]: 
1. The interference cancellation step: at the i-th 
processing step (i.e., when the signal from the i-th 
transmitter is detected) the interference from the first i-1 
transmitters can be subtracted based on the estimations of 
the Tx symbols and the knowledge of the channel matrix 
H, 
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where jh  is the j-th column of H, and ˆ js  are the 

detected symbols (which are assumed to be error-free). 
2. The interference nulling step: based on the 
knowledge of the channel matrix, the interference from 
yet-to-be-detected symbols can be nulled out using the 
Gramm-Schmidt orthogonalization process (applied to 
the column vectors of H), 

1( )i i i+′′ ′= −y I C y                            (5) 

where 1i+C  is the projection matrix on the sub-space 

spanned by 1{ ... }i m+h h .  
3. The optimal ordering procedure: the order of symbol 
processing is organized according to their after-
processing SNRs in the decreasing order (i.e., the symbol 
with highest SNR is detected first). 

 

III. ANALYSIS OF THE V-BLAST ALGORITHM 

The following basic assumptions are employed in the 
present paper: 

(1) The channel is random, quasistatic (i.e. fixed for 
every frame of information bits but varying from frame to 
frame), frequency independent (i.e., negligible delay 
spread); the components of H are (0, )ICN  (i.e., i.i.d. 
Rayleigh fading with unit average power gain). (2) Equal-
power constellation is used. (3) The Tx signals, noise and 

channel gains are independent of each other. (4) Perfect 
channel knowledge is assumed to be available at the 
receiver. (5) There is no performance degradation due to 
synchronization and timing errors. 
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Figure 1. Geometrical representation of interference nulling 
out: decomposition of 1h  into 1⊥h  and 1h . 1e  and 2e  are 

basis vectors of the space spanned by the columns of H  ( 1h  

and 2h ). 

It should be noted that the proposed technique is 
flexible enough so that some of these assumptions can be 
relaxed, resulting, however, in a more complex analysis. 

Geometrical framework for the closed-form analysis 
of the algorithm operation has been already discussed in 
details in [6,7]. Here, we summarize the major results that 
are used below. For the case of m=2, the interference 
nulling step is illustrated in Fig. 1. Since the Rx signal 
coming from j-th Tx is j jsh  and its power is 

2 2
j j js =h h  (recall that we assume an equal power 

constellation), the after-processing signal power, and, 
hence, the SNR, at the 1st processing step is proportional 
to  

( )2 2 2 2 2
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   = = ϕ      
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where the max is due to the optimal ordering procedure, 
and the orthogonal vector components are due to the 

interference nulling out. Note that 2 2 2
1 2 2, nχh h ∼ , 

where ∼  means in distribution, and, as it was shown in 

[6,7], 2 2 2
1 1 2( 1), n⊥ ⊥ −χh h ∼ . The distribution 

[ ]( ) PrP x s x= < of s can be presented in the following 
form [6,7]: 
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MRC distribution, and ( )fϕ ϕ  is the p.d.f. of ϕ , which 

can be shown to be 2 3( ) 2( 1)(sin ) cosnf n −
ϕ ϕ = − ϕ ϕ . 

Using these, the average BER was evaluated in [7]. It was 
also shown that the effect of the optimal ordering is a 3 
dB increase in the SNR. However, no explanation was 
provided for this effect. 

In order to get more insight into the algorithm 
performance and, in particular, into the optimal ordering 
procedure, we study in this paper the joint CDF 
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and the joint PDF, 
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While  1h  and 2h  are independent (by the assumption of 
i.i.d. Rayleigh channel), the interference nulling out 

introduces correlation between 2
1⊥h  and 2

2⊥h . Using 
the same argument as in [6,7], the joint CDF can be 
presented as 
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The joint PDF is 
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is the n-th order MRC PDF. After some manipulations, 
(11) reduces to the following 
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Note that, as it should be due to the problem symmetry, 
the PDF is symmetrical with respect to x1 and x2 . It is 
straightforward to see that 
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as it should be since 2 2
1 2( 1)n⊥ −χh ∼ . Asymptotically, for 

1 2, 1x x <<  (i.e., small outage probability region), one 
obtains 
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After some manipulations, (10) can be presented in the 
following form: 
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Note that, while ( , ) ( )F x x P x= , as it should be, 
( , ) ( ) /x x dP x dxρ ≠ . Asymptotically, for 1 2, 1x x << , the 

joint CDF is  
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For 1 2x x<< , one obtains the marginal CDF, 
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which is the asymptotic CDF of (n-1)-th order MRC, as it 

should be since 2 2
1 2( 1)n⊥ −χh ∼ . For 1 2x x= , (17) 

clearly gives the 3 dB effect first predicted in [6,7]. 
Using the joint PDF, we can now evaluate the 

moments of 1 2[ , ]x x , 
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The expression for the correlation coefficient is 
remarkably simple. Note that the correlation decreases as 
n increases and for large n it is very small. However, it 
cannot be neglected as the diversity order analysis in 
[6,7] demonstrates. For example, in our case (m=2) 
neglecting the correlation would result in 

2 2
1 2max ,s ⊥ ⊥
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h h  having diversity order = 2(n-1) 

while, in fact, the true diversity order is (n-1). Let us 
consider this issue in more details. If we assume that 

2
1⊥h  and 2

2⊥h  are independent, then the CDF of s is 

{ } 2
1( ) Pr ( )s nF x s x F x−′ = < =                (20) 

However, the true CDF of s is given by, 
{ }( ) Pr ( , )sF x s x F x x= < =                (21) 

The results are very different for the small outage 
probabilities, as fig. 2 demonstrates.  
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Figure 2. Comparing the true 1st step outage probability 
with the one when the correlation is neglected, for 2x2 

system. 

The reason for low correlation being important is that we 
are interested in the distribution tails (low outage) and the 



 

correlation is just an average measure which does not 
emphasize the tails. It should be also noted that zero 
correlation does not in general means independence (this 
is true for the Gaussian random variables but, in our case, 

2
1⊥h  and 2

2⊥h  are not Gaussian). 
It is instructive to consider the 2x2 case in more 

details, when the expressions become especially simple. 
One obtains, 
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(23) 
The corresponding asymptotic expressions, for 

1 2, 1x x << , are 
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Figure 3. Rigorous and approximate expressions for the 
outage probability for 2x2 system. 

 
Fig. 3 compares the asymptotic expression (25) with 

the rigorous one. As one might see, (25) is very accurate 
for 1 2, 1x x < . Extensive Mote-Carlo simulations have 
been carried out to verify the analytical expressions. The 
results are not distinguishable from the analytical one 
and, hence, are not shown on the figure. Clearly, when 

2 1x x<  there is a floor effect: increasing further 1x  does 
not decrease the outage probability (as it would be the 
case if 1x  and 2x  were independent). Hence, the joint 
outage probability is dominated by the smallest signal 
power. This is the way in which 1x  and 2x  are coupled 
to each other. Fig. 4 clearly indicates this effect in 3-D. 
Similar results hold true for the larger n as well. 
 

Figure 4. Outage probability versus x1 and x2 . 
 

IV. GENERIC CASE OF MXN SYSTEM 

It is difficult to obtain similar results in the case of m>2 
since the joint pdf  1( ,... )mfϕ ϕ ϕ  of { }1,... mϕ ϕ , iϕ  being 

the angle between ih  and the sub-space spanned by all 
the other column vectors, is not known. However, based 
on the asymptotic CDF (17), we conjecture that in the 
generic case of mxn system it takes the following form: 
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Extensive Monte-Carlo simulations have been carried out 
for 3x3, 3x4 systems. It was found that the approximation 
is indeed correct provided that 1,..., 1mx x < . 
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