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Abstract—Fading correlation has a profound impact on MIMO 
system performance. Salz-Winters model is a popular tool to 
study this effect. However, it is limited to one cluster only. 
Measurements indicate that multipath often arrives in several 
clusters. We extend the Salz-Winters model to the case of multi-
cluster channels and study it in detail. Closed-form expression for 
correlations are derived and applied to MIMO capacity/diversity 
gain analysis. The maximum gain/capacity are achieved provided 
that a minimum element spacing (derived in the paper) is 
respected. It is shown that the correlation has an oscillatory 
behavior as antenna spacing increases; the envelope of correlation 
is determined by a single cluster angular spread while the 
oscillations within the envelope are determined by the inter-
cluster angular spread. It is demonstrated that the correlation 
depends significantly on the power distribution among the 
clusters. In the case of 2 widely-separated clusters it is possible to 
orient the antenna array in such a way that the correlation is 
minimized and, hence, the capacity/gain are maximized. We study 
this optimization problem and derive the optimum array 
orientation. Overall, the paper presents a new insight on 
correlation properties of multipath clustered channels, and on the 
MIMO system performance over such channels. 
 
Index Terms—Wireless propagation channel, fading correlation, 
MIMO system 

I. INTRODUCTION 
Radio propagation channel plays a crucial role in the 
performance analysis of wireless systems. Multipath effects 
result in a fading channel, which may degrade the system 
performance substantially. Multi-antenna systems are used to 
take advantage of multipath propagation, but they are very 
sensitive to fading correlation from one antenna to another. 
Hence, accurate analysis and simulations of the correlation are 
required. One of the most popular correlation models is the 
Salz-Winters model [1]. It allows to predict the correlation 
(with reasonable degree of accuracy) assuming that all the 
multipath components arrive within given angular spread 
around the average angle of arrival. By varying the angular 
spread and the average angle of arrival, many practical 
scenarios can be modeled and measured data can be 
approximated as well. However, a significant drawback of the 
Salz-Winters model, as well as its many extensions and other 
similar models is that only one cluster is allowed. 
Measurements indicate that multipath components are 
frequently concentrated within two or more clusters [6-8]. 
Hence, the Salz-Winters model cannot be applied in this case. 
It was further extended to a multi-cluster case in [10,11]. 
However, only preliminary results were reported; no detailed 
study has been undertaken. 

In this paper, we use the extended Salz-Winters model to 
account for more than one cluster and study in details the 
effect of clustering. Multipath components arriving in different 
clusters are assumed to be uncorrelated (this assumption is 

justified by the physical mechanism of clustering) and 
uniformly angular-distributed within the corresponding 
clusters. A case of two clusters is studied in details, including 
both symmetrical and asymmetrical location of the clusters, 
and equal/unequal angular spreads and power distributions. 
The correlation coefficient has an oscillatory behavior with 
respect to the antenna spacing, which is in good agreement 
with [11]. As a cluster moves away from the array broadside 
direction, its contribution to the total correlation decreases 
(inverse cosine law). In the case of identical symmetrically-
located clusters, the envelope of correlation is determined by a 
single cluster angular spread while the oscillations within the 
envelope are determined by the inter-cluster angular spread 
(for both clusters). If the clusters are identical and located 
asymmetrically (i.e., broadside-endfire), the impact of the 
endfire cluster is, in many cases, much smaller and can be 
neglected for proportional power allocation (see section III). 
Hence, one-cluster model can be used, which simplifies the 
analysis substantially. 

An extension to the case of n-cluster scenario is 
straightforward. The major analytical techniques developed 
above are applicable in this general case as well. The 
correlation is presented as a series of terms, each term 
representing a cluster. This simplifies the comparison of 
individual contributions of the clusters to the total correlation. 

While studying correlation versus element spacing 
behavior, we derive a closed-form expression for the minimum 
element spacing that provides low correlation and, hence, large 
capacity or diversity gain. Closed-from analytical expressions 
for the correlation coefficient, including Bessel series 
expansions and compact approximate expressions, are derived 
for many scenarios, and validated through Monte-Carlo 
simulations. 

Using the correlation models developed above and the 
technique presented in [2,3], we study diversity combining 
gain and MIMO capacity. In particular, we demonstrate that 
the maximum gain/capacity is achieved provided that the 
minimum element spacing derived above is respected. When 
two cluster are widely separated (i.e., the angular separation is 
larger than the cluster widths), it is possible to orient the 
antenna array in such a way that the correlation is minimized 
and, hence, the capacity/gain are maximized.  

The results presented agree well with those published in the 
literature earlier and extend them to the case of multi-cluster 
channels. Approximate analytical solutions presented allow for 
deeper insight and understanding of the clustering 
phenomenon. 

II. SALZ-WINTERS MODEL 
In this model, all the multipath component are assumed to 
arrive to the Rx array within / 2±∆  of the mean angle of 
arrival (AOA) ϕ (see fig. 1) in the horizontal plane (i.e., this is 



 

a 2-D model). The AOA probability density function is 
assumed to be uniform, 
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Figure 1. Incoming multipath signals arrive to the linear antenna array within 

/ 2±∆  of mean angle ϕ 

In a general case, the normalized correlation between two 
array elements of a uniform linear array (ULA) can be 
expressed as 

( ) [ ]exp sinR f jz d
π

θ
−π

= θ θ θ∫                       (2) 

where λπ= /2 dz , d is the element spacing, λ is the 
wavelength, and j is the imaginary unit. Without loss of 
generality, we further assume that 1=λ . Substituting (1) in 
(2), one obtains the Bessel series expansion for R [1]. For 

2∆ = π , it reduces to the classical Jakes expression [4], 
[ ]0R J z= . The Bessel series expansion, as detailed analysis 

shows, converges very slowly and, consequently, a large 
number of terms must be used in order to estimate R accurately 
for small ∆ (a few degrees) [2]. The computational efficiency 
of this procedure is very low, especially when matrix 
computations are involved, as is the case for MIMO systems. 

A simple but still accurate approximation of the Bessel 
series expansion for small 1∆ <<  can be derived using 

β≈βsin  (valid for small β), and performing integration in (2): 

( ) 2 sinsinc cos j dR d e π ϕ≈ ∆ ϕ                           (3)1 

where ( ) ( ) ( )sinc sin /x x x= π π . The smaller ∆, the better the 

accuracy is. Thus, this approximation works exactly where it is 
needed. The upper bound of its validity is approximately / 2π . 
Hence, one may use the Jakes expression for large values of ∆ 
and (3) for small ones. For 0ϕ = , (3) reduces to 

sinc( )R d≈ ∆ , which is the same as [2, eq. 3]. This 
immediately explains eq. 13 in [2] (which was actually a 
conjecture): using an “effective” spacing ' cosd d= ϕ  (the 
spacing seen at angle ϕ ), the effect of the cluster average 
AOA is to decrease the “effective” element spacing, which is 
identical to a similar effect in the antenna array theory [9] (the 
effective array aperture is decreased in the same way). Hence, 
the minimum correlation and the best performance (MIMO 
capacity or diversity gain) are achieved when 0ϕ = . It is 

                                                           
1 After the paper has been submitted, it was brought to our attention 
that similar results also appear in [10,11]. 

remarkable that such a simple model is able to explain this 
well-known effect. 

It should be noted that the assumption of uniform angular 
pdf does not limit significantly the accuracy of the model. As 
detailed analysis shows, the non-uniform pdf models (i.e., 
Laplacian, truncated Gaussian etc.) produce roughly the same 
results (in term of MIMO capacity and diversity gain). 
Intuitively, it can be explained by two factors: (i) correlation is 
an integral of the angular pdf (see (2)); hence, all the local 
variations in ( )fβ β  are smoothed out during the integration 
and do not affect significantly the final result (provided that 
the angular spread is the same for all the distributions), i.e. this 
is a second-order effect; (ii) system performance is not affected 
significantly when the correlation is less than 0.5, where the 
deference between uniform and non-uniform distributions is 
the largest. Similar conclusion has also been presented in [10]. 

III. TWO-CLUSTER MODEL 
Measurements indicated that multipath arrives frequently in 
more than one cluster [6-8]. Hence, generalizing Salz-Winters 
model, we assume the angular pdf of the form, 

1 1 1 1

2 2 2 21 2

 / 2 / 2 ,1
,  

( )  / 2 / 2

0,  elsewhere

p
− ∆ + ϕ ≤ ϕ ≤ ∆ + ϕ 

 ϕ = − ∆ + ϕ ≤ ϕ ≤ ∆ + ϕ∆ + ∆ 



     (4) 

The scenario is illustrated in Fig. 2. Note that the total power 
in each cluster depends on the angular spread – we call it 
“proportional power allocation”. 
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Figure 2. Incoming multipath is concentrated in two clusters. 

Substituting (4) in (2), we obtain, 
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where mJ  is the first-kind Bessel function of order m, and 
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It should be noted that (5) reduces to the Salz-Winters model 
when ( )2 1 1 2 2ϕ = ϕ + ∆ + ∆ , i.e. when two clusters merge into 

one bigger cluster, as it should be. 
In order to get some insight into correlation behavior of a 

two-cluster channel, we now study some special cases. 
A. Two symmetric clusters  

In this case, 1 2∆ = ∆ = ∆  and 1 2ϕ = −ϕ = ϕ . (5) reduces to 



 

0 2
1

cos(2 )sin( )
( ) 2 ( )m

m

m m
R J z J z

m

∞

=

ϕ ∆
= +

∆∑           (6) 

The correlation is real and it is the same as the real part of the 
single-cluster correlation. Hence, the effect of the second 
cluster (which is symmetric to the first one w.r.t. the array 
broadside) is to cancel the imaginary part of the correlation. 
The real part is not changed simply because both clusters 
contribute equally to the real part (due to the symmetry) but 
each cluster has twice less power than the single cluster. 

For small ∆  convergence of (6) is very slow (i.e. many 
terms should be kept to get good accuracy). A better way is to 
solve (2) directly using the same approximation that leads to 
(3), 

cos( sin )sinc( cos )R z d≈ ϕ ∆ ϕ                     (7) 

Note that (7) can be obtained using (3): 3 3( *) / 2R R R= + , 

where 3R  is given by (3). This supports our interpretation 
above. While the real parts of (3) and (7) are the same, their 
magnitudes are very different, as Fig. 3 illustrates. In fact, the 
single-cluster magnitude correlation is the envelope of the two-
cluster correlation and the cosine function in (7) results in 
oscillation in the latter case. 

0R =  when either cos( sin ) 0z ϕ =  or sinc( cos ) 0d∆ ϕ = . 
The element spacing at these points is 

1
1

0
2

2

,  1,3,5, ,(2 1),
4sin

,  1,2,3, , ,
cos

m
m k

d
m

m k

 = − ϕ= 
 =
∆ ϕ

L L

L L
            (8) 

First-type zeros are due to the cosine and second-type zeros are 
due to the sinc. The spacing between first-type zeros is 

01 1/(2sin )d∆ = ϕ  and it does not depend on the angular 
spread ∆ ; the zero spacing of the second- type zeros is 

02 1/( cos )d∆ = ∆ ϕ  and its does depend on the angular spread 
– the larger the spread the smaller the spacing. cos ϕ  law 
mentioned above is also obvious. The second- type zeros are 
the same as for the single cluster model (see eq. 3). The 
minimum spacing for the first-type zeros is 

01,min 1/(4sin )d = ϕ  and the minimum spacing for the second- 

type zeros is 02,min 1/( cos )d = ∆ ϕ . Fig. 3 validates (6)-(8) 
using Monte-Carlo simulations. Note that, in this case, 

01,min 0.5d = λ , 01d∆ = λ  and 02,min 6.6d = λ , i.e. the 2nd type 
zero spacing is much large than that of the 1st type. 

Good system performance (capacity, diversity gain etc.) 
requires for low (ideally – zero) correlation. Normally, this is 
accomplished by setting d large enough. However, as (8) 
demonstrates, in a two-cluster scenario the spacing d can also 
be set, when possible, at zero locations. For small ∆  and when 
ϕ  is not too close to 0, 01,min 02,mind d< , and, hence, the two-
cluster effect of oscillation can be beneficially used to achieve 
low correlation at smaller 01,min 1/(4sin )d d= = ϕ  (as 
compared to the single-cluster case). Note however that, in this 

case, zero spacing correlation will be achieved for all the pairs 
spaced apart by 1m d ; all the pair spaced by even number of d  
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Fig. 3. Correlation coefficient versus element spacing for the case of two 
symmetric clusters. 0 010 ,  =30∆ = ϕ  

may be correlated. Hence, the performance is guaranteed to be 
the best only in the case of 2-element Rx antenna. This does 
not happen when 02,mind d= : all the pair wise correlations are 
zero in this case and the performance is the best for any n. 

In order to accomplish correct spacing setting, ϕ  and/or ∆  
must be known quite accurately or zero spacing must be 
measured, which may not be feasible in practice. In this case, d 
should be set large enough – the same as for the single-cluster 
case. 

It is instructive to consider the limiting case of 0∆ → . In 
this case, the angular pdf ( ) 1

2 ( ( ) ( ))fθ θ = δ θ − ϕ + δ θ + ϕ , 

where δ  is the Dirac delta-function, and 
cos(2 sin )R d= π ϕ                        (9) 

i.e. the correlation R is a periodic function in d and it never 
decays to zero (as is the case for 0∆ ≠ ). In this case, large d 
does not guarantee low correlation unless it is set equal to the 
zero spacing. 

Measurements results reported in [5] indicated that the 
correlation did not decrease with increasing the element 
spacing in certain scenarios. Rather, it was oscillatory in 
nature. The two-cluster model above gives a simple 
explanation for this phenomenon. 

B. Two asymmetric clusters 
In this case, we assume that the angular spreads are small, 

1 2 1 2, 1,  ∆ ∆ << ∆ ≠ ∆ , and one cluster is located at the 
broadside direction, 1 0ϕ = . Substituting (4) in (2), one obtains 

1 1 2 2R w R w R≈ +                               (10) 

where 1R  and 2R  are single-cluster correlations given by (3), 

( )1 1sincR d= ∆ , ( ) 22 sin
2 2 2=sinc cos j dR d e π ϕ∆ ϕ , 

1 1 1 2/( )w = ∆ ∆ + ∆ , 2 2 1 2 1/( ) 1w w= ∆ ∆ + ∆ = − . 
Note that single-cluster correlations are weighted by 1w  and 

2w . This is due to the implicit assumption in (4) that the 
angular power density is the same for both clusters, i.e. the 
actual power within given cluster depends on its spread. 



 

Correlation in (10) also has oscillatory behavior due to 
constructive and distractive addition of the two terms.  

The maxima and minima of the correlation magnitude 
occur at approximately 1)sincos( 2 ±=ϕz , which leads to the 
following 

max max 2max

1
min min 22min

( ),  / sin

( ),  ( ) / sin

R R d d k

R R d d k

= = ϕ

= = + ϕ
            (11) 

where 0,1,2,3,...k = . Fig. 4 illustrates this effect. Note that, in 
this case, max 2d k= λ  and min (2 1)d k= + λ , in full agreement 
with (11). One can also see that the contribution of the 2nd 
cluster becomes more pronounced as 2∆  increases (again, in 
full agreement with (10)). Comparison of Fig. 3 and 4 
illustrates the difference between symmetric and asymmetric 
cluster cases. 
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Fig. 4 Correlation for two asymmetric clusters with small angular spreads. 

0 0 0
1 1 210 ,  =0 , =30∆ = ϕ ϕ  

As in the symmetric cluster case, setting the element 
spacing equal to mind  will result in zero pair-wise correlations 
for the odd-spaced pairs and the correlation of evenly-spaced 
pairs will not necessarily be low. 

Considering ( )R d , 1( )R d  and 2 ( )R d in (10), one may 

observe the following. The first zero of 1( )R d  is 01 11/d = ∆  
and 1R  is small for 01d d≥ . Hence, we say then that the rate 

of decay of 1( )R d  is 1∆ . Similarly, 02 21/( cos )d = ∆ ϕ  and 
the rate of decay of 2 ( )R d  is 2 cos∆ ϕ . When 1 2 cos∆ > ∆ ϕ , 
the first term in (10) is dominant for [0, ]fd d∈  and the 2nd 

term is dominant for [ , ]fd d∈ ∞ , where 1 2( ) ( )f fR d R d= . 

Approximately, 2 21/( cos )fd ≈ ∆ ϕ . ( )R d  decays quickly on 

the 1st interval and more slowly on the 2nd. In a sense, 2 ( )R d  

provides a “floor” for ( )R d  when fd d> . Hence, when the 

spacing is small, neglecting the 2nd cluster does change the 
correlation significantly. 

When 1∆  is very large, 1 2∆ >> ∆ , the 2nd term can be 
neglected for all values of d. In this sense, the correlation of a 
channel with one large cluster is less sensitive to the presence 
of other clusters. In particular, when 1∆ ≥ π , one may assume 
that 0 (2 )R J d≈ π  regardless of whether there are other 
clusters. 

C. Two fixed-power clusters 
In many cases, the power of multipath components arriving in 
a cluster is fixed and does not depend on the angular spread of 
that cluster. In this case, the angular pdf for a two-cluster 
model is 

1 1 1 1 1

2 2 2 2 2

/ ,  / 2 / 2 ,
( )  (1 ) / ,  / 2 / 2

0,  elsewhere

p
α ∆ − ∆ + ϕ ≤ ϕ ≤ ∆ + ϕ

ϕ = − α ∆ − ∆ + ϕ ≤ ϕ ≤ ∆ + ϕ


 (12) 

where constant α  is the probability that the AOA falls within 
cluster 1 and it is proportional to the power content of cluster 
1. /(1 )α − α  is the power ratio of the two clusters. Since it 
does not depend on the angle spread, we call it “fixed power 
allocation”. 

For small 1 2, 1∆ ∆ << , 1 0ϕ =  and 2ϕ  being not too close 
to 900 , we obtain 

1 2(1 )R R R≈ α + − α                               (13) 

where ( )1 1sincR d= ∆ , ( ) 22 sin
2 2 2=sinc cos j dR d e π ϕ∆ ϕ , 

which is identical to (10) with 1w = α  and 2 1w = − α , as it 
intuitively should be. The different weights, which do not 
depend anymore on the angular spreads, have however a 
profound effect on the correlation behavior with the angular 
spread. For example, when one angular spread equals to zero, 
this cluster gives the dominant contribution to the total 
correlation, as opposed to the proportional power allocation of 
section B, where this cluster did not contribute anything. 
Consider, for example, the case of 1/ 2α = . In this case, 

( ) ( ) 22 sin
1 2 2(sinc sinc cos ) / 2j dR d d e π ϕ= ∆ + ∆ ϕ  and the 2nd 

cluster provides the same contribution to the correlation as the 
1st one when 1 2 2cos∆ = ∆ ϕ . Clearly, the larger 2ϕ , the larger 

2∆  is required for equal contribution. When 1 2 2cos∆ > ∆ ϕ , 
the 2nd cluster gives dominant contribution. Hence, as a general 
tendency, the clusters located closely to the endfire direction 
provide small contribution only when they have larger angular 
spread as compared to the clusters located closely to the 
broadside directions. In the limiting case of 1 2∆ >> ∆ , the 1st 

cluster can be totally ignored. For example, when 1 1/ d∆ ≥  

and 2 0∆ = , 22 sin / 2j dR e π ϕ≈  (i.e., 1/ 2R ≈ ) regardless of 

1∆ . This is in sharp contrast to case B (recall that in Case B 
the 2nd cluster can be totally ignored and one would obtain 

( )1sinc 1R d= ∆ << ). Hence, power allocation among 

clusters has a dominant effect on the correlation. In general, 
the larger the power, the larger the contribution of that cluster 
to the correlation. 

Fig. 5 illustrates this point. Comparing it with Fig. 4, one 
can clearly see the difference. It is instructive to consider the 
case of 2 0∆ = . In this case, the correlation periodically 
oscillates and its peak value never decreases below ½, 
regardless of d. This is in sharp contrast with case B, where the 
correlation peaks can be decreased to any small value by 
sufficiently increasing d. 



 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

d/λ

C
or

re
la

tio
n 

co
ef

fic
ie

nt ∆2=0°
∆2=5°
∆2=10°

 
Fig. 5 Correlation for two asymmetric clusters with the same power. 
 

IV. UNIFORM CIRCULAR ARRAY 
All the results obtained so far apply to the uniform linear array. 
In this section, we consider a uniform circular array (UCA) 
and reformulate the single-cluster model for this type of array. 
As one will see, the results can be sometime dramatically 
different. 

The major difference between ULA and UCA is that the 
latter is not shift-invariant, i.e. the correlation between 
elements i and j depends not only on i j−  (i.e., the spacing) 
but also on the location on this particular pair since the 
broadside direction varies as we move the pair along the circle. 
Hence, the correlation will depend not only on the element 
spacing, but also on the location of these elements on the 
circle. 

In a single-cluster channel, the correlation coefficient of 
elements i and k can be evaluated using (1) and (2), 

/ 2
2 sin

/ 2

1 ik
ik

ik

j d
ikR e d

ϕ−ϕ +∆
π β

ϕ−ϕ −∆

= β
∆ ∫              (14) 

where iϕ  is the azimuth of i-th element, 

(2 / ) ,  0,1,2,..., 1i n i i nϕ = π = − , 2 sin[( ) / 2]ik i kd r= ϕ − ϕ
        ( ) / 2ik i kϕ = ϕ + ϕ  and r is the circle radius. Note that (14) is 

similar to a generic expression in (2) except for ikϕ  , which, as 
we will see, plays a crucial role. In the case of small angular 
spread, 1∆ << , the correlation between two adjacent elements 
can be approximated as in (3), 

(2 1)
2 sin

( 1)
(2 1)

sinc cos
i

j d
n

i i
i

R d e
n

π +
π

+
π +  ≈ ∆ ϕ −    

  (15) 

with 2 sin( / )d r n= π . Note that, in contrast to ULA, it 

depends on i , i.e. the pair location on the circle. In fact, ( 1)i iR +  

is periodic in i. Increase in d (i.e., the circle radius) will not 
eliminate the heavily correlated pairs due to the cos term in 
(15), which is in dramatic difference to the case of linear array. 
As it will be shown below, this has a profound effect on the 
capacity. 

V. MIMO CAPACITY AND DIVERSITY GAIN 
In this section, we analyze the impact of correlation on MIMO 
capacity and diversity gain. In particular, we demonstrate what 

is the effect of multiple clusters on these performance 
parameters. 
A. MIMO Capacity 
Using the approach of [2] and the correlation models above, 
the MIMO capacity can be evaluated. The channel is assumed 
to be quasi-static and frequency flat. 

As an example, we consider a MIMO system of 
10T Rn n= =  with SNR=20 dB per receive antenna, and a two-

cluster channel with 20 multipath signals arriving at each 
cluster (uniform pdf, with the same power per cluster); 0

1 0ϕ =  

(i.e., broadside), 0
2 1 10∆ = ∆ =  and the average AOA of the 

2nd cluster 0 0 0
2 30 ,60  and 90ϕ = . The transmit array elements 

are assumed to be uncorrelated – all the correlation is 
concentrated at the Rx end. The mean capacity evaluated using 
the method of [2] is show in Fig. 6.  
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Fig. 6. 10x10 MIMO capacity of a two-cluster channel for various locations of 
the 2nd cluster. 
 

Clearly, moving the 2nd cluster to the endfire direction 
results in lower capacity and lower capacity growth for small 
spacing. Hence, larger spacing is required to achieve the full 
capacity. This is in full agreement with the correlation 
behavior studied above. Also, the capacity oscillations, which 
do not appear in the single-cluster model [2], are apparent (this 
also follows from the correlation behavior analyzed above). 
Note that for 0

2 90ϕ =  the capacity is smaller even for large d 
because of small contribution of the second cluster. 

In the second example, we assume that the clusters are 
identical ( 0

2 1 10∆ = ∆ = ) and orthogonal to each other, 
0 0

1 20 , 90ϕ = ϕ = , and we optimize the orientation of the Rx 
array (by rotation) to maximize the capacity. The scenario is 
depicted in Fig. 7. 
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Fig. 7. Optimizing the array direction for a two orthogonal cluster channel 
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Fig. 8. 10x10 MIMO mean capacity versus element spacing for different 
orientations of the Rx array 
 

Fig. 8 shows the mean capacity versus element spacing for 
different broadside array angles θ . Clearly, the maximum 
capacity is achieved for most d when the array is oriented 
symmetrically with respect to the clusters, 045θ =  (i.e., the 
broadside direction coincides with the cluster symmetry line). 
Any deviation results in capacity decrease for most d. It is 
especially pronounced when the array endfire is located along 
one of the clusters, 00θ = , which basically eliminates the 
contribution of that cluster and results in lower capacity. Due 
to the geometry symmetry, the capacity behavior for 

0 0[45 ,90 ]θ∈  is the same. 
Finally, we compare capacities of the ULA and the UCA 

with the same aperture size and the number of elements. 
Detailed numerical analysis shows that the capacity of UCA is 
less than that of ULA for 10d > λ . We attribute this to high 
correlation of some element pairs on the UCA (as described in 
section IV). When the number of elements in the UCA is 
slightly increased, its capacity follows the same path as that of 
the ULA. Approximately 10% of the degrees of freedom are 
“lost” in the UCA due to the correlation. 

B. Diversity gain 
In the same way, we evaluate the diversity gain at a given 
outage probability using Monte-Carlo simulations. 
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Fig. 9. Diversity gain of two-branch MRC at 210outP −=  for symmetric two-

cluster channel, 0
2 1 10∆ = ∆ =  

As an example, we consider 2-branch MRC system with 
equal noise power per branch and evaluate its diversity gain at 
outage probability 210outP −=  for a symmetric two-cluster 
channel with 0

2 1 10∆ = ∆ = . The results are depicted in Fig. 9. 
The case of 0

1 5ϕ =  corresponds to a single-cluster channel 
(when two clusters merge into one). The maximum gain agrees 
well with the theoretical value of 11.5 dB (for a uncorrelated 
Rayleigh channel and 210outP −= ). Note that the diversity gain 
oscillates as well, and the oscillation are more pronounced for 
larger 1ϕ . These oscillations are much larger than those of the 
capacity. Intuitively, this can be explained by an integral 
nature of the capacity (when all the local perturbations are 
averaged out). On the contrary, diversity gain is local in nature 
since it depends on rare evens (outage) and, hence, it is more 
sensitive to details of the angular pdf. 

VI. CONCLUSIONS 
The analysis above demonstrates that the correlation in a two-
cluster channel can be significantly different from that of a 
single-cluster channel. The presence of the 2nd cluster results in 
oscillations (with element spacing) of correlation and, hence, 
MIMO capacity and diversity gain. In some case, this can be 
beneficially used to decrease the element spacing  while 
keeping the correlation low. The correlation depends 
significantly on the power distribution among the clusters. In 
some cases, the second cluster contribution is negligible. The 
reported results (in particular – correlation oscillations with 
spacing) agree well with recent measurements and provide a 
simple explanation of this phenomenon. 
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