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Abstract 
In this paper, we study the limitations imposed by the laws 
of electromagnetism on achievable MIMO channel 
capacity in its general form. Our approach is a two-fold 
one. First, we use the channel correlation argument to 
demonstrate that the minimum antenna spacing under any 
scattering conditions is at least half a wavelength. 
Secondly, using a plane-wave spectrum expansion of a 
generic electromagnetic wave combined with Nyquist 
sampling theorem in the spatial domain, we show that the 
laws of electromagnetism limit the minimum antenna 
spacing to half a wavelength, / 2λ , (in the case of 1-D 
antenna apertures) only asymptotically, when the number 
of antennas n → ∞ . For a finite number of antennas, this 
limit is slightly less than / 2λ . In any case, the number of 
antennas and, consequently, the MIMO capacity is limited 
for a given aperture size. This is a scenario-independent 
limit. 
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1 Introduction 
Multiple-input multiple-output (MIMO) communication 
architecture has recently received unprecedented attention 
in the research community due to its high potential for 
communicating over a wireless channel [1,2]. It has been 
recognized that the wireless propagation channel has a 
profound impact on its performance. The channel 
correlation is recognized as one of the major limitations on 
the MIMO system performance. In ideal conditions 
(uncorrelated high rank channel) the MIMO capacity 
scales roughly linearly as the number of Tx/Rx antennas. 
The effect of channel correlation is to decrease the capacity 
and, at some point, this is the dominant effect. This effect 
is highly dependent on the scenario considered (keyhole 
channel [3] is a good illustration of this). Two main 
approaches have been adopted in recent years to study the 
effect of propagation channel: the eigenvalue 
decomposition (or singular value decomposition) approach 
[4] and the correlation matrix approach [5,6]. Many 
practically-important scenarios have been studied and 
some design guidelines have been proposed as well. 

In the present paper, we analyze the effect of 
propagation channel from a completely different 
perspective. Electromagnetic waves are used as the 

primary carrier of information. The basic electromagnetism 
laws, which control the electromagnetic field behaviour, 
are expressed as Maxwell equations [7]. Hence, we ask a 
question: What is, if any, the impact of Maxwell equations 
on the notion of information in general and on channel 
capacity in particular? In this paper, we try to answer the 
second question. In other words, do the laws of 
electromagnetism impose any limitations on the achievable 
channel capacity? We are not targeting in particular 
scenarios, rather, we are going to look at fundamental 
limits that hold in any scenario. Analyzing MIMO channel 
capacity allows one, in our opinion, to come very close to 
answering this question. 

Our approach is a two-fold one. First, we employ the 
channel correlation argument and introduce the concept of 
an ideal scattering to demonstrate that the minimum 
antenna spacing is limited to about half a wave length for 
any channel (i.e., locating antennas closer to each other 
will not result in a capacity increase due to correlation). 
Secondly, we use the plane wave spectrum expansion of a 
generic electromagnetic wave and the Nyquist sampling 
theorem in the spatial domain to show that the laws of 
electromagnetism in its general form (Maxwell equations) 
limit the antenna spacing to half a wavelength (for linear 
antenna arrays) only asymptotically, when the number of 
antennas n → ∞ . For a finite number of antennas, this 
limit is slightly less than / 2λ  because a slight 
oversampling is required to reduce the truncation error 
when using the sampling series. In any case, this limits the 
number of antennas and the MIMO capacity for a given 
aperture size. It should be emphasized that this is a 
scenario independent limit. It follows directly from 
Maxwell equations and is valid in any scenario. 

2 MIMO Channel Capacity 
There are several definitions of the MIMO channel 
capacity, depending on the scenario considered. The main 
differences between these definitions are due to the 
following. Channel state information (CSI): may be 
available at the receiver (Rx), transmitter (Tx), both or not 
at all (if CSI is available at the transmitter, water filling is 
possible). Ergodicity assumption: when channel is random, 
its capacity is random too; mean ergodic capacity may be 
defined if the ergodicity assumption is employed. Another 
possibility is to consider outage capacity. MIMO network 
capacity may also be defined when there are several users 



 

which interfere with each other. Since the arguments 
presented in this paper hold true for most definitions, we 
do not discuss in detail these differences. To be specific, 
we employ the celebrated Foschini-Telatar formula for the 
MIMO channel capacity, which is valid for a fixed linear 
n×n matrix channel with additive white gaussian noise and 
when the transmitted signal vector is composed of 
statistically independent equal power components each 
with a gaussian distribution and the receiver knows the 
channel [1,2], 

2log detC
n

+ρ = + ⋅ 
 

I G G  bits/s/Hz ,      (1) 

where n is the numbers of transmit/receive antennas, ρ is 
the average signal-to-noise ratio, I is n×n identity matrix, 

G is the normalized channel matrix, Tr n+ ⋅ = G G , 

which is considered to be frequency independent over the 
signal bandwidth, and “+” denotes transpose conjugate. In 
an ideal case of uncorrelated full-rank channel (1) reduces 
to 

( )2log 1 /C n n= + ρ ,                              (2) 
i.e. the capacity is maximum and scales roughly linearly as 
the number of antennas. 

3 The Laws of Electromagnetism 
It follows from (1) that the MIMO channel capacity 
crucially depends the propagation channel G. Since 
electromagnetic waves are used as the carrier of 
information, the laws of electromagnetism must have an 
impact on the MIMO capacity. They ultimately determine 
behaviour of G in different scenarios. Hence, we outline 
the laws of electromagnetism in a MIMO system 
perspective. In their most general form, they are expressed 
as Maxwell equations with charge and current densities as 
the field sources [7]: 

,  ,  0,  
t t

∂ ∂
∇⋅ = ρ ∇ × = − ∇⋅ = ∇ × = +

∂ ∂
B D

D E B H J (3) 

where ρ  and J  are charge and current densities (sources) 
correspondingly, E  and H  are electric and magnetic field 
vectors, and D  and B  are electric and magnetic flux 
densities ( ,= ε = µD E B H , ε  and µ  are permittivity and 
permeability of the media correspondingly). (3) is a system 
of second-order partial differential equations. Appropriate 
boundary conditions must be applied in order to solve it. 
We are interested in application of (3) to find the channel 
matrix, i.e., G in (1). Since the Rx antennas are located at 
some distance from Tx antennas (not at the same points in 
space), we are interested in source-free region of space, 
where 0ρ =  and 0=J  (i.e., electromagnetic waves). In 
this case, (3) simplifies to the system of two decoupled 
wave equations [7]: 

2 2
2 2

2 2 2 2
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∂ ∂
∇ − = ∇ − =

∂ ∂

E H
E H          (4) 

where c is the speed of light. It should be noted that there 
are 6 field components (or “polarizational degrees of 

freedom”) associated with (4) (three for electric and three 
for magnetic fields), which can be used for communication 
in rich-scattering environment. Of course, only two of 
them survive in free space (“poor scattering”). Hence, in a 
generic scattering case the number of polarizational 
degrees of freedom varies between 2 and 6, and each of 
them can be used for communication. Using the Fourier 
transform in time domain,  

( , ) ( , ) j tt e dt− ωφ ω = φ∫r r                     (5) 

(4) can be expressed as [7] 
2

2 ( , ) ( , ) 0
c
ω ∇ φ ω + φ ω = 

 
r r                  (6) 

where φ  denotes any of the components of E and H, r is a 
position vector and ω  is the frequency. For a given 
frequency ω  (i.e., narrowband assumption), (6) is a 
second-order partial differential equation in r. It 
determines φ  (for given boundary conditions, i.e. a Tx 
antenna configuration and scattering environment) and, 
ultimately, the channel matrix and the channel capacity. 
Note that in deriving (6) no any significantly-restrictive 
assumptions have been made. The source-free region 
assumption seems to be quite natural (i.e., Tx and Rx 
antennas are located in different points in space) and the 
narrowband assumption is simplifying but not restrictive 
since (6) can be solved for any frequency and, further, the 
capacity can be evaluated using well-known techniques. 

Unfortunately, the link between (6) and the channel 
matrix is implicit. A convenient way to study this link is to 
use the space domain Fourier transform, i.e. the plane-
wave spectrum expansion, 
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where k  is the wave vector. Using (7), (6) can be reduced 
to [7] 

2
2 ( , ) 0

c

 ω  − φ ω =    
k k                      (8) 

Hence, / c= ωk  and the electromagnetic filed is 

represented in terms of its plane-wave spectrum ( , )φ ωk , 
which in turn is determined through given boundary 
conditions, i.e. scattering environment and Tx antenna 
configuration. In the next sections, we discuss limitations 
imposed by (6)-(8) on the MIMO channel capacity. 

4 Spatial Capacity and Correlation 
The MIMO channel capacity is defined as the maximum 
mutual information, the maximum being taken over all 
possible transmitted vectors. Under some conditions, this 
results in (1). In order to study the impact of the 
electromagnetism laws on the channel capacity, we 
definite the spatial capacity S as the maximum mutual 
information between the Tx vector on one side and the pair 
of the Rx vector and the channel (assuming perfect CSI at 



 

the Rx) on the other, the maximum being taken over both 
the Tx vector and EM field distributions, 
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where, to be specific, we assumed that the electric field E 
is used to transmit data (H field can be used in the same 
way), B is the boundary condition (due to the scattering 
environment), and the last constraint is due to the boundary 
condition. The first constraint is the classical power 
constraint and the second one is due to the wave equation. 
The channel matrix G is a function of E since the electric 
field is used to send data. This maximum is difficult to find 
in general since one of the constraint is a partial 
differential equation with an arbitrary boundary condition. 

One may consider a reduced version of this problem by 
defining a spatial MIMO capacity as a maximum of the 
conventional MIMO channel capacity (per unit bandwidth, 
i.e. in bits/s/Hz) over possible propagation channels 
(including Tx & Rx antenna locations and scatterers’ 
distribution), subject to some possible constraints. In this 
case, the capacity is maximized by changing G (within 
some limits), for example, by appropriate positioning of 
antennas, 

( ){ } ( )max ,  const.:  MaxwellS C= ∈
G

G G S  

where the constraint ( )MaxwellS is due to the Maxwell 
(wave) equations. Unfortunately, the explicit form of this 
constraint is not known. Additional constraints may be 
included (due to a limited aperture, for example). Note that 
this definition will give a capacity, which is, in general, 
less than that in the first definition. 

Using the analogy with the channel capacity definition, 
one can call this maximum (if it exists) “capacity of a 
given space” or “spatial capacity” (since we have to vary 
channel during this maximization the name “channel 
capacity” seems to be inappropriate simply because the 
channel is not fixed. On the other hand, we vary channel 
within some limits, i.e. within given space. Thus, the term 
“capacity of a given space”, or “spatial” capacity, seems to 
be appropriate). The question arises: what is this maximum 
and what are the main factors which have an impact on it? 
Using the ray tracing (geometrical optics) arguments and 
the recent result on the MIMO capacity, it can be further 
demonstrated that there exists an optimal distribution of 
scatterers and Tx/Rx antennas that provides the maximum 
possible capacity in a given region of space. Hence, the 
MIMO capacity per unit space volume can be defined in a 
fashion similar to the traditional definition of the channel 
capacity per unit bandwidth. 

Considering a specific scenario would not allow us to 
find a fundamental limit simply because the channel 
capacity would depend on too many specific parameters. 
For example, in outdoor environments the Tx and Rx ends 
of the system are usually located far away from each other. 
Hence, any MIMO capacity analysis (and optimization) 
must be carried out under the constrain that the Tx and Rx 

antennas cannot be located close to each other. However, 
there exists no fundamental limitation on the minimum 
distance between the Tx and Rx ends. Thus, this maximum 
capacity would not be a fundamental limit. In a similar 
way, a particular antenna design may limit the minimum 
distance between the antenna elements but it is just a 
design constrain rather than a fundamental limit. Similarly, 
the antenna design has an effect on the signal correlation 
(due to the coupling effect), but this effect is very design-
specific and, hence, is not of fundamental nature. In other 
words, the link between the wave equations (4) or (6) and 
the channel matrix G is very implicit since a lot depends 
on Tx and Rx antenna designs and many other details. 

We further consider a reduced version of this problem. 
In particular, we investigate the case when the Tx and Rx 
antenna elements are constrained to be located within 
given Tx and Rx antenna apertures. We are looking for 
such location of antenna elements (within the given 
apertures) and such distribution of scatterers that the 
MIMO capacity (“spatial” capacity) is maximum. While 
this maximum may not be achievable in practice, it gives a 
good indication as to what the potential limits of MIMO 
technology are. 

In order to avoid the effect of design-specific details, 
we adopt the following assumptions. Firstly, we consider a 
limited antenna aperture size (1-D, 2-D or 3-D) for both 
the Tx and Rx antennas. All the Tx (Rx) antenna elements 
must be located within the Tx (Rx) aperture. As it is well-
known, a rich scattering environment is required to order 
to achieve high MIMO capacity. Thus, secondly, the rich 
(“ideal”) scattering assumption is adopted in its most 
abstract form. Specifically, it is assumed that there is 
infinite number of randomly and uniformly-located ideal 
scatterers (the scattering coefficient equals to unity), which 
form a uniform scattering medium (“ideal” scattering) in 
the entire space (including the space region considered) 
and which do not absorb EM field. Thirdly, antenna array 
elements are considered to be ideal field sensors with no 
size and no coupling between the elements in the Rx (Tx) 
antenna array. Our goal is to find the maximum MIMO 
channel capacity in such a scenario (which posses no 
design-specific details) and the limits imposed by the 
electromagnetism laws. It should be emphasized that the 
effect of electromagnetism laws is already implicitly 
included in some of the assumptions above. In order to 
simplify analysis further, we use the ray (geometrical) 
optics approximation (this justifies the ideal scattering 
assumption above). 

Knowing that the capacity increases with the number of 
antennas, we try to use as many antennas as possible. Is 
there any limit to it? Since antennas have no size (by the 
assumption above), the given apertures can accommodate 
the infinite number of antennas. However, if antennas are 
located close to each other the channel correlation 
increases and, consequently, the capacity decreases. A 
certain minimum distance between antennas must be 
respected in order to avoid capacity decrease, even in ideal 
rich scattering [6]. This minimum distance is about half a 
wavelength. It should be noted that the model in [6] is a 



 

two-dimensional (2D) one. However, it can be applied to 
both orthogonal planes and, due to the symmetry of the 
problem (no preferred direction), the same result should 
hold in 3D as well. We note that, under the assumptions 
above, the angle-of-arrival (AOA) of multipath 
components is uniformly distributed over [ ]0,2π  in both 
planes. Thus, the model above can be applied and the 
minimum distance is about half a wavelength. Due to the 
assumption of uniform scattering media, all the antennas 
experience the same multipath environment. 

When we increase the number of antennas the capacity 
at first increases. But at some point, due to aperture 
limitation, we have to decrease the distance between 
adjacent antennas to accommodate new antennas within 
the given aperture. When the adjacent antenna spacing 
decreases, the capacity increase slows down and finally, 
when the antenna spacing is less than the minimum 
distance, the capacity begins to decrease. Hence, there is 
an optimal number of antennas, for which the capacity is 
maximum. An argument similar to the present one has 
already been presented earlier [10]. However, the optimal 
number of antennas has not been evaluated. Using the 
model in [6], which results in the minimum distance be 
equal to approximately half a wavelength, the optimal 
number Nopt of antennas for a given aperture size L is 
straightforward to evaluate (1-D aperture, i.e. linear 
antenna array): 

2
1opt

L
N ≈ +

λ
                                       (9) 

where λ  is the wavelength. Similar expressions can be 
obtained for 2-D and 3-D apertures as well. This is 
consistent with the diversity combining analysis, where the 
minimum distance is about half a wavelength as well [12], 
and with an earlier speculation in [1]. 

5 Spatial Sampling and MIMO Capacity 
In the previous section, we argued that the channel 

correlation limits the minimum antenna spacing to half a 
wavelength (even in the case of “ideal” scattering). In this 
section, we demonstrate that the same limit can be 
obtained directly from the wave equations (4) or (6), 
without refereeing to the channel correlation. 

Let us start with the wave equation (6). The field 
spectrum ( , )φ ωk  can be computed in a general case 
provided there is a sufficient knowledge of the propagation 
channel and of the Tx antennas (note that we have not 
made so far any simplifying assumptions regarding the 
propagation channel). Knowing the field, which is given 
by the inverse Fourier transform in (7), and receive 
antenna properties, one may further compute the signal at 
the antenna output and, hence, the channel matrix G. The 
result will, of course, depend on the Rx antenna design 
details. In order to find a fundamental limit, imposed by 
the wave equations (6) on the channel capacity (1), we 
have to avoid any design-specific details. Thus, as earlier, 
we assume that the receive antennas are ideal field sensors 
(with no size, no coupling between antennas etc.) and, 

consequently, the signal at the antenna output is 
proportional to the field (any of the 6 field components 
may be used). Hence, the channel matrix entries ijg  must 

satisfy the same wave equation as the filed itself. In 
general, different Tx antennas will produce different plane-
wave spectra around the Rx antennas and, hence, the wave 
equation is: 

2
2 ( , ) 0jc

 ω  − ω =    
k g k                   (10) 

where ( , )j ωg k  is the plane-wave spectrum produced by j-

th Tx antenna. To simplify things further, we employ the 
narrowband assumption: constω = , and, hence, / c= ωk  
is constant (the case of a frequency-selective channel can 
be analyzed in a similar way – see below). The channel 
matrix entries for given locations of the Rx antennas can 
be found using the inverse Fourier transform in the wave 
vector domain: 

3
1

( , ) ( , ) ,  ( , )
(2 )

j
j j ij j ie d g− ⋅ω = ω = ω

π ∫ k rg r g k k g r  (11) 

where ir  is the position vector of i-th Rx antenna, and 
( , )j ωg r  is the channel “vector”, i.e. propagation factor 

from j-th Tx antenna to an Rx antenna located at position 
r. The integration in (11) is performed on a hypersurface 

/ c= ωk . As we show below, it results in a very 
important consequence. Consider, for simplicity, 2-D case 
(3-D case can be considered in a similar way). In this case, 
the integration in (11) is performed along the line given by 

( ) ( )2 22 2 2/ /x y x yk k c k c k+ = ω → = ± ω −         (12) 

Assume that the Rx antenna is a linear array of elements 
located on the OX axis, i.e. 0yr = . In this case, (11) 

reduces to 
max

max
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−
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      (13) 

where max /k c= ω  due to (12). We ignored the evanescent 

waves with maxk k>  because they decay exponentially 

and can be ignored at distances more than few λ  from the 
source. Note that computing gij corresponds to sampling 

( , )j x ωg  with sampling points being xi . Let us now apply 

the Nyquist sampling theorem to (13). This theorem says 
that a band-limited signal, ( , )j xk ωg  in our case (it is 

band-limited in kx-domain) , can be exactly recovered from 
its samples taken at a rate equal at least to twice the 
maximum signal frequency (Nyquist rate) [8]. In our case, 
the Nyquist rate is max2k  and the sampling interval is 

min
max

2
2 2

x
k

π λ
∆ = =                            (14) 



 

where 2 /cλ = π ω  is the wavelength. There is no any loss 
of information associated with the sampling since the 
original channel “vector” ( , )j ωg r  (as well as the field 

itself) can be recovered exactly from its samples at 
min min0, , 2 ,...x x x= ±∆ ± ∆ . This means that by locating the 

field sensors at sampling points, which are separated by 
minx∆ , we are able to recover all the information 

transmitted by electromagnetic waves to the receiver. 
Hence, channel capacity is not altered. This means, in turn, 
that the minimum spacing between antennas is half a 
wavelength: 

min min 2
d x

λ
= ∆ =                             (15) 

Locating antennas more close to each other does not 
provide any additional information and, hence, does not 
increase the channel capacity. It should be noted that the 
same half-wavelength limit was established in Sec. IV 
using the channel correlation argument, i.e. locating 
antennas closer will increase correlation and, hence, 
capacity will decrease. However, while the channel 
correlation argument may produce some doubts as whether 
the limit is of fundamental nature or not (correlation 
depends on a scenario considered), the spatial sampling 
argument demonstrates explicitly that the limit is of 
fundamental nature because it follows directly from 
Maxwell equations (i.e., the wave equation), without any 
simplifying assumptions as, for example, the geometrical 
optics approximation [9] (when evaluating correlation, we 
have to use it to make ray tracing valid). Note that the 
spatial sampling arguments holds also for a broadband 
channel (the smallest wavelength, corresponding to the 
highest frequency, should be used in this case to find 

minx∆ ) and for the case of 2-D and 3-D antenna apertures. 
However, in the latter two cases the minimum distance 
(i.e., the sampling interval) is different [13]. If one uses a 
2-D antenna aperture (i.e. 2-D sampling), the sampling 
interval is 

min,2 / 3x∆ = λ ,                          (16) 
and in the case of 3-D aperture, 

min,3 / 2x∆ = λ .                          (17) 
While the minimum distance in these two cases is different 
from the 2-D case, min min,2 min,3x x x∆ < ∆ < ∆ (i.e., each 
additional dimension possesses less degrees of freedom 
than the previous one), the numerical values are quite close 
to each other. 

Another interpretation of the minimum distance effect 
can be made through a concept of the number of degrees of 
freedom. As the sampling theorem argument shows, for 
any limited region of space (1-D, 2-D or 3-D), there is a 
limited number of degrees of freedom possessed by the 
EM field itself. No any antenna design or their specific 
location can provide more. This is a fundamental limitation 
imposed by the laws of electromagnetism (Maxwell 
equations) on the MIMO channel capacity. 

An important note is in order on using the sampling 
theorem to find the minimum antenna spacing. The 

sampling theorem guarantees that the original band-limited 
function can be recovered from its samples provided that 
the infinite number of samples is used (band-limited 
function cannot be time limited!). Hence, the half 
wavelength limit, as derived using the sampling theorem, 
holds true only asymptotically, when n → ∞ . When n is 
finite, the optimal number of antennas may be larger than 
that given by (9), i.e. the minimum spacing may be less 
than half a wavelength because a slight oversampling is 
required to reduce the truncation error. The maximum 
truncation error of the sampling series for a given limited 
space region (i.e., the antenna aperture in our case) 
decreases to zero as the number of terms in the sampling 
series (i.e., the number of antennas in our case) increases 
and provided that there is a small oversampling [11]. In 
this case, one is able to recover almost all the information 
conveyed by the EM field to the antenna aperture (but not 
outside of the aperture). Hence, one may expect that the 
actual minimum antenna spacing is quite close to half a 
wavelength for a large number of antennas. The channel 
correlation argument, which roughly does not depend on n, 
also confirms this. Detailed analysis shows that the 
truncation error effect can be eliminated by approximately 
10% increase in the number of antennas. Fig. 1 shows the 
MIMO capacity of a system with linear arrays at both ends, 

5L = λ , for the case of uncorrelated Rayleigh channel 
versus the number of Rx antennas (for the fixed aperture 
length of 5L = λ ) for 10,  and 30 dBTn = ρ = . Various 
curves correspond to various channel realizations. As one 
may see, the capacity does not increase in all the cases 
when 2 / 2Rn L≥ λ + .  
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Fig. 1. The impact of truncation error on the MIMO 
capacity; 10,  5 ,  30 dBTn L= = λ ρ = . 

 
Note that when simulating the curves on Fig. 1, the 
following channel matrix normalization was used: 

Tr[ ] Tn+ =GG . This was done to keep the total received 
power and, hence, SNR, which is proportional to 

Tr[ ]+GG , fixed. Hence, we eliminated the effect of SNR 
and studied the effect of truncation error in its “pure” form. 
In practice, increasing the number of elements for a fixed 
aperture results in increased Rx power due to the increase 
in the array gain. However, when the element spacing is 
below / 2λ , the further increase in the gain is very small. 

2 / 2Rn L≥ λ +



 

The maximum gain (and, hence, the total Rx power) is 
limited by that of a continuous linear antenna. Hence, the 
capacity will converge to a certain value when Rn  
increases to infinity for fixed L  even when the effect of 
SNR is accounted for. 

Keeping this in mind, one may say, based on the 
sampling theorem, that the optimal number of antennas for 
a given aperture size is given approximately by (9). Due to 
the reciprocity of (1), the same argument holds true for the 
transmit antennas as well. Hence, using (2) and (9), the 
maximum MIMO capacity can be found for a given 
aperture size. 

It should be noted that, in some cases, increasing n over 
Nopt in (9) may result in SNR increase due to antenna gain 
increase and, consequently, in logarithmic increase in 
capacity. However, this increase is very slow (logarithmic) 
and it does not happen if the SNR is fixed, i.e. when one 
factors out the effect of the antenna gain. Besides, the array 
antenna gain versus the number of elements for a fixed 
aperture is limited by the gain of a continuous antenna 
(with the same aperture). This limit is approximately 30% 
larger than the array gain at / 2d = λ . Keeping in mind 
that the capacity depends logarithmically on SNR and, 
consequently, the antenna gain, we see that this increase in 
capacity is very small. 

It is interesting to note that the MIMO capacity analysis 
of waveguide channels, which is based on a rigorous 
electromagnetic approach and does not involve the usage 
of the sampling theorem, indicates that the minimum 
antenna spacing is about / 2λ  as well [14]. 

In many practical cases, the minimum spacing can be 
substantially larger than that in (15). For example, when all 
the multipath components arrive within a narrow angle 
spread 1∆ << , min /(2 ) / 2d ≈ λ ∆ >> λ  [6]. Hence, less 
antennas can be accommodated within given aperture and, 
consequently, the MIMO capacity is smaller for a given 
aperture size. 

6 Conclusion 
The impact of the laws of electromagnetism on the MIMO 
channel capacity has been discussed in this paper in its 
general form. It has been demonstrated that the minimum 
antenna spacing is limited to half a wavelength (1-D 
aperture) – using more antennas at smaller spacing does 
not increase capacity. The channel correlation argument 
and the spatial sampling argument provide the same limit 
in the case of 1-D apertures, which agrees well with known 
results. While the latter is more general, it is valid only 
asymptotically, when n → ∞ . For the case of 2-D and 3-D 
apertures, there seems to be some discrepancy between the 
channel correlation and spatial sampling arguments, which 
should be further investigated. For a finite number of 
antennas, the minimum spacing, as required by the spatial 
sampling argument in its present form, may be less than 
half a wavelength. A feasible way to study this case using 

the sampling theorem is to consider the limits on the plane 
wave spectrum created by a limited number of transmit 
antennas. 

Our final remark is that, according to the analysis 
above, the limits on MIMO channel capacity imposed by 
Maxwell equations come in the form of minimum antenna 
spacing, which is roughly limited to half a wavelength. 
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