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Abstract— An analytical approach to the performance 

analysis of the V-BLAST algorithm is discussed in this paper. It is 
based on closed-form analytical models of the three key algorithm 
components: interference cancellation, interference nulling and 
optimal ordering. The closed-form analytical model of the Gram-
Schmidt orthogonalization process is a key component of the 
proposed analysis method. It allows to derive closed-form 
expressions for signal at each detection step, to perform 
analytically statistical analysis for a Rayleigh-fading channel (i.e., 
diversity order etc.) and to obtain closed-form expressions for 
outage probabilities in the case of two Tx antennas. In particular, 
it is demonstrated that the optimal ordering does not result in 
increased diversity order, but only in a fixed SNR gain. 
Generalized versions of the V-BLAST algorithm proposed 
recently can be analyzed in a similar way. 

Keywords— MIMO, V-BLAST, multi-antenna system, fading, 
outage probability, BER 

I. INTRODUCTION 
Information-theoretic considerations show that the 

multiple-input multiple-output (MIMO) communication 
architecture is able to provide extraordinary high spectral 
efficiencies in rich multipath environments [1-3]. Space-time 
coding and/or a special signal processing algorithm is to be 
implemented at the receiver in order to achieve at least part of 
the MIMO channel capacity. Diagonal Bell Labs Layered 
Space-Time (D-BLAST) algorithm has been proposed by 
Foschini for this purpose, which is capable of achieving a 
substantial part of the MIMO capacity [1]. However, a high 
complexity of the algorithm implementation is its substantial 
drawback. A simplified version of the BLAST algorithm is 
known as V-BLAST (vertical BLAST). It is capable of 
achieving high spectral efficiency while being relatively 
simple to implement [4].  

Comprehensive evaluation of the system performance is 
required because the matrix wireless propagation channel may 
severely degrade the performance of this algorithm. Some 
preliminary studies including asymptotic analysis and 
numerical Monte-Carlo simulations have been reported in [5]. 
While the numerical Monte-Carlo approach is useful from 
many viewpoints, the analytical approach provides deeper 
insight and comprehensive understanding of the key points in 
the algorithm operation. In particular, as we demonstrate in the 
paper, closed-form analytical expressions for outage 
probability (cumulative distribution function) at each detection 
step can be derived and, consequently, closed-form analytical 
expressions for BER can also be obtained in some cases. 

In this paper, we develop a unified analytical approach to 
the analysis of the V-BLAST algorithm operation based on 
some general geometrical ideas presented in [6]. The approach 
is based on the closed-form analytical models of the key V-
BLAST and associated system components - interference 

nulling from yet to be detected symbols (Gram-Schmidt 
orthogonalization process), interference subtraction from 
already detected symbols, the optimal ordering procedure 
(based on the after processing SNR), optimal (maximum ratio 
or similar) combining, and a statistical (complex circular 
Gaussian) model of the matrix wireless propagation channel. 
In particular, closed-form analytical expressions for the signal 
and noise vectors at each processing step are derived for 
wireless channel with the general correlation matrix. Based on 
these results, a rigorous proof that the diversity order at the i-th 
processing step is n-m+i (where n and m are the number of Rx 
and Tx antennas correspondingly) is given for uncorrelated 
Rayleigh channel and if no optimal ordering is used. While the 
previous result is valid in general nxm case, we are able to 
analyze analytically the outage probability when the optimal 
ordering is implemented for m=2 only due to mathematical 
difficulties arising in general case. We show that the optimal 
ordering results in increasing the after processing SNR by 3 
dBs rather than to increase the diversity order (as one would 
intuitively expect based on the selection combining argument) 
at the first detection step. At the second step, the effect of 
optimal ordering is to increase the outage probability twice (or 
to decrease the after-processing SNR). The diversity order is n 
at this step. Closed-form analytical expressions are obtained 
for outage probabilities (cumulative distribution functions) at 
each detection step. Hence, BER expressions can be further 
derived using these results and one of the well-known 
methods. The analytical results above are verified using 
extensive numerical Monte-Carlo simulations. 

II. V-BLAST ALGORITHM 
The V-BLAST algorithm has been discussed in details 

elsewhere [4,5]. Here we describe its main points for 
completeness and in order to introduce notations. The main 
idea of the BLAST architecture is to split the information bit 
stream into several sub-streams and transmit them in parallel 
using a set of Tx antennas (the number of Tx antennas equals 
the number of sub-streams) at the same time and frequency. At 
the Rx side, each Rx antennas “sees” all the transmitted 
signals, which are mixed due to the nature of the wireless 
propagation channel. Using appropriate signal processing at 
the Rx side, these signals can be unmixed so that the matrix 
wireless channel is transformed into a set of virtual parallel 
independent channels (provided that mutltipath is rich 
enough). 

The following basic assumptions are employed: 
§ The channel is random, quasistatic (i.e. fixed for every 
frame of information bits but varying from frame to frame), 
frequency independent (i.e., negligible delay spread) and with 
complex AWGN. 



§ The Tx signal vector is comprised of individual symbol 
sub-streams. No space-time coding is employed. 
§ The noise vector is comprised of independent AWGN 
components with equal variance. 
§ The Tx signals, noise and channel gains are independent of 
each other 
§ Perfect channel knowledge is assumed to be available at 
the receiver. 
§ There is no performance degradation due to 
synchronization and timing errors. 

The received signal vector r can be presented in the 
following complex baseband vector form [5]: 

i ii
q= + +∑r Hq hν = ν                            (1) 

where [ ]T
1 ... mq q=q  is the transmitted symbol vector, H is 

the channel matrix (i.e., the matrix of complex transfer factors 
from each Tx to each Rx antenna), [ ]T

1 ... nv v=v  is the 

noise vector and [ ]1 ... m=H h h , where hi  is a column 
vector of transfer factors from i-th Tx antenna to all Rx 
antennas. 

The V-BLAST processing begins with the 1st Tx symbol 
and proceeds in sequence to the m-th symbol. When the 
optimal ordering procedure is employed, the Tx indexing is 
changed prior to the processing. The main steps of the V-
BLAST processing (detection) algorithm are as follows [4,5]: 

The interference cancellation step: at the i-th processing 
step (i.e., when the signal from the i-th transmitter is detected) 
the interference from the first i-1 transmitters can be subtracted 
based on the estimations of the Tx symbols (which are actually 
assumed to be error-free) and the knowledge of H. 

The interference nulling step: based on the knowledge of 
the channel matrix, the interference from yet to be detected 
symbols can be nulled out using the Gram-Schmidt 
orthogonalization process (applied to the column vectors of 
H). 

The optimal ordering procedure: the order of symbol 
processing is organized according to their after-processing 
SNRs in the decreasing order (i.e., the symbol with highest 
SNR is detected first). 

III. ANALYSIS OF THE V-BLAST ALGORITHM 
For completeness, we summarize here the main results of the 

V-BLAST algorithm analysis presented in [6]. For the sake of 
notational simplicity, we first describe all the steps without the 
noise contribution ( 0=ν ), which is added to the analysis later. 

The interference cancellation step can be expressed 
mathematically in a straightforward way [5]. The received 
signal after the cancellation at the i-th step is: 

1

1
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q
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=
= − ∑r r h                                              (2) 

where ˆ jq  are the estimations of the already-detected symbols. 

In the further analysis, we assume for the sake of simplicity 
that they are error-free. This is a valid assumption in low BER 
(high SNR) mode [5] (the effect of estimation errors is a 
second-order one). It should be noted that the analysis below 
can be modified in a straightforward way to account for the 
estimation errors. 

The interference nulling step is based on the Gram-Schmidt 
ortogonalization procedure, which builds a set of orthogonal 
vectors from a set of linearly-independent vectors. At this 
stage, we assume that hi are linearly independent (otherwise 
the V-BLAST algorithm must be modified taking into account 
all the linearly dependent column vectors and decreasing the 
number of independent bit sub-streams). Using the closed from 
analytical expression for the Gram-Schmidt process and after 
some mathematical development (see [6] for details), we arrive 
to the following expression of the received vector after 
interference nulling out and cancellation at the i-th step: 
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where 2
i jij

h= ∑h ,  means determinant when applied 

to a matrix, i i i= h hη , 
1

*
n

i j ki kjk=
= η η∑η η , * denotes 

complex conjugate, and [ 1, ]i m+R  is the normalized 
instantaneous (i.e., for a given channel realization) channel 
correlation matrix built on [ ]1 ...i m+η η : [ 1, ]i m

i k i lkl
+

+ +R = η η , 

, 1,..., -k l m i= . The signal power can be expressed as [6]: 
12 2 2 [ , ] [ 1, ]'' i m i m

i i iq
−+=r h R R                     (4) 

From this result and using (6), it is straightforward to obtain a 
bit error rate for a particular modulation scheme.  

Let us consider the optimal ordering at the 1-st step for 
arbitrary m. When the i-th Tx symbol is detected first, the 
signal power after interference nulling out is: 

12 2 [ ]i
i i iP q

−
= h R R                            (5) 

where R  is the full correlation matrix (i.e., built on 
[ ]1 ... mη η ) and [ ]iR  is the correlation matrix built on all 

column vectors except for iη . Under the assumptions of equal 

iq  and equal ih  (i.e., the same received power from every 
transmit antenna), the optimal ordering is to detect first the 
symbol with the smallest [ ]iR . In fact, this means that the 

overall correlation among [ ]1 1 1,... , ,...i i m− +η η η η  must be 

highest and, consequently, the correlation between iη  and 

[ ]1 1 1,... , ,...i i m− +η η η η  must be the lowest (this follows 

from geometrical interpretation of R  as a volume in the m-
dimensional space [7]). Thus, the best ordering is to detect first 
that symbol whose column propagation vector has lowest 
correlation with the other vectors. 

The after-processing noise power at i-th step can be simply 
expressed as [6]: 

( )2 2
1''

i iP n m i= = − + σν ν                      (6) 

where 22
1 jνσ =  is per-branch noise power before 

processing, and  is the expectation over noise voltage (see 



[6] for detailed derivation). Note that the after-processing noise 
power is less than the total noise power, which is 2

1nσ . This is 
the consequence of the orthogonal projection performed by the 
Gram-Schmidt process (see Fig. 1). One also should note that 
the after-processing noise power increases with i (step index), 
being the smallest in the 1st step and the same as the total noise 
power in the last step. 

IV. FADING OUTAGE CURVES AND DIVERSITY ORDER 
Based on the results above, let us know analyze the signal 

fading in the V-BLAST system. In particular, we consider the 
outage probabilities (i.e., the probability that the signal level is 
less than the specified value) and diversity order (i.e., the 
asymptotic slope of the outage probability curve). 

We assume that the channel gains (i.e., the components of 
H) are i.i.d. complex Gaussians with zero mean and unit 
variance (i.e., we consider only the channel variation due to 
multipath and ignore the absolute propagation loss and large-
scale variation due to shadowing). First, we ignore the optimal 
ordering procedure and prove that the diversity order at the i-th 
step is (n-m+i).  

To demonstrate the main idea of the proof, let us consider 
first the case of n=m=2, i.e. [ ]1 2=H h h . To be specific, we 
assume that the 1-st Tx symbol is detected first. The 
interference nulling out can be expressed is a general matrix 
form: Q⊥ = ⋅r r , where Q is an orthogonal projection matrix, 
which projects r to the direction orthogonal to h2. Substituting 
this into (2), one obtains (since we are interested in the 
received signal power only, we ignore noise in this section): 

1 1q Q⊥ = ⋅r h . This means that the signal after interference 
nulling out is proportional to that part of 1h  which is 

orthogonal to 2h  , see Fig. 1, and the signal power ~ 2
1⊥h . 

But the vector magnitude is not affected by rotation on an 
arbitrary angle. We rotate [ ]1 2h h  as a whole on angle ψ so 

that 2h  is parallel to 2e : 1,2 0h = . This can be expressed as: 

i iA= ⋅h h% , where A is the rotation matrix, which satisfies to 

(preservation of length): A A A A I+ +⋅ = ⋅ = , where “+” denotes 
conjugate transpose. Using the expressions above, one obtains: 

1 1,1h⊥ =h %  . It is further straightforward to show that the 

components of 1h%  has the same distribution as the components 
of 1h  (note that ψ  is independent of 1h ), i.e. i.i.d. complex 

Gaussians with unit variance. Hence, 2
1⊥h  is chi-squared 

random variable with two degrees of freedom, 2 2
1 2~⊥ χh . The 

same is true for the signal power. Thus, the diversity order in 
the 1-st step is one. The similar consideration for arbitrary n 
leads to the conclusion that 2 2

1 2( 1)~ n⊥ −χh  (simply because 

1⊥h  has n-1 non-zero components after rotation) and the 
diversity order is (n-1). 

The case of arbitrary m is somewhat more complex 
however straightforward to consider in the similar way. First, 

we rotate the set [ ]1 ... mh h  as a whole so that mh  becomes 

parallel to me . In the second rotation we keep mh  fixed (i.e., a 
rotation around me  axis) and position 1m−h  into [ ]mm ee 1−  
plane. The rotations are continued until 2h  is positioned into 

[ ]2 3 ... me e e  hypeplane. After the rotation, 1⊥h  has (n-m+1) 
non-zero components. Every such rotation preserves the 
distribution of the components. Hence, 2 2

1 2( 1)~ n m⊥ − +χh  and 

the diversity order is (n-m+1). Similar consideration for the i-
th step leads to the conclusion that 2 2

2( )~i n m i⊥ − +χh  and the 

diversity order is (n-m+i). Note that the lowest diversity order 
is at the 1-st step and the highest is at the last (i.e., n). When 
n=m, no diversity is obtained at the 1-st step. 

V. THE EFFECT OF OPTIMAL ORDERING 
For the sake of simplicity, we assume that all transmitted 

symbols have the same unit power and that the channel 
coefficients are i.i.d. complex Gausians with unit variance and 
zero mean (i.e. Rayleigh fading). Since we are interested in 
outage probability (i.e., the probability that the received signal 
power drops below a given value), we consider the received 
powers only (in each Rx antenna from each Tx antenna). 
Under the assumptions above, the vector signal received by the 
Rx antennas from the i-th Tx antenna is i i=r h . We consider 
first 2x2 V-BLAST and further it is generalized to the 2xn 
case. 

A. 2x2 Case 
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Figure 1. Rotation of the received vectors by angle Ψ . 

Consider the following transformation of the received 
vectors (as a whole) illustrated in Fig. 1. Since it is the 
rotation, the vector lengths (i.e., the signal magnitudes) as well 
as the angle ϕ  are not changed. This rotation is the same as the 
one in the previous section. Hence, the primed vector lengths 
have the same distribution as the unprimed ones, namely 

2 2
1 2~⊥ χh , 2

21 ~ χh , 2 2
1 4~ χh . Thus, we further use unprimed 

notations. The components of h2 have the same distributions as 
those of h1. The outage probability (i.e. cumulative distribution 
function) for 2

1h  (or 2
2h ) is 

( )2 2
1 2Pr Pr ( ) 1 1x

hx x F x e x−   < = < = = − +      
h h    (7) 

i.e., the 2nd order MRC. The optimal ordering procedure (after 
the interference nulling) can be described as follows: 

( )2 2 2 2 2
1 1 2 1 2max , sin max ,s ⊥ ⊥

   = = ϕ      
h h h h     (8) 



where s1 is the signal power after the optimal ordering, i.e. we 
compare 1⊥h  and 2⊥h  and take the maximum. In fact, (8) 
tells us that the optimal ordering for 2x2 system is to detect 
first the sub-stream with the largest before-detection power 
(i.e., the max at the right-hand side of (8)). While 2

1⊥h  and 
2

2⊥h  are 2
2χ  (i.e., Rayleigh distributed), taking the maximum 

does not result in 2nd-order diversity because they are not 
independent, as sin ϕ at the right-hand side of (8) indicates. 

Using the fact that the distribution of 2 2
1 2max , 

  
h h  is 

2 ( )hF x , the distribution 1( )F x of s1 may be presented in the 
following form: 

/ 2 2
1 20
( ) ( )

sin
h

x
F x F f d

π
ϕ

 
= ϕ ϕ  ϕ 

∫                     (9) 

where ( )fϕ ϕ  is the p.d.f. of ϕ  (note that it is not uniform). It 

can be shown that ( ) sin 2fϕ ϕ = ϕ . This p.d.f. is illustrated in 

Fig. 2. The most probable direction is 450 as one would 

intuitively expect (because 2 2
1 2~⊥ χh , 

2 2
21 ~ χh  and, hence, 

the most probable values of the abscissa ( 1h ) and ordinate 

( 1⊥h ) are the same (see Fig. 1)). The probability to get the 

angle close to 00 (900) is very small because it means that 1h  

( 1⊥h ) can be any and 1⊥h  ( 1h ) must be close to 0, and this 

probability is small. 
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Figure 2. p.d.f. of ϕ  for various numbers of receive antennas (n). 

It should be noted that (9) holds true in the 2xn case as 
well, provided that the appropriate expressions are used for 

( )fϕ ϕ  and ( )hF x . Evaluating the integral in (9), one obtains, 

after some manipulations, the following simple expression for 
the outage probability at the 1st detection step with the optimal 
ordering: 

2
1( ) 1 2 1

2
x xx

F x e e− − = − + + 
 

                      (10) 

The asymptotic behavior of this outage probability (i.e., in the 
small outage probability region) is 

1( ) / 2 , 0F x x x≈ →                      (11) 

Comparing this with the asymptotic behavior of the Rayleigh 
distribution ( ( ) , 0RF x x x≈ → ), we conclude that the effect of 
optimal ordering is to increase SNR (or decrease outage 
probability) by 3 dB rather than to increase the diversity order, 
as one might intuitively expect based on the selection 
combining argument (see (8)). The reason for this is that 1⊥h  

and 2⊥h  are correlated.  
The outage probability at the 2nd detection step can be 

derived using an expression similar to (8). In particular, we 
note that at the second step we have to use the received vector 
with the minimum length 1 2min ,  h h  because the vector 

with the maximum length was used in the 1st step. We also 
note that there is no need for interference nulling at this step. 
Hence, 2 2

2 1 2min ,s  =   
h h  and the outage probability 2 ( )F x  

is 
[ ] [ ]2 2( ) Pr ( ) 2 ( )h hF x s x F x F x= < = −              (12) 

Its asymptotic behavior is 
2

2 ( ) 2 ( ) , 0hF x F x x x≈ ≈ →                    (13) 

Comparing it with the 2nd order MRC outage probability, 
2( ) ( ) / 2MRC hF x F x x= ≈ , we conclude that the effect of optimal 

ordering at the 2nd detection step is to increase outage 
probability twice (3dB). This is the “price” one has to pay for 
the 3dB increase in SNR at the 1st step. It should be noted that 
(12) holds true in the 2xn case as well, provided that the 
appropriate expression is used for ( )hF x . 

B. 2xn Case 

In this case, 2 22 2 2
1 2 2 2 1 21~ , ~ , ~n n⊥ −χ χ χh h h  and 

1
2

1
0

( ) Pr 1
!

kn
x

h
k

x
F x x e

k

−
−

=

 = < = −   ∑h             (14) 

The same distributions hold true for h2 as well. It can be shown 
that in this case 2 3( ) 2( 1)(sin ) cosnf n −

ϕ ϕ = − ϕ ϕ . This p.d.f. is 

illustrated in Fig. 2 for n=2, 3, 4. The most probable direction 
shifts to the right (900) when n increases, starting from 450 for 
n=2. This is what should be intuitively expected because 

2
21 ~ χh  and 2 2

1 2 2~ n⊥ −χh , and, hence, the most probable 

value of the ordinate ( 1⊥h ) is greater than the most probable 

value of the abscissa ( 1h ) (for n>2), and the former increases 

with n while the later is fixed. Using (9) and the p.d.f. above, 
one obtains, 

1
/2 2 2 2

1 20
0

( ) ( ) ( 1)
sin

n
h h

x x
F x F f d n F t dt

t
π −

ϕ
   = ϕ ϕ = − ⋅      ϕ 

∫ ∫   (15) 

After some manipulations, (15) reduces to, 
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2

1
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0
( ) 1 ( 1) 2 2

n
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where 
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Figure 3. Outage probability curves of the V-BLAST algorithm 

for n=2. 
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Figure 4. Outage probability curves of the V-BLAST 

algorithm for n=3. 

0 0
2 2 2

1

( 1) ( 2)! ( 1)
,   ( 2) ( 2)!

( 1)! ! !( 1 )!

2 ( )!2
! !( )!

i m ki i
i

i i
m k

i jn n

i
j i n k j n

n i
a b n i

n m m k n k

j n
c

i k j k

−

= =
−− −

= + = − +

− − − −
= = − − −

− − − −

−
=

−

∑ ∑

∑ ∑

 (17) 

Hence, a general form of F1(x) is  
2

1 1 2( ) 1 ( ) ( )x xF x p x e p x e− −= − +                     (18) 

where 1( )p x  and 2 ( )p x  are polynomials of degree at most (n-
2) and (2n-3) correspondingly. The asymptotic behavior of the 
outage probability is 

1

1
1

( ) , 0
( 1)! 2

nx
F x x

n

−
 ≈ → −  

              (19) 

Comparing it with (n-1)-order MRC asymptotic behavior, 
1( ) /( 1)!n

MRCF x x n−≈ − , we conclude that the effect of the 
optimal ordering at the 1st detection step is to increase SNR by 
3 dB rather than to increase the diversity order. It is interesting 
to note that the conclusion proved to be true for 2x2 system, is 
also true in the general 2xn case. The outage probability at the 
2nd detection step is given by (12), where Fh(x) is that in (14). 
We do the same conclusion as in the 2x2 case: the effect of 
optimal ordering at the 2nd detection step is to increase the 
outage probability twice. This is the “price” to pay for the 
increased SNR at the 1st step. 

VI. NUMERICAL MONTE-CARLO SIMULATIONS 
In order to validate the analytical results above, we use 

numerical Monte-Carlo simulations. First, the V-BLAST 
algorithm outage curves have been simulated without the 
optimal ordering. No difference has been observed between the 
analytical results above and the Monte-Carlo simulations (thus, 
the results are not shown on the graphs), which validates the 
analytical results. Secondly, the V-BLAST outage curves have 
been simulated with the optimal ordering procedure. Some of 
the results are presented in Fig. 3-4. No significant difference 
has been found between analytical outage probability results 
and Monte-Carlo simulations. This validates our conclusion 
that the effect of the optimal ordering is to increase signal 
power (and SNR) rather than to increase the diversity order. 

VII. CONCLUSIONS 
Using a closed-from model of the Gram-Schmidt process, 

we have developed an analytical approach to the performance 
analysis of the V-BLAST algorithm. In particular, closed-form 
analytical expressions have been presented for the signal and 
noise vectors at i-th processing step, as well as for the outage 
probabilities.  

We have proved that the diversity order at i-th processing 
step is (n-m+i), provided that no optimal ordering is used. For 
the 2xn system, the effect of the optimal ordering at the 1st 
detection step is to increase SNR by 3 dB rather then to 
increase the diversity order (as one might intuitively expect 
based on the selection combining argument). For the 2nd 
detection step, the effect of the optimal ordering is to increase 
the outage probability twice. This is the “price” to pay for 
increased SNR at the 1st step. However, the diversity order at 
the second step is n. Thus, 3 dB increase in outage probability 
will not degrade the overall performance since the original 
outage probability is low (for reasonably large SNR). On the 
contrary, it is important to improve the 1st step SNR since the 
diversity order is (n-1), less than at the second step. 
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