
IEEE COMMUNICATIONS LETTERS, VOL. 6, NO. 1, JANUARY 2002 19

Estimating MIMO System Performance Using the
Correlation Matrix Approach

Sergey Loyka, Member, IEEE,and George Tsoulos, Member, IEEE

Abstract—The channel capacity of a multiple-input–multiple-
output (MIMO) communication system depends substantially on
correlation between individual receive branches. In this letter, we
investigate the MIMO capacity using the correlation matrix ap-
proach and the Salz–Winters spatial correlation model. It is shown
that for a linear array, correlation has no impact on the MIMO
channel capacity provided that the two-element array beamwidth
is smaller than the angle spread of the incoming signals. Simple
but accurate approximations for the correlation coefficient and the
corresponding channel capacity are derived for different angular
spreads.

Index Terms—Channel capacity, fading correlation, MIMO.

I. INTRODUCTION

M IMO communication architectures provide substantially
better spectral efficiency than traditional systems under

certain conditions [1]. However, the electromagnetic environ-
ment has a profound impact on their operation. In particular, cor-
relation between individual sub-channels of the matrix channel
may result in severe degradation of the MIMO architecture per-
formance. Several models have been considered for the estima-
tion of this effect [2]–[4]. In this letter, the correlation matrix ap-
proach [3], [5], [6] is employed together with the Salz–Winters
model of the fading spatial correlation [8] in order to predict the
MIMO architecture performance in a realistic electromagnetic
environment. This also allows to obtain an explicit relationship
between MIMO channel capacity and the average angle of ar-
rival and angle spread of incoming signals.

II. CORRELATION MATRIX MODEL

We employ here the spatial correlation model presented in
[8]. In this model, each user generates many independent mul-
tipath signals arriving to the adaptive array within of the
mean angle of arrival (AOA) (see Fig. 1). The AOA prob-
ability density function is assumed to be uniform and all users
are assumed to be statistically independent and to have the same
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Fig. 1. Incoming multipath signals arrive to the linear antenna array within
�� of mean angle'.

statistics. The signal correlation coefficient between theth and
th antenna array elements is

(1)

where is the inter-element distance, is the
wavelength, is the angle spread of the incoming multipaths,

is the average angle of arrival, andis the imaginary unit.
Without loss of generality, we assume that . For ,
(1) reduces to the classical expression [9]

(2)

where is the zeroth-order Bessel function of the first kind.
For a Bessel series expansion was derived for in
[8]. However, as detailed analysis shows, for small(a few de-
grees) this expansion converges very slowly and, consequently,
a large number of terms must be used in order to estimateac-
curately. The computational efficiency of this procedure is very
low, especially when matrix computations are involved, as is the
case for MIMO systems. A simple but still accurate approxima-
tion of (1) for small and can be derived using
(valid for small ), and performing integration in (1):

(3)

The smaller , the better the accuracy is. Thus, this approxima-
tion works exactly where it is needed. The upper bound of its
validity is approximately . Hence, one may use (2) for large
values of and (3) for small values.

III. MIMO C HANNEL CAPACITY

For fixed linear matrix channel with additive white
Gaussian noise and when the transmitted signal vector is com-
posed of statistically independent equal power components each
with a Gaussian distribution, the channel capacity is [1]

bits/s/Hz (4)
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where is the number of transmit/receive antennas (without
loss of generality, we consider here the case when the number
of transmit and receive antennas are equal),is the average
signal-to-noise ratio (SNR), is the identity matrix,
is the normalized channel matrix, which is considered to be fre-
quency independent over the signal bandwidth, and “” denotes
transpose conjugate. When the channel is random, then the ca-
pacity in (4) is random too. The expectation over the channel
matrix can be employed in this case in order to define the mean
(ergodic) capacity as follows [7], [13]:

(5)

where is the mean capacity and is expectation over the
channel matrix. Using Jensen’s inequality and concavity of

[10], one obtains an upper bound on the mean capacity

(6)

where is the correlation matrix with components

(7)

and denotes the components of. Equation (7) can be pre-
sented as follows:

(8)

where is the normalized average power in theth re-
ceive branch, and are the components of the normalized cor-
relation matrix, i.e., for any and , and .
Now we consider the effect of correlation only on the MIMO
capacity. Thus, we assume that all the received average powers
per receive branch are the same, , and that is normal-
ized in such a way that (in this case, is the average
SNR in each receive branch). Hence, (6) can be presented as

(9)

where is the normalized correlation matrix whose compo-
nents are . In fact, the capacity of the “average” channel
provides an upper bound on the mean (ergodic) capacity.
We further investigate this upper bound using the correlation
matrix model of Section II. As detailed analysis shows, the
upper bound estimated in this way is quite close to the mean
capacity when all the correlation is due to the receive part of
the system [5], [6] (i.e., when for ) and
when the channel is not a degenerate one [11], [6]. Thus,
may be used as a rough estimation of in this case. Note
that is simple to evaluate numerically (for a given) while

requires lengthy Monte Carlo simulations. Due to the
reciprocity of (4), the effect of transmit branch correlation can
be analyzed in a similar way.

In order to estimate the mean capacity by Monte Carlo simu-
lations, we employ some additional assumptions.

Fig. 2. MIMO capacity of the “average” channel (the upper bound) and the
mean (ergodic) capacity versusd for different�; N = 20; n = 10 and� =
30 dB.

1) There are multiple paths arriving to each receive an-
tenna from a given transmit antenna.

2) The angles-of-arrival (AOA) of these paths are uniformly
distributed within of .

3) The gains of these multiple paths are i.i.d. complex
Gaussian variables (i.e., Rayleigh fading) with zero mean
and unit variance.

4) Each transmit antenna launches an independent set of
multiple paths (i.e., independent set of AOA’s and path
gains) with the same statistical characteristics.

According to the assumption of independence and of equal
statistical characteristics of all the transmit branches, all the
terms in (7) are equal. Thus, we use (1)–(3) to evaluateand
Monte Carlo simulations to evaluate for different and
. First, the case of is considered (the capacity is max-

imum under this condition). Fig. 2 shows and versus
for different . Note that there is good agreement between

(1) and (3) when estimating the MIMO capacity. Fig. 2 indi-
cates that the function consists of two regions: 1) for small

increases almost linearly asincreases, 2) for
larger saturates and does not change signifi-
cantly with . Detailed analysis shows that corresponds
approximately to the first zero of for .

Using (3), we obtain

(10)

is the channel capacity of an uncorrelated matrix channel,

(11)

Further we observe that where
is the single-input single-output channel capacity

(with the same total radiated power). Thus, can be approx-
imated by the following piecewise-linear function:

(12)
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Fig. 2 shows that (12) provides quite a good approximation
when . For the accuracy of (3) and, con-
sequently, of (10) degrades. In this case the following estimation
is more accurate: which approximately corresponds
to the first zero of (2). Thus, in a general case one may use the
following estimation: . It should be
noted that the mean capacity follows the same dependence on

as the upper bound except that it is 15% lower in the satura-
tion region. Thus, the upper bound provides quite an accurate
estimation of the mean capacity when the effect of correlation
is substantial, i.e., when . When increases, the max-
imum value of the mean capacity increases too, but by a small
amount only. When and each transmit antenna gener-
ates the same set of AOA’s, the mean capacity reduces substan-
tially, which is in good agreement with [12]. The general depen-
dence of on shown in Fig. 2 is quite stable with respect
to the assumptions i)–iv) above. For example, if the path gains
are assumed to be of equal magnitudes and of independent uni-
formly distributed phases, the maximum capacity is less than
10% lower than that shown in Fig. 2. The same is true when
each transmit antenna generates the same set of AOA’s ( )
and the path gains are i.i.d. complex Gaussians. Of course, the
assumption of full transmit branch correlation will result in a
substantial capacity decrease [5], [6].

Let us now consider the case of . Using an analogy
with the phased array theory, one may guess that (10) should be
generalized to

(13)

Detailed analysis using extensive numerical simulations
shows that this equation is indeed accurate provided that two
constraints are satisfied

(14)

A general form of the function in this case is the same
as in (12).

IV. CONCLUSION

From (10), (12), and (13) we can conclude that the impact
of channel correlation on capacity of a MIMO system is
negligible when the two-element array beamwidth [defined as

] is smaller than the angular spread of the incoming
multipath signals. This agrees well with the results in [8].

It is also interesting to note that, as detailed Monte-Carlo anal-
ysis shows, the mean capacity follows approximately the same
dependency onas in (12), with the only exception that is
10 to 20% lower in this case, provided that the transmit branch
correlation is low and the channel is not a degenerate one. Thus,
the conclusion above holds for the mean capacity as well.
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